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Abstract

Background

Anthropogenic perturbations have strong impact on water quality and ecological health of

mangrove areas of Indian Sundarbans. Diversity in microbial community composition is

important causes for maintaining the health of the mangrove ecosystem. However, micro-

bial communities of estuarine water in Indian Sundarbans mangrove areas and environmen-

tal determinants that contribute to those communities were seldom studied.

Methods

Nevertheless, this study attempted first to report bacterial and archaeal communities simul-

taneously in the water from Matla River and Thakuran River of Maipith coastal areas more

accurately using 16S rRNA gene-based amplicon approaches. Attempt also been made to

assess the capability of the environmental parameters for explaining the variation in micro-

bial community composition.

Results

Our investigation indicates the dominancy of halophilic marine bacteria from families Flavo-

bacteriaceae and OM1 clade in the water with lower nutrient load collected from costal

regions of a small Island of Sundarban Mangroves (ISM). At higher eutrophic conditions,

changes in bacterial communities in Open Marine Water (OMW) were detected, where

some of the marine hydrocarbons degrading bacteria under families Oceanospirillaceae

and Spongiibacteraceae were dominated. While most abundant bacterial family Rhodobac-

teracea almost equally (18% of the total community) dominated in both sites. Minor variation

in the composition of archaeal community was also observed between OMW and ISM.

Redundancy analysis indicates a combination of total nitrogen and dissolved inorganic nutri-

ents for OMW and for ISM, salinity and total nitrogen was responsible for explaining the

changes in their respective microbial community composition.
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Conclusions

Our study contributes the first conclusive overview on how do multiple environmental/

anthropogenic stressors (salinity, pollution, eutrophication, land-use) affect the Sundarban

estuary water and consequently the microbial communities in concert. However, systematic

approaches with more samples for evaluating the effect of environmental pollutions on man-

grove microbial communities are recommended.

1. Introduction

Sundarbans, the largest mangrove forest of the world, is situated in the joint delta of Ganges,

Brahmaputra and Meghna rivers at Bay of Bengal [1,2]. This UNESCO World Heritage site

comprises the Indian state of West Bengal and southwest Bangladesh [3]. Livelihood and well

being of millions of people live in and around of Sundarbans, depends on its status and eco-

logical services. Despite its high ecological and economical values, Sundarbans is seriously

threatened by different anthropogenic activities. Since the early 19th century, landscapes of

Sundarbans have also been changing due to saline and freshwater imbalances. Water quality of

this ecosystem is largely affected by sewage pollutant originated from industries located

upstream and urban areas of West Bengal. Sewage entering into coastal water contains diverse

chemical and microbiological pollutants and a wide variety of organic and inorganic wastes

[4,5], driving changes on its ecological and physiological health.

Microbial communities of mangroves are responsible for nutrient cycling and play a vital

role in productivity, conservation and rehabilitation of mangrove ecosystems [6]. Therefore,

understanding their responses to environmental changes is essential to predict changes in ser-

vice-provisioning [7]. Several recent studies described the microbial community compositions

of surface sediments and water of Indian Sundarban mangrove areas. Surface sediments this

area dominanted withDeltaproteobacteria followed by Gammaproteobacteria, Alphaproteobac-
teria, Betaproteobacteria, and Epsilonproteobacteria under phylum Proteobacteria. Abundant

bacterial orders are Desulfobacterales, Desulfuromonadales,Myxococcales, and Bdellovibrio-
nales. [8–10]. While bacterioplankton communities in the water of this region were found to

be abundant with Gammaproteobacteria and Alphaproteobacteria. At the family level domi-

nancy ofHyphomicrobiaceae, Rhodobacteraceae, Pseudomonadaceae, Erythrobacteraceae, Kor-
diimonadaceae,Hyphomonadaceae, and Ruminococcaceae were observed [11–13]. However,

sampling locations of those studies on microbial communities in the Indian Sundarban man-

grove water mainly restricted near to an island (Sagar Island) and other estuary of Mooriganga,

Thakuran, Matla and Harinbhanga, therefore the major conclusions of these studies were

made based on a limited number of samples. Moreover, not much effort has been made to

investigate the archaeal community of this region except single report by [3] on surface and

subsurface sediments of Indian Sundarban mangrove forest. Moreover, the above studies have

rarely analyzed the bacterial and archaeal community structures of the same samples at the

same time. Therefore, our knowledge on those communities as well as information on how

they are controlled by environmental parameters is limited. In order to assess the microbial

communities of marine ecosystem via high-throughput sequencing of amplified 16S rRNA

genes with high resolution and fidelity, it is extremely important to select the proper primer

set that can’t underestimated or overestimated any common marine taxa [14]. However, this

will be the first attempt to visualize the accurate and well-resolved picture of bacterial and

archaeal communities simultaneously of marine water in Sundarbans mangrove using next-
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generation amplicon sequencing of the 16S rRNA gene using recently developed 515F-Y/926R

primers that target V4-V5 region of 16S rRNA gene. We also tried to explore the environmen-

tal determinants that contribute to the variation of their microbial communities. This study

will provide baseline knowledge on microbial ecology of the World Heritage site and serve as a

baseline for monitoring programs and predicting changes at impacted sites.

2. Material and methods

2.1 Ethics statement

The water samples were brought to ZMT, Germany for its environmental parameters and

nutrients measurements. The extracted mutagenic DNA were also carried to ZMT, Germany

for sequencing and further analysis. In this reference, The National Biodiversity Authority

(NBA), Government of India is well aware of this activity (NBA/Tech Appl/9/Form B/52/17/

17-18/2985) that the above mentioned samples are being used only for research purpose. Fur-

ther no permits were prerequisite for the defined field studies, which complied with all relevant

regulation neither the studied locations are not privately owned.

2.2 Study sites and sample collection

In the present study sampling was conducted in the Sundarbans mangrove ecosystem that

shared between India and Bangladesh and lies in the Ganga-Brahmaputra-Meghna (GBM)

delta. This mangrove ecosystem contains over 102 islands with a network complex of many

rivers, rivulets, and creeks [15]. Sampling was carried out at two different locations on Tha-

kuran River—Matla River estuarine complex of Maipith coastal areas in the Indian Sundar-

bans mangroves during March 2017 during low tide (Fig 1). They are designated as Island of

Sundarban Mangroves (ISM) and Open Marine Water (OMW). ISM is an uninhabited small

island with lesser anthropogenic disturbance situated in Thakuran and Matla river complex in

low-lying coastal plain. This river has no reports for perennial fresh water source [15]. Water

from three different coastal regions of this island is selected for sampling. OMW is an open

marine site around same regions, which is supposedly continually influenced by the wastewa-

ters from upstream regions of Matla River. Three independent replicated water samples (1 L)

from each of three different sampling sites of both ISM and OMW were collected in sterile

containers and immediately stored at a chilled box until further laboratory analysis.

2.3 Environmental parameters and nutrients analysis

Physiochemical parameters (salinity and pH) of all collected samples were measured using

Eureka 2 Manta multiprobe (Eureka Environmental Engineering, Texas, USA). Total 50 mL

of each sample was filtered through a 0.7 μm syringe filter and poisoned with 200 μL of 3.5

g/100 mL HgCl2 solution for nutrient analysis. Now each of the treated samples was filtered

through a 0.7 μm pore size GF/F filter (GE Healthcare Bio-Sciences, Pittsburgh, PA, USA) for

DOC and nutrients measurements. The total nitrogen (TN) content of each the samples were

measured using the EuroVector EA 3000 elemental analyzer. For measurements of DOC, the

filtered samples were acidified with concentrated HCl (pH<2) and analyzed by high-tempera-

ture catalytic oxidation method method using a TOC-VCPN analyzer (Shimadzu, Mandel,

Canada). Seawater standards (Hansell laboratory, RSMAS University Miami, USA) were used

for calibration and quality control, and ultrapure water as a blank. The Dissolved inorganic

nutrients that includes combined nitrate and nitrite (NOx), phosphate (PO4
3--P), and silicate

(Si(OH)4--) were analyzed using a continuous flow analyzer (Flowsys by Unity Scientific,
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Brookfield, USA) and detected spectrophotometrically as a colored complex [16] (https://doi.

pangaea.de/10.1594/PANGAEA.889699).

2.4 DNA extraction, PCR amplification, and Illumina MiSeq sequencing

From each site, water (1 L) was filtered (0.2 μm) and DNA was extracted using the Power-

Water1DNA Isolation Kit according to the manufacturer’s instructions (MoBio Laboratories

Inc., Carlsbad, CA, USA). DNA concentrations and purity were measured spectrophotometri-

cally. Presence of bacterial and archebacterial 16S rRNA gene was in the extracted metagen-

ome was verified following previous method [17]. In order to classify taxonomically both

bacterial and archaeal community structure simultaneously, sequencing of V4–V5

Fig 1. Map of the sampling area: Water samples were collected from three stations (KL 1, KP 1 and TH1) of a small Island are named as ISM and open marine

water samples named as OWM (TH 2, KL 2 and BL 1). Three biological replicates from each of the six stations; therefore, total eighteen (18) samples (nine from

ISM and another nine from OMW) were collected for this investigation. The GPS data of sampling sites were collecting during sampling and compiled together in an

ArcGIS10.3 software environments and finally map has been prepared using open source database of GADM (https://gadm.org/).

https://doi.org/10.1371/journal.pone.0221543.g001
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hypervariable regions of 16S rRNA gene were generated using primers 515F-Y (50-GTGYCA
GCMGCCGCGGTAA-30) and 926R (50-CCGYCAATTYMTTTRAGTTT-30) [14] on the Illumina

MiSeq platform (CeBiTec Bielefeld, Germany), in a 2 × 300 bp paired-end run.

2.5 High throughput sequencing data processing

Primer sequences were removed using cutadapt from the raw paired-end reads [18]. The

primer-trimmed sequences are available on Sequence Read Archive (SRA) (accession no.

SRP144285). Sequences were quality trimmed with trimmomatic v0.32 [19] using a sliding

window of 4 bases and a minimum average quality of 15, and merged with PEAR v0.9.5 [20].

Quality-filtered sequences were clustered into OTUs with swarm algorithm using default

parameters [21]. One single representative sequence per OTU was taxonomically classified

with SINA (SILVA Incremental Aligner; v1.2.11; Silva reference database release 132) at a min-

imum alignment similarity of 0.9, and a last common ancestor consensus of 0.7 [22]. OTUs

that were unclassified on the domain level and those matching to chloroplast and mitochon-

drial sequences were excluded from the analysis using well-standardized r script [23]. The final

OTU tables are accessible at (https://doi.pangaea.de/10.1594/PANGAEA.890757).

2.6 Statistical analysis

Principal component analysis (PCA) was performed to cluster the sampling sites based on

their environmental parameters. Differences in environmental parameters among ISM and

OMW were assessed using general linear mixed models (GLMM) with sampling station as a

random factor [24].

Alpha-Diversity indices were calculated to assess richness and evenness of the microbial

communities [25] in the studied samples, based on repeated random subsampling of the

amplicon data sets after randomly rarefying the data set to the minimum library size (50517

sequences). Significant differences in alpha-diversity indices between the studied stations were

determined by using the non-parametric Kruskal test followed by p-value adjusted Wilcoxon

tests [26].

To assess the differences in community structure between two sampling sites (beta-diver-

sity), Bray–Curtis dissimilarities were calculated using the relative OTU abundances and also

non-metric multidimensional scaling (NMDS) plot was produced. Analysis of similarity

(ANOSIM) was calculated to assess the separation of bacterial communities between the two

sites. P-values of all multiple pairwise comparisons were adjusted using the false discovery rate

(fdr) correction method by [27]. In order to evaluate the environmental parameters as drivers

of the variations in community compositions, redundancy analysis (RDA) was used with cen-

tered log ratio (clr)-transformed sequence counts using the R function aldex.clr of the

ALDEx2 package via median values of 128 Monte-Carlo instances [28]. To compare the

explanatory power of all measured environmental parameters, additional RDA models were

constructed with environmental parameters as predictors. Forward model selection was used

after checking for variance inflation to determine which of parameters would be included in

the RDA models. When more than one parameter was included, pure effects were also tested

accounting for the variation explained by the other factors in the model. Collinearity among

predictors was determined via Variance inflation factors (VIFs) of the individual parameters.

All of the parameters in any of the RDA models displayed VIFs less than 10. The adjusted R2 is

provided as goodness-fit-stat. All statistical analyses were conducted in R using the core distri-

bution, version 3.3.2 and R-Studio, version 1.0.153,with following packages: vegan [29],

lmerTest for the GLMM [24], ALDEx2 [29] and multcomp [28].
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3. Result

3.1 Environmental characterization

Environmental parameters (pH, salinity) and nutrients (including DOC, TN, NOx, nitrate,

DIN, phosphate: PO4
3--P, and silicate: Si(OH)4-) concentrations for all samples were measured

(Table 1). Samples were slightly alkaline (pH 8.0 to 8.7) in nature. The GLMMs analysis indi-

cated that the measured water nutrients that differed significantly among the two sampling sta-

tion were mainly TN, DIN and PO4
3--P (Table 1; S1 Table). The PCA ordination (Fig 2)

showed that first two principal components (PC1 and PC2) represented 74.4% of data varia-

tion among sites. PC1 alone represents 60.1% of total variation and influenced by most of the

measured parameters, while pH showed a strong correlation with PC2 (S1 Fig). Noteworthy to

mention, the samples were separated into two clusters by PC1. One cluster is mainly composed

with the samples from ISM (except TH2.3 of OMW) and other cluster accommodating sam-

ples collected from OMW. This ordination probably indicates elevated eutrophication in sam-

ples from the OMW compared to ISM.

3.2. Microbial communities

Total numbers of reads generated per sample ranged between 50517 to 90468 (after merged)

corresponding to 3,644 to 6,470 swarmed, non-singleton 16S OTUs (S2 Fig). After rarefaction,

numbers of bacterial and archaeal OTUs ranged between 3390 to 5415 and 37 to 91, respec-

tively (S2 Fig). None of the measured diversity indices (Average Shannon diversity and inverse

Simpson indices) were found significance differences in between OMW and ISM (Fig 3; S2

Table) indicated by Kruskal—Wilcoxon test (p> 0.5), although values varied considerably.

The microbial community of marine estuary water from Sundarbans was dominated with

bacteria occupying more than 96% of total community and archaea represented only 4%. Bac-

terial assemblage of two different sites this area showed to have a distinct community. In class

Table 1. Environmental conditions in Indian Sundarban mangroves and details of the sampling sites.

Station id Site

Id

GPS (DD

COORDINATES)

Sample

ID

Salinity pH DOC

(μM)

TN

(μM)

NOx

(μM)

NO3

(μM)

DIN

(μM)

PO4

(μM)

Si

(μM)

Open Marine Water (OMW) TH 2 N 21.82389 TH2.5 26.6 8.2 112.6 12.5 1 1 1 0.4 11.7

E 88.50585 TH2.2 27.0 8.2 111 11.4 1.4 1.4 1.5 0.2 13.1

TH2.3 25.7 8.3 66.2 6.4 0 0 0 0.1 7.7

KL 2 N 21.8172 KL2.3 26.6 8.3 129.5 13.6 2.6 2.5 2.6 0.2 14.3

E 88.53658 KL2.6 26.9 8.1 162.4 10 1.2 1.2 1.3 0.1 26.3

KL2.1 26.3 8.2 116.3 12.1 1.5 1.4 1.5 0.6 15.9

BL 1 N 21.78962 BL1.6 26.8 8.5 121.1 14.8 1 1 1.1 0.2 16.3

BL1.5 26.9 8.4 114.1 13.2 1.7 1.7 1.8 0.2 12.6E 88.50534

BL1.2 26.5 8.7 111.4 12.7 2.3 2.2 2.3 0.2 16.1

Island of Sundarban

Mangroves (ISM)

KL 1 N 21.85189 KL1.3 23.6 8.3 56.1 4.4 0.2 0.2 0.3 0.1 6.2

KL1.6 22.9 8.0 58 6 0.9 0.8 0.9 0.1 6.1E 88.51168

KL1.2 24.3 8.1 62 5.1 0.2 0.2 0.2 0.1 6.5

KP 1 N 21.85604 KP1.6 25.8 8.1 78.5 5.7 0 0 0.1 0.1 12.2

E 88.51191 KP1.1 25.3 8.1 92.5 9 0 0 0.1 0.2 15.4

KP1.3 24.9 8.1 81.2 7 0.4 0.4 0.5 0.1 12.3

TH1 N 21.85706 TH1.4 21.5 8.3 91.9 8.3 0 0 0.1 0.2 8.7

E 88.51638 TH1.3 21.8 8.3 86.8 8.9 0.1 0 0.1 0.1 8.7

TH1.2 21.2 8.3 84.8 7.4 0.6 0.6 0.6 0.1 9.5

https://doi.org/10.1371/journal.pone.0221543.t001
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level, among the dominant bacterial groups, Flavobacteria (ISM: 15.9% vs OMW: 8.6%),

Alphaproteobacteria (ISM: 29.5% vs OMW: 28%), and Acidimicrobiia (ISM: 6.6% vs OMW:

5.0%) were dominant in ISM while OMW was dominated with mainly with Gammaproteobac-
teria (ISM: 22.6% vs OMW: 35.3%) (S3 Fig). At higher taxonomic resolution levels (Fig 4),

Fig 2. Principal component analysis (PCA) to ordinate the eighteen collected water samples collected samples

from ISM and OMW based on their environmental parameters. The arrows show the direction of the

environmental parameters. DIN, dissolved inorganic nitrogen; TN, total nitrogen; DOC, dissolved organic carbon.

https://doi.org/10.1371/journal.pone.0221543.g002

Fig 3. Alpha diversity of the water microbial community at two different sites (ISM and OMW) of Sundarban mangrove forest areas. Values are calculated based

on repeated random subsampling to the lowest number of sequences per sample. The median per group presented in black line.

https://doi.org/10.1371/journal.pone.0221543.g003
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bacterial communities were composed with a total of 474 and 915 different bacterial family

and genus, respectively. The most dominant bacterial family was Rhodobacteraceae (18.6%),

almost equally distributed between studied two sites. Other dominant bacterial families of ISM

were Flavobacteriaceae (14.8%) and OM1 clade (5.2%) whereas in OMW, Oceanospirillaceae
(16%) and Spongiibacteraceae (4%) were the most abundant.

We observed dominancy of Marine Group (MG I) (currently known as Thaumarchaeota)

and EuryarchaeaMG II in archaeal community assemblages with 78.5% and 16.9% of relative

abundance, respectively while the presence ofWoesearchaeota (2.1%) was also evident (Fig 5).

MG I was found in relatively higher abundant at ISM constituting on average 82.1% of

sequences as opposed to 75% at OMW. EuryarchaeotaMG II comprised about 20.3% at OMW

Fig 4. Taxonomic composition of dominant bacterial taxa on family level across eighteen samples under sites ISM and OWM (nine samples each). Ten (10) most

abundant bacterial families for each of the samples were reported here and rests less dominant members are label as “other”.

https://doi.org/10.1371/journal.pone.0221543.g004
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compared to 13.7% at ISM. Among total twenty-nine (29) archaeal genera, Candidatus Nitro-
sopumilus and Candidatus Nitrosopelagicus accounted for the 40.7% and 21.4% of total relative

abundance, respectively (S4 Fig).

3.3 Environmental drivers of bacterial communities

At OTU resolution level also, distinct microbial communities were observed between OMW

and ISM based on changes in community structure (beta diversity) which is quantified by

non-metric multidimensional scaling (NMDS) plot by calculating Bray–Curtis dissimilarly

(Fig 6). This pattern is confirmed by the ANOSIM test that indicated a significant difference

in microbial community structure between ISM and OMW (ANOSIM, R = 0.24, p< 0.001).

Redundancy analyses attempted to identify the water quality parameters that had strong

Fig 5. Taxonomic compositions of dominate archaeal phyla across eighteen samples represents two sites ISM and OWM (nine samples each). Ten (10) most

abundant phyla for each of the samples were reported here and rests less dominant members are label as “other”.

https://doi.org/10.1371/journal.pone.0221543.g005
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explanatory power for microbial communities. We observed that total nitrogen (TN) and dis-

solved inorganic nutrients (DIN) accounted for almost 10% of the variability in microbial

community of OMW where TN alone explain 6% variation of microbial community (RDA,

R2 = 0.06, F(1,7) = 1.34, p< 0.05). In contrast, salinity and TN explained approximately 9% of

the variability in community composition of ISM (RDA, R2 = 0.06, F(1,7) = 1.34, p< 0.05) and

alone salinity responsible for explaining 7% microbial variation of this site (Table 2).

4. Discussion

The pH values (8.0–8.7) indicates the water of ISM and OMW slightly alkaline in nature which

supports the previous findings in similar samples from Sundarbans Mangrove forest areas

[30]. Such ranges of pH may be attributed by the buffering capacity of water that support high

biological activity [31,30]. The water of Sundarbans is characterized by elevated salinity values

in line with previous reports [31]. The long-term changes in water properties in the eastern

part of Sundarbans, sampling regions of our study, indicating increased trends on salinity and

Fig 6. Non-metric multidimensional scaling (NMDS) plot of bacterial community composition of the bacterial communities of each sampled at the inhabited

island (ISM) and open marine areas (OWM).

https://doi.org/10.1371/journal.pone.0221543.g006
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pH [3]. Our result shows differences in measured environmental parameters between two sites

represented by three sampling stations and nine samples each leading to their segregation into

two clusters (in PCA analysis) along with their sampling sites. This ordination as a result of dif-

ferent nutrient loads and this is reflected by potential eutrophication in water from OWM.

Influences from the Thakuran and Matla rivers reported to have a strong impact on the estuary

water quality represented by OWM [4,5], that also reflected in our study. The perennial dis-

charge in Thakuran and Matla Estuary from upstream regions brings in a high suspended mat-

ter load throughout the year [30]. Those estuaries severely contaminated with huge organic

load and sediment flux originated from upstream domestic sewage, aquaculture, intensive

trawling activities, agricultural runoff as well as soil erosion [32,33] may supports the prospec-

tive cause for eutrophication in the OWM sites.

Because of the relevance of microbial community of Indian Sundarbans, several investiga-

tors attempted on surface sediments samples [34,8,3,10,35] as well as recently on water column

of this regions [12,13] using 16S rRNA gene metagenomic approaches. Unlike previous stud-

ies, this investigation attempted to asses both the bacterial and archaeal community at a same

time of water from relative less anthropogenic disturbance sites using an efficient primer set to

target V4-V5 variable region of 16S rRNA gene in order to avoid the problems of underesti-

mated or overestimated common marine taxa [14], therefore our investigation gives more

accurate and well-resolved picture of microbial communities of these sites.

Although insignificant differences, elevated trends of α-diversity of the marine estuary

water samples (OWM) might be an indications of relatively rich bacterial community com-

pared to ISM of Sundarbans might be attributed toward their elevated eutrophication. This

observation was supported by previous reports that indicate a higher diversity and equitability

in the human impacted estuary because of proliferation of several different microorganisms

[36,37].

The bacterial assemblages of the studied samples (specially OMW) showed similarity with

the previously reported bacterial community of marine sediments and water samples of Sun-

darban Mangrove areas [8, 10–12]. The most dominant bacterial family presents both the sta-

tion with almost equal proportion is Rhodobacteraceae. Dominancy of members of this family

in marine water microbial community previously reported and known to be associated with

marine phytoplankton blooms where it plays important role in transforming phytoplankton-

derived organic matter [34,38,39]. The abundant OTUs of Rhodobacteraceae are classified as

anoxygenic phototrophs Nautella, reported to serve an indicator of marine eutrophication,

predominantly found in higher eutrophic OMW samples. The other dominant one under the

Table 2. Contribution of environmental parameters including nutrient content of six sampling sites to explaining the variation in microbial community composi-

tion based on redundancy analysis (RDA).

Sampling station Explanatory variable Adjusted R2 F df p-Value

OMW TN + DIN 6% 1.24 2, 6 0.022�

TN 4% 1.34 1, 7 0.029�

DIN - 1.40 1, 7 0.125

ISM Salinity + TN 7% 1.31 2,6 0.043�

Salinity 9% 1.77 1,7 0.004��

TN 0.6% 1.05 1,7 0.326

p-Values defined as significant at a threshold of 0.05 are highlighted in asterisks mark

Adjusted R2 are provided as goodness-of-fit metrics

df degrees of freedom (numerator, denominator).

https://doi.org/10.1371/journal.pone.0221543.t002
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same family is marine heterotrophs Ruegerias (almost equally distributed among both ISM

and OMW) serve as the model of marine sulfur and carbon cycle [38,40,41].

Interestingly enrichment of several OTUs from the Flavobacteria is observed in the oligo-

trophic ISM compared to the eutrophic OMW. They are specialized in utilization of biopoly-

mers and organic substances in oligotrophic environment i.e., when organic substances

present even at very low concentrations. Higher abundance of these polymers degrading bacte-

ria responsible for releasing the nutrients heterotrophs/copiotrophic organisms thus helps in

the growth of heterotrophic bacterial community at oligotrophic marine environments [42–

44]. Therefore, they might plays central role for balancing the heterotrophs/copiotrophic

microbial ecology of ISM. The dominant OTUs under family Flavobacteriaceae were mainly

classified as Aureimarina and NS5 marine group genus. Roles of Aureimarina in marine bio-

geochemistry has not been investigated much although few studies reported on their presences

in coastal seawater and saline estuarine [45,46]. However, this is the first report of their abun-

dance in marine water of Sundarbans. The NS5 marine group which are equally dominated in

both the studied sites are reported to be ubiquitous in the seawater-related samples and known

for phytoplankton-derived macromolecules [47–49].

This investigation identified Actinobacteria constituted a predominant fraction both in

OMW and ISM but elevated amount in the later samples. Bacteria under this group are con-

sisted of both copiotrophic and oligotrophic members with higher abundance in oligotrophic

marine environments [50,51]. Their presence in mangrove estuary regions is well documented

[52–54]. As marine Actinobacteria are the richest sources of secondary metabolites thus, have

been well reported as potential sources of bioactive compounds [55]. Therefore, their abun-

dance in our studied sites (specially ISM) would be potential hotspot for isolating bioactive

molecules from Indian Sundarban mangrove forest. The OM1 clade (dominating in ISM), an

uncultured Actinobacterial clade, frequently recovered from various marine environments

with higher abundance at near coastal sites than open marine areas however supports our

reports [56–58]. The dominant OTUs of this family were classified as Candidatus Actinomar-
ina. Those photoheterotrophs are one of smallest free-living prokaryotes are reported to be

ubiquitous in marine systems. Not many reports are described their role in the marine biogeo-

chemical cycle but Actinobacteria are reported to be associated in carbon cycling to decompose

the plant biomass via degrading the cellulose and hemicellulose materials, a dominate

resources materials in mangrove, however may supports their dominancy in ISM. They are

also known as chitin, hydrocarbons and organic contaminants degrader [59,60].

The OTUs affiliated to families Oceanospirillaceae and Spongiibacteraceae of Gammaproteo-
bacteria showed increase abundance in the impacted site OMW. Bacteria from these families

are known to be present in eutrophic marine environments. They are known as polymer

degraders and can utilize polyhydroxy alkanoate compounds and proteorhodopsin, for har-

vesting an additional energy, supports their living in eutrophic water samples [61–63]. The

dominant OTUs of Oceanospirillaceae are affiliated to chemoheterotrophic genusMarinobac-
terium. Their presence in mangroves as well as surface seawater have already been described in

previous studies and known to be associated with hydrocarbon biodegradation [64,65]. The

other dominated bacterial family in the samples from OMW is Spongiibacteraceae. They com-

prise mainly marine bacteria known as Oligotrophic Marine Gammaproteobacteria (OMG)

group [66,67]. We recorded the dominant OTUs of this family are affiliated with BD1-7 which

is a cosmopolitan group of Gammaproteobacteria is mostly autochthonous, reported to inhab-

its at diverse marine habitats [68,65,69]. In line with previous reports this investigation, there-

fore, indicates proliferation of bacterial groups under Gammaproteobacteria with respond to

increased nutrient concentrations in estuary [36].
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However, in contrast to sediments reported in previous investigations, an archaeal commu-

nity of marine waters in the Sundarban mangroves is dominated with Thaumarchaeota
Marine Group (MG I) and EuryarchaeaMG II. The chemolithoautotrophic MG I which are in

higher in number on ISM are responsible for oxidation of ammonia and showed ability in

inorganic carbon fixation [70] thus important players in global Carbon (C) and Nitrogen (N)

biogeochemical cycles. While the heterotrophic MG II, dominated in OMW, previously

reported to be abundant in the marine aquatic environment [71]. Their abilities to acquired

energy in presences of light through organic carbon degradation in the photic zone is also doc-

umented [71]. Dominant OTUs of MGI group are affiliated with ammonia-oxidizing archaeal,

Candidatus Nitrosopumilus and Candidatus Nitrosopelagicus, play important roles in nitro-

gen and carbon cycling of marine ecosystem [3]. However, this investigation reports first on

their presence in this areas. Therefore, the biological and geochemical processes at estuary

water habitats in the Indian Sundarban Mangrove areas have likely influenced the archaeal

community structure.

Overall, our study indicates along with the elevated level of average pH and salinity, the

open marine water (OMW) showed eutrophication probably leads to an observed bacterial

shift toward more copiotrophic and photoheterotrophic bacterial (Oceanospirillaceae and

Spongiibacteraceae) and archaeal community (Euryarchaea MG II) and compared to the more

oligotrophic microbial community (Aureimarina, NS5 marine group, OM1 clade and Thau-

marchaeota MG I) of costal water of a small Island of Sundarban Mangroves (ISM). These

microbial assembles thus might represent key players in biogeochemical cycle of this man-

grove and the studied areas represent a hotspot for bacterial having potential to produce the

commercially important secondary metabolites. This investigation also reports that total nitro-

gen and dissolved inorganic nitrogen are the major environmental contributors on determin-

ing the microbial communities for OMW and for ISM it is combination of total nitrogen and

salinity.

5. Conclusion

This investigation provides the first details description of bacterial and archeal communities

concurrently of Thakuran and Matla river complex of Maipith coastal areas in the Indian Sun-

darbans mangroves areas. This study indicates the eutrophication in open marine water

(OMW) dominated with more copiotrophic and photoheterotrophic bacterial and archaeal

community (Euryarchaea MG II) and while oligotrophic microbial community abundant in

costal water of the Island of Sundarban Mangroves (ISM).

However, given the rising burden on Indian mangrove coastal ecosystems, this study sug-

gests that sewages from urban areas lacking proper treatment can alter microbial communities

that may play vital role in biogeochemical cycle (nitrogen cycle) of mangrove ecosystem and

consequently may impact on the climate in the tropical country.
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