Reymond, Claire E. ORCID: and Hohn, Sönke (2021) An Experimental Approach to Assessing the Roles of Magnesium, Calcium, and Carbonate Ratios in Marine Carbonates. Oceans, 2 (1). pp. 193-214. DOI

[img] Text
Reymond.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (2MB)


Marine biomineralization is a globally important biological and geochemical process. Understanding the mechanisms controlling the precipitation of calcium carbonate [CaCO3] within the calcifying fluid of marine organisms, such as corals, crustose coralline algae, and foraminifera, presents one of the most elusive, yet relevant areas of biomineralization research, due to the often-impenetrable ability to measure the process in situ. The precipitation of CaCO3 is assumed to be largely controlled by the saturation state [Ω] of the extracellular calcifying fluid. In this study, we mimicked the typical pH and Ω known for the calcifying fluid in corals, while varying the magnesium, calcium, and carbonate concentrations in six chemo-static growth experiments, thereby mimicking various dissolved inorganic carbon concentration mechanisms and ionic movement into the extracellular calcifying fluid. Reduced mineralization and varied CaCO3 morphologies highlight the inhibiting effect of magnesium regardless of pH and Ω and suggests the importance of strong magnesium removal or calcium concentration mechanisms. In respect to ocean acidification studies, this could allow an explanation for why specific marine calcifiers respond differently to lower saturation states.

Document Type: Article
Programme Area: PA2, PA4
Research affiliation: Integrated Modelling > Systems Ecology
Biogeochemistry and Geology > Geoecology & Carbonate Sedimentology
Refereed: Yes
Open Access Journal?: Yes
ISSN: 2673-1924
Date Deposited: 12 Apr 2024 13:04
Last Modified: 12 Apr 2024 13:04

Actions (login required)

View Item View Item