Schürholz, Daniel ORCID: https://orcid.org/0000-0003-0213-9324, Castellanos-Galindo, Gustavo Adolfo ORCID: https://orcid.org/0000-0002-7849-5205, Casella, Elisa, Mejía-Rentería, Juan Carlos ORCID: https://orcid.org/0000-0002-7388-2820 and Chennu, Arjun ORCID: https://orcid.org/0000-0002-0389-5589 (2023) Seeing the Forest for the Trees: Mapping Cover and Counting Trees from Aerial Images of a Mangrove Forest Using Artificial Intelligence. Remote Sensing . DOI https://doi.org/10.3390/rs15133334.

[img] Text (Journal article)
remotesensing-15-03334.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (25MB)

Abstract

Mangrove forests provide valuable ecosystem services to coastal communities across tropical and subtropical regions. Current anthropogenic stressors threaten these ecosystems and urge researchers to create improved monitoring methods for better environmental management. Recent efforts that have focused on automatically quantifying the above-ground biomass using image analysis have found some success on high resolution imagery of mangrove forests that have sparse vegetation. In this study, we focus on stands of mangrove forests with dense vegetation consisting of the endemic Pelliciera rhizophorae and the more widespread Rhizophora mangle mangrove species located in the remote Utría National Park in the Colombian Pacific coast. Our developed workflow used consumer-grade Unoccupied Aerial System (UAS) imagery of the mangrove forests, from which large orthophoto mosaics and digital surface models are built. We apply convolutional neural networks (CNNs) for instance segmentation to accurately delineate (33% instance average precision) individual tree canopies for the Pelliciera rhizophorae species. We also apply CNNs for semantic segmentation to accurately identify (97% precision and 87% recall) the area coverage of the Rhizophora mangle mangrove tree species as well as the area coverage of surrounding mud and water land-cover classes. We provide a novel algorithm for merging predicted instance segmentation tiles of trees to recover tree shapes and sizes in overlapping border regions of tiles. Using the automatically segmented ground areas we interpolate their height from the digital surface model to generate a digital elevation model, significantly reducing the effort for ground pixel selection. Finally, we calculate a canopy height model from the digital surface and elevation models and combine it with the inventory of Pelliciera rhizophorae trees to derive the height of each individual mangrove tree. The resulting inventory of a mangrove forest, with individual P. rhizophorae tree height information, as well as crown shape and size descriptions, enables the use of allometric equations to calculate important monitoring metrics, such as above-ground biomass and carbon stocks.

Document Type: Article
Programme Area: PA1
Research affiliation: Integrated Modelling > Data Science and Technology
Refereed: Yes
Open Access Journal?: Yes
DOI: https://doi.org/10.3390/rs15133334
ISSN: 2072-4292
Date Deposited: 30 Jun 2023 16:52
Last Modified: 26 Mar 2024 13:31
URI: http://cris.leibniz-zmt.de/id/eprint/5223

Actions (login required)

View Item View Item