Vogel, N, Meyer, FW, Wild, C and Uthicke, S (2015) Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Marine Ecology Progress Series, 521 . pp. 49-61. DOI https://doi.org/10.3354/meps11088.

[img] Text
Vogel 2015.pdf - Published Version
Restricted to Registered users only
Available under License Creative Commons: Attribution 4.0.

Download (254kB)

Abstract

Coral reef organisms are increasingly and simultaneously affected by global and local stressors such as ocean acidification (OA) and reduced light availability. However, knowledge of the interplay between OA and light availability is scarce. We exposed 2 calcifying coral reef species (the scleractinian coral Acropora millepora and the green alga Halimeda opuntia) to combinations of ambient and increased pCO2 (427 and 1073 µatm, respectively), and 2 light intensities (35 and 150 µmol photons m-2 s-1) for 16 d. We evaluated the individual and combined effects of these 2 stressors on weight increase, calcification rates, O2 fluxes and chlorophyll a content for the species investigated. Weight increase of A. millepora was significantly reduced by OA (48%) and low light intensity (96%) compared to controls. While OA did not affect coral calcification in the light, it decreased calcification in the dark by 155%, leading to dissolution of the skeleton. H. opuntia weight increase was not affected by OA, but decreased (40%) at low light. OA did not affect algae calcification in the light, but decreased calcification in the dark by 164%, leading to dissolution. Low light significantly reduced gross photosynthesis (56 and 57%), net photosynthesis (62 and 60%) and respiration (43 and 48%) of A. millepora and H. opuntia, respectively. In contrast to A. millepora, H. opuntia significantly increased chlorophyll content by 15% over the course of the experiment. No interactive effects of OA and low light intensity were found on any response variable for either organism. However, A. millepora exhibited additive effects of OA and low light, while H. opuntia was only affected by low light. Thus, this study suggests that negative effects of low light and OA are additive on corals, which may have implications for management of river discharge into coastal coral reefs.

Document Type: Article
Programme Area: UNSPECIFIED
Research affiliation: Ecology
Ecology > Experimental Aquaculture
Refereed: Yes
Open Access Journal?: Yes
DOI: https://doi.org/10.3354/meps11088
ISSN: 0171-8630
Date Deposited: 06 Aug 2019 15:26
Last Modified: 26 Mar 2024 13:29
URI: http://cris.leibniz-zmt.de/id/eprint/2489

Actions (login required)

View Item View Item