Meyer, Friedrich W., Schubert, Nadine, Diele, Karen, Teichberg, Mirta, Wild, Christian and Enríquez, Susana (2016) Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon. PLOS ONE, 11 (8). e0160268. DOI https://doi.org/10.1371/journal.pone.0160268.

[img] Text
Meyer 2016a.pdf - Published Version
Restricted to Registered users only

Download (711kB)

Abstract

Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics.

Document Type: Article
Research affiliation: Ecology > Algae and Seagrass Ecology
Ecology > Experimental Aquaculture
Ecology
Affiliations > Not ZMT
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: https://doi.org/10.1371/journal.pone.0160268
ISSN: 1932-6203
Date Deposited: 09 Jul 2019 13:41
Last Modified: 01 Oct 2020 12:59
URI: http://cris.leibniz-zmt.de/id/eprint/2304

Actions (login required)

View Item View Item