Paul, Nina, Novais, Sara C., Lemos, Marco F. L. and Kunzmann, Andreas ORCID: https://orcid.org/0000-0002-9500-4332 (2018) Chemical predator signals induce metabolic suppression in rock goby (Gobius paganellus). PLOS ONE, 13 (12). e0209286. DOI https://doi.org/10.1371/journal.pone.0209286.

[img] Text
Paul 2018.pdf - Published Version
Restricted to Registered users only
Available under License Creative Commons: Attribution 4.0.

Download (973kB)

Abstract

In nature, a multitude of both abiotic and biotic stressors influence organisms with regard to their overall fitness. Stress responses that finally impair normal biological functions may ultimately result in consequences for whole populations. This study focused on the metabolic response of the intertidal rock pool fish Gobius paganellus towards simulated predation risk. Individuals were exposed to a mixture of skin extracts from conspecifics and chemical alarm cues from a top predator, Octopus vulgaris. Oxygen consumption rates of single fish were measured to establish standard (SMR) and routine metabolic rates (RMR) of G. paganellus, and to address the direct response towards simulated predation risk, compared to handling and light stress. The SMR of G. paganellus (0.0301 ± 0.0081 mg O2 h-1 g-1 WW) was significantly lower than the RMR (0.0409 ± 0.0078 mg O2 h-1 g-1 WW). In contrast to increased respiration due to handling and light stress, the exposure to chemical predation cues induced a significant reduction in oxygen consumption rates (0.0297 ± 0.0077 mg O2 h-1 g-1 WW). This metabolic suppression was interpreted as a result of the stereotypic freezing behaviour as antipredator response of gobiid fish. Results underline the importance of biotic interactions in environmental stress assessments and predation as a biotic factor that will provide more realistic scenarios when addressing stress impacts in tidal rock pool organisms.

Document Type: Article
Programme Area: UNSPECIFIED
Research affiliation: Ecology > Experimental Aquaculture
Infrastructure > Marine Experimental Ecology (MAREE)
Refereed: Yes
Open Access Journal?: Yes
DOI: https://doi.org/10.1371/journal.pone.0209286
ISSN: 1932-6203
Date Deposited: 06 Jun 2019 11:36
Last Modified: 26 Mar 2024 13:28
URI: http://cris.leibniz-zmt.de/id/eprint/2028

Actions (login required)

View Item View Item