Dechnik, Belinda, Webster, Jody M., Nothdurft, Luke, Webb, Gregory E., Zhao, Jian-xin, Duce, Stephanie, Braga, Juan C., Harris, Daniel L., Vila-Concejo, Ana and Puotinen, Marji (2016) Influence of hydrodynamic energy on Holocene reef flat accretion, Great Barrier Reef. Quaternary Research, 85 (1). pp. 44-53. DOI

Full text not available from this repository.


The response of platform reefs to sea-level stabilization over the past 6 ka is well established for the Great Barrier Reef (GBR), with reefs typically accreting laterally from windward to leeward. However, these observations are based on few cores spread across reef zones and may not accurately reflect a reef's true accretional response to the Holocene stillstand. We present a new record of reef accretion based on 49 U/Th ages from Heron and One Tree reefs in conjunction with re-analyzed data from 14 reefs across the GBR. We demonstrate that hydrodynamic energy is the main driver of accretional direction; exposed reefs accreted primarily lagoon-ward while protected reefs accreted seawards, contrary to the traditional growth model in the GBR. Lateral accretion rates varied from 86.3 m/ka–42.4 m/ka on the exposed One Tree windward reef and 68.35 m/ka–15.7 m/ka on the protected leeward Heron reef, suggesting that wind/wave energy is not a dominant control on lateral accretion rates. This represents the most comprehensive statement of lateral accretion direction and rates from the mid-outer platform reefs of the GBR, confirming great variability in reef flat growth both within and between reef margins over the last 6 ka, and highlighting the need for closely-spaced transects.

Document Type: Article
Programme Area: UNSPECIFIED
Research affiliation: Biogeochemistry and Geology
Refereed: Yes
Open Access Journal?: No
ISSN: 0033-5894
Date Deposited: 08 Jul 2019 14:27
Last Modified: 26 Mar 2024 13:28

Actions (login required)

View Item View Item