Pogoreutz, Claudia, Rädecker, Nils, Cardenas, Anny, Gärdes, Astrid, Wild, Christian and Voolstra, Christian R. (2018) Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecology and Evolution, 8 (4). pp. 2240-2252. DOI https://doi.org/10.1002/ece3.3830.

[img] Text
Pogoreutz 2018c.pdf - Published Version
Restricted to Registered users only
Available under License Creative Commons: Attribution 4.0.

Download (640kB)

Abstract

The importance of Symbiodinium algal endosymbionts and a diverse suite of bacteria for coral holobiont health and functioning are widely acknowledged. Yet, we know surprisingly little about microbial community dynamics and the stability of host‐microbe associations under adverse environmental conditions. To gain insight into the stability of coral host‐microbe associations and holobiont structure, we assessed changes in the community structure of Symbiodinium and bacteria associated with the coral Pocillopora verrucosa under excess organic nutrient conditions. Pocillopora‐associated microbial communities were monitored over 14 days in two independent experiments. We assessed the effect of excess dissolved organic nitrogen (DON) and excess dissolved organic carbon (DOC). Exposure to excess nutrients rapidly affected coral health, resulting in two distinct stress phenotypes: coral bleaching under excess DOC and severe tissue sloughing (>90% tissue loss resulting in host mortality) under excess DON. These phenotypes were accompanied by structural changes in the Symbiodinium community. In contrast, the associated bacterial community remained remarkably stable and was dominated by two Endozoicomonas phylotypes, comprising on average 90% of 16S rRNA gene sequences. This dominance of Endozoicomonas even under conditions of coral bleaching and mortality suggests the bacterial community of P. verrucosa may be rather inflexible and thereby unable to respond or acclimatize to rapid changes in the environment, contrary to what was previously observed in other corals. In this light, our results suggest that coral holobionts might occupy structural landscapes ranging from a highly flexible to a rather inflexible composition with consequences for their ability to respond to environmental change.

Document Type: Article
Programme Area: UNSPECIFIED
Research affiliation: Ecology
Biogeochemistry and Geology > Tropical Marine Microbiology
Refereed: Yes
Open Access Journal?: Yes
DOI: https://doi.org/10.1002/ece3.3830
ISSN: 20457758
Date Deposited: 06 Jun 2019 12:31
Last Modified: 26 Mar 2024 13:28
URI: http://cris.leibniz-zmt.de/id/eprint/2032

Actions (login required)

View Item View Item