

Commentary

Cite this article: Celliers, L., et al. (2026). New rationalities, inner logic, and hope for sustainable future coasts. *Global Sustainability*, 9, e2, 1–11. <https://doi.org/10.1017/sus.2025.10041>

Received: 19 August 2024

Revised: 18 August 2025

Accepted: 12 November 2025

Keywords

anticipation; coasts; futures; social innovation; sustainability; transformation; transdisciplinary

Corresponding author: Louis Celliers;
Email: louis.celliers@hereon.de

New rationalities, inner logic, and hope for sustainable future coasts

Louis Celliers¹ , Sebastian Ferse^{2,3}, Antje Bruns⁴, Klaus Eisenack⁵, Anna-Katharina Hornidge⁶, Silja Klepp⁷, Rebecca Lahl³, Barbara Neumann⁸, Maraja Riechers^{9,10}, Tanja Bogusz¹¹, Nike Fuchs¹², Kira Gee¹³, Shannon Hampton⁸, Jochen Hinkel¹⁴, Josefa Kny^{15,16}, Michael Krieg¹³, Tina Krönert¹, María Máñez Costa¹, Laura Otto¹⁷, Maya Pfaff^{18,19} and Lena Rölfert²⁰

¹Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany; ²Faculty of Fisheries and Marine Sciences (FPIK), Bogor Agricultural University (IPB), Bogor, Indonesia; ³Leibniz Centre for Tropical Marine Research (ZMT) Bremen, Bremen, Germany; ⁴Governance & Sustainability Lab, Trier University, Trier, Germany; ⁵Resource Economics, Humboldt University Berlin, Berlin, Germany; ⁶German Institute of Development and Sustainability (IDOS), Bonn, Germany; ⁷Integrated Marine Sciences, Christian-Albrechts University Kiel, Kiel, Germany; ⁸Research Institute for Sustainability (RIFS) at GFZ Helmholtz Centre for Geosciences, Potsdam, Germany; ⁹Fisheries & Society, Thünen Institute of Baltic Sea Fisheries, Rostock, Germany; ¹⁰Faculty of Sustainability, Leuphana University Lüneburg, Lüneburg, Germany; ¹¹Center for Sustainable Society Research, Faculty for Business and Social Sciences, Hamburg University, Hamburg, Germany; ¹²MARUM Centre for Marine Environmental Sciences, University of Bremen, Bremen, Germany; ¹³Institute of Coastal Systems – Analysis and Modeling Human Dimensions of Coastal Areas, Helmholtz Zentrum Hereon, Geesthacht, Germany; ¹⁴Adaptation and Social Learning, Global Climate Forum, Berlin, Germany; ¹⁵Betterplace lab, Berlin, Germany; ¹⁶Center for Technology and Society, Technical University Berlin, Berlin, Germany; ¹⁷Anthropology of the Rural, Institute for German Philology, Chair for European/Ethnology/Cultural Analysis, Würzburg University, Würzburg, Germany; ¹⁸Department of Biological Sciences, University of Cape Town, Cape Town, South Africa; ¹⁹Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), Bonn, Germany and ²⁰Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany

Abstract

Non-technical Summary. Human actions are causing climate change, pollution, and the loss of biodiversity, making our planet less safe. To address these problems, solutions must be developed from current and future research, involving different scientific fields and respecting diverse knowledge systems. It is essential to engage with society, as the relationship between science and society drives progress. Studying coasts as complex systems requires input from the natural sciences, social sciences, and humanities.

Technical Summary. In the coastal zone, the triple planetary crisis manifests as accelerating losses and changes and increasing challenges and risks for people and livelihoods. Acceptance of a future existential crisis compels the urgency of corrective action to cause an inverse positive societal response to bend the negative trajectories of loss and damage. The rate and extent of corrective societal action (policies, laws, practices, knowledge, etc.) should at least keep pace with the projected rate of loss and environmental degradation. This urgency and acceleration of action are major societal challenges, especially considering the overwhelming evidence of impacts. In this paper, we offer three propositions for accelerating urgent actions and fostering innovation in coastal research and management, focusing on emerging trends and foundational changes. Scientists need to (1) reflect on the performativity of their research and perceptions of neutrality in anticipating the future of coasts; (2) think and act equitably in local and global partnerships; and (3) improve their engagement and willingness to innovate with society. This is not a call for linear or incremental change, but a call for the radical. The relationship between society and science drives progress and shapes our collective future.

Social media summary Human actions drive climate change, pollution, and biodiversity loss, threatening our planet. To address these crises, we need solutions that blend current and future research, span multiple scientific fields, and respect diverse knowledge systems. Engaging with society is key. The bond between human society and science shapes our future. Coastal studies must integrate natural sciences, social sciences, and humanities.

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (<http://creativecommons.org/licenses/by/4.0>), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

1. Coastal crisis

In the Anthropocene (Steffen et al., 2018), we face three urgent global challenges – a triple planetary emergency (Guterres, 2020). These are climate change, pollution, and biodiversity loss. These human-induced emergencies are relentlessly driving the planetary system towards tipping points and changes, making our continued existence less safe (Rockström et al., 2023; Steffen et al., 2018), including through potentially irreversible shifts in the Earth system's components and processes (Lenton et al., 2019; Rockstrom et al., 2024). In the coastal zone, the triple planetary crisis manifests as accelerating losses and changes (Halpern et al., 2019) with negative consequences for human communities and societies. The escalating pace of global warming (IPCC, 2021; Johnson & Lyman, 2020), the rise in sea levels (Becker et al., 2023; Nicholls et al., 2021), the loss of biodiversity (Jaureguiberry et al., 2022; Penn & Deutsch, 2022), especially the loss of coral reefs (Eddy et al., 2021), sandy beaches (Brooks, 2020; Luijendijk et al., 2018), deltas (Anthony et al., 2024), seagrass (Dunic et al., 2021), and mangrove cover (Bryan-Brown et al., 2020; Otero et al., 2016), as well as ocean pollution (Jouffray et al., 2020; Landrigan et al., 2020; Riechers et al., 2021), are some of the scientifically confirmed trajectories that confront us. These manifest as potentially critical impacts on coastal communities and their livelihoods that demand societal responses at all levels (Cinner et al., 2022; Gill et al., 2023).

There is a groundswell of scientific evidence that urges immediate action (IPBES, 2019; IPCC, 2021, 2022). The actions necessary to maintain an Earth system supportive of human well-being are equally clear, e.g. to avert public health impacts from extreme events worsened by climate change (H. Clarke et al., 2023; Salvador et al., 2023). Global policy urges mitigation of greenhouse gases, adaptation to climate change, and social transformation that improve fairness, equality, and access to resources. Indeed, measured by the abundance and scope of global policies, agreements, commitments, and institutions, humanity is aware of adverse global change in the Anthropocene (Hoegh-Guldberg et al., 2019; Simon et al., 2021; Xu et al., 2020). People are increasingly anxious about observable, extreme and large-scale changes (Kurth & Pihkala, 2022; Mortreux et al., 2023; Smith, 2020; Van Valkengoed & Steg, 2023), and these anxieties surface in social and political discourse (Spence & Ogunbode, 2023). At the same time, powerful vested interests, political strategy and lobbying, fear, ignorance, religious fervour, feelings of despair, and being overwhelmed contribute to inaction. Divisive politics undermine the validity of science, and together with social inequality, further exacerbate our ability to devise unified responses to address planetary emergencies (Dietz, 2020).

As a result, the urgency for immediate behavioural change still fails to have the desired effect on policy audiences and a substantial portion of the public (Fesenfeld & Rinscheid, 2021). The expected and necessary shift in policy towards sustainability remains out of reach, and *denial* has become or is causing a *delay* in addressing the planetary crises (Shue, 2023) when acceptance of this urgency should cause an inverse positive societal response to bend the negative trajectories of loss and damage. *The rate and extent of corrective societal action (policies, laws, practices, valorising local knowledge, etc.) should at least keep pace with the projected rate of loss and environmental degradation.* How else can the planetary system be maintained and restored to a state conducive to continued human well-being? Accelerating action in the face of increasing urgency is

a major societal challenge, especially considering the overwhelming evidence of anthropogenic impacts. Media and social platforms increasingly report on future projections and environmental scenarios. This includes discussions about the future state of coastal regions. The coast has always and will continue to attract humans impacted by current and future global and local changes (Lincke et al., 2022; McMichael et al., 2020).

In this perspective, we propose that the scientific and societal challenges of Anthropocene coasts necessitate solutions that draw upon both old and new research realities, and a diversity of scientific disciplines and knowledge, while also engaging authentically and respectfully with society. Accordingly, we argue that new rationalities, inner logic, and hope are needed to achieve transformation to sustainable future coasts. This means new scientific reasoning is required to prepare for the future state of the coast. It is neither reasonable nor fair to expect an accepting societal response to knowledge production in which society has no meaningful stake. Science's role and position in this context must be clarified, and outdated research cultures, priorities, and funding gaps rejected. The terms *Global South* and *Global North* are complex and often contested (Thérien, 2024). We use them thoughtfully, not to assert any stance, but to acknowledge the diverse and evolving narratives associated with these concepts.

2. Foundations for change: interconnectedness, the future, and responsibility

The scientific literature offers a foundation for urgent action, including filling the knowledge gaps to achieve *coastal sustainability in the future*. Firstly, despite the persistence of 'terrestrial bias' (Peters, 2020), there is increasing recognition of the *inseparability and connectedness of land, atmosphere and oceans, both in form and function*. Any separation of the land surface from the ocean waters and the sea floor is a human construct only, deeply embedded in perceptions, legislation, and administration. Notably, many non-'Western' knowledge systems do not make such a separation but instead recognise for example a 'sea-country' (Whitehouse et al., 2014). There is a land–ocean–atmosphere continuum regardless of the boundaries that we impose for convenience (Harvey & Clarke, 2019; Rölfer et al., 2022a; Schläter et al., 2020). For this seamless transition between land, atmosphere, and ocean, we recognise a need to draw on diverse natural science, social science, and humanities disciplines (e.g. biology, ecology, physics, law, political sciences, governance, anthropology, sociology, and economy) to study the whole coast as an interconnected and seamless human–land–atmosphere–ocean system (B. Clarke et al., 2013; Rosendo et al., 2018; Stephenson et al., 2021). This will require innovation within and across disciplines, together with a willingness of all actors to engage in research that pushes disciplinary and scientific boundaries. Beyond diversifying and combining disciplinary research, we further recognise the need for the uptake of research that addresses these complex, real-world challenges by integrating the diversity of knowledge and involving those affected or taking action in the research process (Lawrence et al., 2022; Renn, 2021).

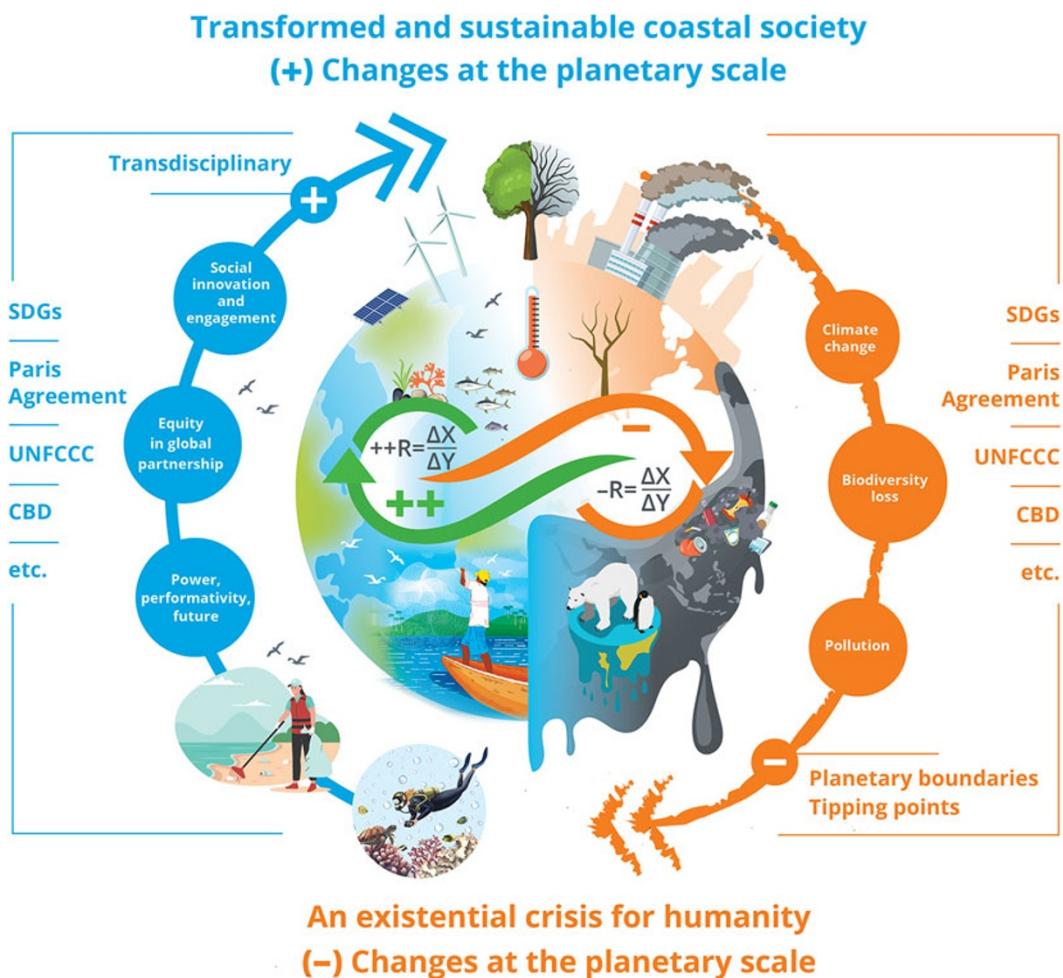
Secondly, there is an *emergence of an orientation towards the future in science and society*. 'Future' is an operative word that evokes uncertainty about every aspect of human existence, from health to security and home, to well-being and comfort. A search of the Scopus database of publications¹ reveals an exponential growth

of articles dealing with 'coast' and 'future' from 2000 (176) to 2022 (1225, see also Baumann et al. 2023). Coastal scholars recognise the significance of the concept of the 'future', and are actively integrating it into their research and scholarly work (Farbotko et al., 2023; Gaill et al., 2022; Harmáčková et al., 2023; Obura et al., 2023; Pace et al., 2023). The UN's Agenda 2030 and the Sustainable Development Goals, the Paris Agreement and many other global policy objectives refer to key targets to be achieved in the future, or loss and damage to be mitigated (e.g. by the middle or end of the century). The science we produce is increasingly used to understand the future world based on the current trajectories of change and the policy efforts to reduce crises (Haas et al., 2022; Tosca et al., 2021; Wyborn et al., 2020). According to Knappe et al. (2019), 'future-making practices' are social and political efforts that build relationships or allude to things yet to come. Understanding the dynamics between knowledge and power in future-making practices in marine science can reveal whether this field promotes or obstructs progress towards sustainability. See, for example Nightingale et al. (2019), those who propose placing values, normative commitments, and experiential and plural ways of knowing from around the world at the centre of climate knowledge. Hobday et al. (2019) developed a set of ten principles for ethical forecasting, including a focus on co-creation and participation.

Thirdly, there is a need for *actionable science and policy and receptive communities* that demand tangible outcomes that are not imposed on, but co-created with, societal actors (Celliers et al., 2023a; Chambers et al., 2022; Weiand et al., 2021). This could be described as a 'coupled dance between human decisions and coastal environmental change' (Spencer et al., 2023, p.3). It is known that decelerating and halting the transgression of key planetary tipping points serves the public good and requires multi-level, distributed, fair and proportional action by all (i.e. Common But Differentiated Responsibility) (Blankespoor et al., 2023). Furthermore, the assumption of the validity and adequacy of scientific data and information in the absence of knowledge co-production by decision-makers, policy-makers, the private sector, and civil society is not tenable (Celliers et al., 2021; Miner et al., 2023). The exploration of future approaches combined with transdisciplinary co-production is creating a surge of interest in breaking down the power dynamics afflicting academia, between science and society, within academia, and amongst 'Western' Cartesian and other knowledge systems. Transdisciplinarity is an approach that normalises collaborative processes involving academic and non-academic actors, aims to balance power dynamics in knowledge production, and results in solutions for societal challenges (see e.g. Lawrence et al., 2022). Transdisciplinarity, as a product of science embedded in and informed by society, is an opportunity to explore collective human action towards novel solutions.

3. Towards a transformed future

In this paper, we offer three propositions to accelerate urgent actions, foster innovation in coastal research, and focus on emerging trends and foundational changes (Figure 1).


Proposition 1: Scientists urgently need to reflect on the performativity of their research and perceptions of neutrality in anticipating the future of coasts.

Science actively shapes the world through its theories, analytical practices and discourses. This perspective comes from fields such as Science and Technology Studies and Political Ecology, where scholars argue that science does not simply discover facts about nature, but constructs knowledge through interactions and institutional processes. Reflexivity in science – science actors who are conscious of their position – recognises the real-world consequences and societal uses of the outputs of the science process. This concept, known as performativity, promotes critical reflection on how knowledge is created, by whom, and for whose benefit it is ultimately applied (Bruns, 2022).

Some key questions triggered by the performativity of science are: How does scientific theory, underpinned by data and information about climate change, pollution or biodiversity loss, shape the actions of coastal communities (Bowden et al., 2021)? Through which actions and by which actors can the language of coastal research function as a form of social action and effect change? Furthermore, research practices, paradigms, methodologies, scientific papers, databases, models, and scenarios can be described as future objects. These future objects have components of knowledge and material, playing a significant role in the socio-material politics of anticipation (Beck & Mahony, 2017; Esguerra, 2019). As Esguerra (2019) argued, future objects are governed by varying objectives, offering options for political participation at different levels and in diverse ways. Creating futures involves material actions and epistemic descriptions, and understanding their interplay is crucial. Incorporating anticipation and foresight in transdisciplinary research may enable the realisation or advancement of creative and sustainable futures (Baumann et al., 2023), moving away from path dependencies created by continuing consumption and the hegemony of economic growth that further entrench the human dilemma (Beck & Mahony, 2017).

Thus, anticipation, or the growing political demand for sustainability pathways, requires rethinking beyond expert-driven neutral input. Beck and Mahony (2017) suggest that '...forecasters themselves should be asked to anticipate the political impacts of their forecasts' (p. 312). The implication is that experts should be aware of, and willing to engage with the many ways in which the best-intended data and information may have distinctly different meanings for societal users. Concomitantly, coastal and marine research requires innovative and brave approaches to conceptualising and studying the connections between society, nature, and the future (heuristics, concepts, methods). Studying the future of coastal areas requires making assumptions and framings that contribute to and construct varying perspectives of coasts as human-nature systems of the future.

However, there is often a lack of transparency and reflection on current approaches to scientific research and how they contribute to shaping the future. A more reflexive approach will make different epistemological and ontological assumptions more transparent. Some of the key aspects include ideas about economic growth and how growth paradigms are often taken for granted in the scenario-building process (Beck & Mahony, 2017). The science of future coasts and its many different disciplines needs to reflect on the choice, nature and use of methods and approaches: The scientific community must mirror their assumptions in an accessible and transparent way, which is time-consuming and requires novel formats and reflexive spaces in research practices. The predominant Western understanding and design of the science process and its social and political context may not lend itself to achieving more sustainable coasts at the global scale. Other forms of knowledge

Figure 1. Three propositions (solid blue circles) of the new role of science to contribute to a pathway of transformation to a sustainable and human-positive environment where the observed negative trends ($-R$) in planetary crises (solid orange circles) are reversed by at least equally positive rates of change ($++R$) in societal action to avoid an existential crisis for humanity.

and knowledge cultures must be recognised – this is epistemological inclusion. Concomitantly, other life-world experiences and lifestyles, i.e. the coexistence of multiple ways of conceptualising and explaining the world or specific phenomena, must be included in future coastal science – this is ontological pluralism (Nightingale et al., 2019).

We support the call for radical structural change and societal transformation and urge the inclusion of the scientific system in this transformation as part of society. It offers innovative perspectives for conceptualising, studying and designing societal futures as part of nurturing nature. Yet, the current scientific system, including its funding structures, often impedes the reality of such research approaches (Fam et al., 2019). For example, scientific reflexivity is frequently met with reluctance by funders, while time or resource constraints marginalise structured reflection processes as part of the full research process. Reflexivity and learning are particularly challenging in inter- and transdisciplinary settings where more time and resources are required to achieve cognitive, normative, and relational learning as prerequisites for shifting values, enhanced trust and cooperation (Baird et al., 2014). This causes imbalance, resulting in unsatisfactory cooperation and outcomes, often leading to misunderstandings regarding communication, acceptance, and the transformative roles of science.

Furthermore, scholarship on the critical role of social sciences in climate change adaptation is rapidly evolving. Climate change adaptation constitutes a political concept and discourse of tangible material consequences, including infrastructure development (Colloff et al., 2017; Eisenack & Paschen, 2022) and change to ecosystems (e.g. blue carbon) and associated human benefits (Fink & Ratter, 2024). Nevertheless, most discussions on adaptation are frequently criticised for being apolitically framed, despite their noticeable political impacts. For example, many international cooperation programmes for adaptation are steeped in technical and managerial terms (Cameron, 2012; Keele, 2019) that lack cultural, social, and political diversity and ontological pluralism (Nightingale et al., 2019). Moreover, social inequalities that limit adaptation or adaptation options are often disregarded or even reinforced (Klepp & Chavez-Rodriguez, 2018). Such apolitical approaches in adaptation projects, e.g. in the context of international cooperation, might be understood as future un-making approaches. Futures that are envisioned as undesirable, shall be prevented by adaptation measures.

Finally, critical research on global change argues that transformation towards sustainability is more urgent than ever. However, a large part of research still relies on underlying framings that support the status quo (Castree, 2022; Nightingale et al., 2021; Wiegleb

& Bruns, 2025). These techno-scientific frameworks dominate eco-modernist discourses, exemplified by the term 'blue economy' (see Proposition 2). As such, they strongly influence current policies and politics of adaptation and sustainability, while critical and diverse social science research is not equally considered.

Proposition 2: Scientists must think and act equitably in global partnerships

Research agendas, as well as future development plans and purported solution spaces, are still predominantly shaped in the Global North, even if they address and affect the lives of people in the Global South (Henrich et al., 2010; Miller et al., 2023; Spalding et al., 2023; Wieglob & Bruns, 2018). Using contemporary narratives such as 'blue economy' or 'blue carbon' often reflects the political agendas of the Global North and industries (Schutter et al., 2021), and other political agendas. We thus see a need to accommodate and integrate multiple, pluralistic visions for a common future beyond the normative guidance of the United Nations' 2030 Agenda for Sustainable Development. It is also necessary to have a much more significant role of Global South actors and perspectives in research collaborations, while also considering the disparities in resources (Armenteras, 2021; Costello & Zumla, 2000). A critical evaluation of who is responsible for defining and setting agendas is part of this conversation. Scientists and research organisations, particularly in the Global North, have a greater responsibility to contribute to research ethics, science diplomacy, and communication (Lahl et al., 2023; Partelow et al., 2020a; Schroeder et al., 2019). We see four interrelated aspects to consider for coastal research in global partnerships: (i) the role of science in society; (ii) identification and definition of topics; (iii) modes of research and collaboration; and (iv) employment and funding structure.

Perspectives vary regarding the *role of science in society*. While basic research is the gold standard, applied research is often neglected. This tension is particularly relevant in a North–South perspective: We see a tendency that wealthy countries in the Global North value basic and curiosity-driven research more highly, holding academic freedom in high regard. In contrast, the reality in many countries in the Global South is different. For example, it is often expected that public servants and researchers serve society and applied research is the norm (e.g. Siregar, 2019). National differences in scientific knowledge production create cultural and political path dependencies within academic systems (Castro Torres & Alburez-Gutierrez, 2022; Partelow et al., 2020b). As such, North–South scientific collaboration should consider and respect the significance of local applications of science as a tool for development, and the extent of its role in collaborative research settings.

Variations in scientific structures also affect which *topics are prioritised for research* (and funding). The societal relevance of research and its impact are receiving increasing attention in Western academic systems and research funding (Woolston, 2023). This suggests a favourable environment for addressing topics of societal relevance, including in and with countries of the Global South and strengthening South–South relations (Calderón-Contreras et al., 2021). However, trans- and interdisciplinarity still face significant obstacles (Scholz & Steiner, 2015; Staffa et al., 2022), including project assessments that do not respect the interdisciplinary nature of research activities, and funding institutions that are not designed to facilitate real engagement. The criteria for scientific excellence and measuring the priority of societal impact

may need to be revised (Kraemer-Mbula et al., 2020). Prioritising academic excellence can lead to the exclusion of inter- and transdisciplinary approaches, isolating disciplines and excluding local partners. Collaborations between scientists in the Global North and Global South require equality and mutual listening, but rigid funding structures often hinder adaptability and prioritise rapid, high-profile results (Scholz & Steiner, 2015). Additionally, there is a lack of guidelines to fairly evaluate project design and quality, and its potential for real-world influence and impact, emphasising the importance of better aligning projects to local necessities and situations.

These points indicate the need to reconsider *modes of collaboration and funding practices*. The embrace of transdisciplinary co-production throughout the research lifecycle will enable long-term science-society partnerships and minimise the practice of 'parachute' science (Bieler et al., 2020; Gewin, 2023). We perceive an imperative to empower Global South actors with a more authoritative and independent role in shaping collaborations and setting agendas, ensuring equitable participation and influence. This should include the creation of a level playing field, as well as much greater receptiveness both in science and policy to equitable co-creation of knowledge, including learning from the Global South. Commitment in the long term is pivotal to the success of any project, while shorter-term projects can also positively impact society both in the Global South and the Global North. Therefore, these projects need to be designed to ensure long-lasting societal impacts (Newman et al., 2019). Transdisciplinarity addresses not only the integration of knowledge but also the connection between people. This results in societal impact, legacy structures, and communities of practice (Norström et al., 2020). Systematically involving a wider range of actors reduces the risk of duplicated efforts (Celliers et al., 2023b). The intangible aspect of community building in transdisciplinary collaborations is significant as it institutionalises networks. To establish a functional community that includes diverse actors, ranging from early career researchers to senior scientists, policy-makers and other stakeholders, it is essential to have sufficient time, mutual respect, acknowledgement of each other's roles, and adequate support, resulting in synergetic partnerships (Rölfer et al., 2022b).

In many countries within the Global South, the lack of capacity may be less of an issue than a lack of *job prospects and long-term employment*, resulting in 'human capital flight' (Talavera-Soza, 2023). Moreover, in Global South countries, the institutional framework is frequently inadequate to enable events that are possible in Global North environments (i.e. meetings and training). We argue that these institutional constraints demand ongoing support and funding from the Global North. Additionally, it is important to challenge the prevailing narrative that Global North countries are always superior in aspects such as training, writing, and analyses, and instead highlight the strengths of partner countries in the Global South and empower south-to-south and south-to-north collaborations (Norström et al., 2022). These aspects can be partially addressed by mutual project design, training programmes at local universities, employing local staff for research positions, dedicating time to mentor local students, and gaining familiarity with the local academic and cultural context. It is vital to consider research partners as equitable collaborators rather than mere facilitators, e.g. sharing the hosting of international meetings (Armenteras, 2021; Asase et al., 2021; Haelewaters et al., 2021).

Proposition 3: Scientists must improve their engagement and willingness to innovate with society

Science should find its appropriate place amongst the many unmanageable and intangible elements or actions that constitute social innovation. Science alone is insufficient for dealing with challenges such as the 1.5°C warming limit, biodiversity and pollution crises, and societal transformation towards sustainability. We need to acknowledge the importance of integrating beyond obvious scientific disciplines, promoting collaboration, and exploring mixed methods and novel approaches to enhance the use of scientific evidence in complex coastal systems.

Stakeholder engagement, social innovation, and transdisciplinarity are closely linked with issues related to capacity strengthening. Critics argue that despite transdisciplinary approaches, integrating disciplines and mixed methods for addressing complex societal challenges, which transdisciplinarity is best applied for, is unlikely to be perfect. At a fundamental level, this issue relates to the definition of transdisciplinarity and its theoretical development, as well as the practice of transdisciplinarity as an inclusive and open philosophy. Transdisciplinarity is not merely a linear improvement or evolution from interdisciplinarity. It represents a paradigm shift in stakeholder engagement with which to address complex societal challenges. With its focus on societally relevant problems and aim of creating solution-oriented knowledge, transdisciplinarity, despite the challenges it comes with, holds tremendous potential to contribute to societal and sustainability transformations (Lang et al., 2012). It also has great potential for bridging the science–policy–society divide and producing actionable science that supports pathways to transformation.

Which scientific disciplines and sectors of society form the foundation for the sustainable transformation of coasts? Transdisciplinarity is an approach that stems from a specific mindset or philosophy. Older concepts such as ‘polymath’ or ‘generalist’ can partly align with modern interpretations of a transdisciplinary scientist. The practice of transdisciplinarity is dynamic, highly contextual, and involves frequently changing targets and shifting objectives. Fundamental questions have been raised regarding the philosophical nature (i.e. the systematic study of general and fundamental questions) of transdisciplinarity. Emotion and emotional intelligence comprise critical components of a transdisciplinary approach (Horcea-Milcu et al., 2022). Leadership in transdisciplinary processes is shaped by personality traits, emotional range and depth, and character (Chambers et al., 2022). This indicates that a transdisciplinary paradigm serves as a philosophical and theoretical framework. Complex problems and challenges best suited for transdisciplinarity, such as those frequently encountered in coastal systems (Jentoft & Chuenpagdee, 2009), do not have a formulaic solution. Often, these challenges are wicked, i.e. a set of interconnected problems that cannot be solved or diagnosed in isolation, as this would only result in a new set of problems (Wohlgezogen et al., 2020). Many coastal challenges fall in this category, as does climate change. Addressing wicked problems requires a collaborative and dynamic approach that involves the actors in the process (Binder et al., 2015) and is designed to enable societal learning that can lead to transformation, i.e. a more fundamental change of paradigm and underlying structures, values, and power dynamics (Pahl-Wostl, 2009). For this to occur, collaborative processes require openness instead of attempting to control and own the process.

Transdisciplinarity involves engaging with society (including stakeholders) to address issues that affect the process participants. In this context, ‘ownership’ refers to those who initiate a transdisciplinary process to address a societal challenge that necessitates input and action from various stakeholders (including scientists).

A transdisciplinary process may yield a solution in which science provides limited input. Do scientists act as ‘honest brokers’ for the transdisciplinary process to resolve such wicked problems? Can transdisciplinarity be a no-regrets process that non-science actors can initiate and govern? Does a transdisciplinary process still count as one if it lacks any scientific ‘oversight’? And what qualities and outcomes are indicative of a successful transdisciplinary process that has transformative impacts?

What is the relationship between institutional agency and ownership of challenges that generally require a transdisciplinary approach? When transdisciplinary research better defines ownership of solutions, transferring responsibility becomes clearer after proposing a solution. When adaptation actions depend on actors such as municipalities, transdisciplinary processes must involve problem owners alongside knowledge creators and holders. The challenges of solution ownership relate to our understanding of transdisciplinarity as a practice, distinct from the supporting theory. Many adaptation challenges can and should be addressed through self-organisation in society and communities. In such self-organising initiatives, the role of science and scientists can vary widely, from providing scientific input to initiating, facilitating or observing the process. To some extent, the concepts or philosophies that are the foundation of transdisciplinarity necessitate novel forms of power, equality or democracy of voices. The discussion around the ownership of transdisciplinarity and its practical implementation, as well as its underlying theory, brings up issues of how to steer and guarantee the quality of the process.

4. A way forward

As a society in the Anthropocene, we are challenged to respond to the urgency of the triple planetary crisis. The relationship between society and science drives progress and shapes our collective future. The science–society binary is a social misconception. Science is a systematic pursuit of knowledge to explain and understand the natural and social world. The great reversal from rationality to sentimentality in fact-based arguments (Scheffer et al., 2021) is happening simultaneously with the need for evidence-based solutions to existential threats of the Anthropocene. The greater sense of sentimentality of contemporary society does not need to be a barrier to scientific progress in support of the transformation to environmental sustainability and socio-ecological harmony. Acknowledging and engaging with emotions, particularly at the local scale, is essential to move towards constructive societal action and empowerment. We must reconsider and adapt our practices to the shifting nature of contemporary society. In a more connected world, with society facing new uncertainties (United Nations Development Programme (UNDP), 2022), we should guard against using knowledge as a means to exert power. Faced with the dangerous change in the Anthropocene, sweeping societal transformations and widespread intensification of polarisation, the role of science and its practice is facing a new challenge of, if not relevance, a new science–society contract (Huntjens, 2021; Lubchenco, 1998). This contract is more than ‘just’ adding co-production with society, improving the dissemination of science products or more appropriate communication. In this perspective, we argue for a systemic change in science and how it is practised within society.

We already have a foundation for addressing coastal sustainability. The artificial separation between land and ocean is a human construct. To study the entire coast as an integrated system, we must combine diverse disciplines, including natural science,

social science, and humanities. The concept of the 'future' is gaining prominence in science and society and is especially relevant in the context of coastal change. Understanding the dynamics between knowledge and power in future-making practices can reveal whether marine and coastal science promotes sustainability. Ethical forecasting principles, including co-creation and participation, are increasingly shaping our future and should be prominent. There is evidence for transdisciplinary co-production breaking down or reducing power dynamics within academia and fostering collective design of novel solutions. Enhancing transdisciplinary research to support coastal adaptation involves tapping into the wealth of insights accumulated over decades in social sciences, action research, and transdisciplinarity. Much of this valuable knowledge has thus far been overlooked in the coastal adaptation literature.

We emphasise the need for radical structural change and societal transformation to achieve coastal sustainability, including within the scientific system. Inter- and transdisciplinary research provides fresh perspectives for understanding the interaction between society and nature. However, the existing scientific system, including its funding mechanisms, often hinders the implementation of such research approaches. Effective collaborations between scientists from the Global North and Global South necessitate an ethos of equality, active listening, and adaptability. Unfortunately, rigid and competitive funding structures often prioritise rapid, high-profile outcomes, hindering this collaborative spirit. Mutual funding is essential for strong partnerships. There is also a lack of guidelines for evaluating project design considering real-world impact, highlighting the need to align projects with local needs and contexts. Transdisciplinarity, which engages science and scientists with diverse actors and realities, goes beyond a simple progression from interdisciplinarity. It signifies a paradigm shift in how stakeholders engage to tackle complex societal challenges. Transdisciplinarity drives societal and sustainability transformations by focusing on real-world problems and generating solution-oriented knowledge.

Transdisciplinary research aims to incorporate co-design, but funding mechanisms often neglect the implementation phase. To improve this, funding agendas should align with priorities and be transparent. Prioritisation should involve both scientists and societal stakeholders. Some challenges require long-term, programmatic funding. Projects with added value (e.g. transformation precursors) should have scope for continuation funding. Diverse review panels, emphasising social science and transdisciplinary expertise, are essential. Developing quality criteria and metrics will enable evaluating actionable coastal research in grant proposals and measuring success.

We emphasise the importance of transdisciplinary approaches for achieving greater sustainability and societal impact of science. It is time to establish a science-society publication process to review such outputs. Currently, there is growing concern about the traditional scientific peer-review process. One potential solution could be a tiered system where disciplinary outputs, e.g. from physics or ecology research, would undergo classical peer review. Interdisciplinary papers would be assessed for the quality of integration and potential real-world applications. Finally, transdisciplinary publications would be evaluated by both scientific and societal actors to consider outcomes and impact achieved through the research.

Promoting and enabling transdisciplinary coastal research requires clear career perspectives for researchers engaged in such work. However, subsequent career paths (e.g. tenure tracks and

professorships) must also be considered. Despite a focus on disciplinary careers within academia, there is increasing demand for transdisciplinary expertise and societal impact literacy. Funders should support capacity development for established researchers and incentivise transdisciplinary approaches (e.g. co-design) in funding calls.

The authors acknowledge that this paper may overlook or exclude several other critical future-oriented aspects, such as governance requirements for emerging systems (Andrijevic et al., 2019; Celliers et al., 2023a). However, this does not diminish the significance of these elements for social innovation. The focus of this paper was intentionally aligned with the propositions outlined by the authors as part of the supporting project.

Acknowledgements. L.C. acknowledges the review from Sebastian Sonntag from GERICS. The authors acknowledge the participants of a related DFG-funded Roundtable event (Future Coasts 2023) who are not co-authors of this paper.

Author contributions. Conceptualization: L.C., S.F., A.B., K.E., A.K.H., S.K., R.L., B.N., and M.R.; Writing – Original Draft: L.C., S.F., B.N., and S.K.; Writing – Review and Editing: L.C., S.F., A.B., K.E., A.K.H., S.K., R.L., B.N., M.R., T.B., N.F., K.G., S.H., J.H., J.K., M.K., T.K., M.M.C., L.O., M.P., and L.R.; Funding Acquisition: L.C. and S.F.

Funding statement. The work was supported by the German Committee Future Earth (DKN) as part of the working group 'Anticipating and Transforming Coastal Futures' and funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 243714348.

Competing interests. No potential conflict of interest was reported by the author(s).

Data availability. N/A

Note

1. Count of publications in which the search terms 'coast' AND 'future' appear in the abstract, title, and keywords. The search was conducted on SCOPUS on 10.08.2023.

References

- Andrijevic, M., Cuaresma, J. C., Muttarak, R., & Schleussner, C.-F. (2019). Governance in socioeconomic pathways and its role for future adaptive capacity. *Nature Sustainability*, 3, 35–41. <https://doi.org/10.1038/s41893-019-0405-0>.
- Anthony, E., Syvitski, J., Zăinescu, F., Nicholls, R. J., Cohen, K. M., Marriner, N., Saito, Y., Day, J., Minderhoud, P. S. J., Amorosi, A., Chen, Z., Morhange, C., Tamura, T., Vespremeanu-Stroe, A., Basset, M., Sabatier, F., Kaniewski, D., & Maselli, V. (2024). Delta sustainability from the Holocene to the Anthropocene and envisioning the future. *Nature Sustainability*, 7, 1235–1246. <https://doi.org/10.1038/s41893-024-01426-3>.
- Armenteras, D. (2021). Guidelines for healthy global scientific collaborations. *Nature Ecology & Evolution*, 5, 1193–1194. <https://doi.org/10.1038/s41559-021-01496-y>.
- Asase, A., Mzumara-Gawa, T. I., Owino, J. O., Peterson, A. T., & Saupe, E. (2021). Replacing 'parachute science' with 'global science' in ecology and conservation biology. *Conservation Science and Practice*, 4, e517. <https://doi.org/10.1111/csp.2.517>.
- Baird, J., Plummer, R., Haug, C., & Huitema, D. (2014). Learning effects of interactive decision-making processes for climate change adaptation. *Global Environmental Change*, 27, 51–63. <https://doi.org/10.1016/j.gloenvcha.2014.04.019>.
- Baumann, L., Riechers, M., Celliers, L., & Ferse, S. C. A. (2023). Anticipating and transforming futures: A literature review on transdisciplinary coastal

research in the Global South. *Ecosystems and People*, 19. <https://doi.org/10.1080/26395916.2023.2288957>.

Beck, S., & Mahony, M. (2017). The IPCC and the politics of anticipation. *Nature Climate Change*, 7, 311–313. <https://doi.org/10.1038/nclimate3264>.

Becker, M., Karpytchev, M., & Hu, A. (2023). Increased exposure of coastal cities to sea-level rise due to internal climate variability. *Nature Climate Change*, 13, 367–374. <https://doi.org/10.1038/s41558-023-01603-w>.

Bieler, P., Bister, M. D., Hauer, J., Klausner, M., Niewöhner, J., Schmid, C., & von Peter, S. (2020). Distributing reflexivity through co-laborative ethnography. *Journal of Contemporary Ethnography*, 50, 77–98. <https://doi.org/10.1177/0891241620968271>.

Binder, C. R., Absenger-Helmli, I., & Schilling, T. (2015). The reality of transdisciplinarity: A framework-based self-reflection from science and practice leaders. *Sustainability Science*, 10, 545–562. <https://doi.org/10.1007/s11625-015-0328-2>.

Blankespoor, B., Dasgupta, S., Wheeler, D., Jeuken, A., Van Ginkel, K., Hill, K., & Hirschfeld, D. (2023). Linking sea-level research with local planning and adaptation needs. *Nature Climate Change*, 13, 760–763. <https://doi.org/10.1038/s41558-023-01749-7>.

Bowden, V., Gond, J.-P., Nyberg, D., & Wright, C. (2021). Turning back the rising sea: Theory performativity in the shift from climate science to popular authority. *Organization Studies*, 42, 1909–1931. <https://doi.org/10.1177/01708406211024558>.

Brooks, S. (2020). Disappearing beaches. *Nature Climate Change*, 10, 188–190. <https://doi.org/10.1038/s41558-019-0656-9>.

Bruns, A. (2022). Verlernen lernen. Eine intervenierende Forschungs- und Arbeitsweise der Politischen Ökologie. In D. Gottschlich, S. K. Hackfort, T. Schmitt, & U. von Winterfeld (Eds.), *Handbuch Politische Ökologie: Theorien, Konflikte, Begriffe, Methoden* (pp. 571–579). Verlag. <https://doi.org/10.14361/9783839456279-0059>

Bryan-Brown, D. N., Connolly, R. M., Richards, D. R., Adame, F., Friess, D. A., & Brown, C. J. (2020). Global trends in mangrove forest fragmentation. *Scientific Reports*, 10. <https://doi.org/10.1038/s41598-020-63880-1>.

Calderón-Contreras, R., Balyanera, P., Trimble, M., Langle-Flores, A., Jobbág, E., Moreno, M. M., Marcone, J., Mazzeo, N., Muñoz Anaya, M. M., Ortiz-Rodríguez, I. A., Perevochtchikova, M., Avila-Foucat, S., Bonilla-Moheno, M., Clark, L. B., Equihua, M., Ayala-Orozco, B., Bueno, I., Hensler, L., Aguilera, J. C. L., ... Velázquez, M. (2021). A regional PECS node built from place-based social-ecological sustainability research in Latin America and the Caribbean. *Ecosystems and People*, 18, 1–14. <https://doi.org/10.1080/26395916.2021.2000501>.

Cameron, E. S. (2012). Securing Indigenous politics: A critique of the vulnerability and adaptation approach to the human dimensions of climate change in the Canadian Arctic. *Global Environmental Change*, 22, 103–114. <https://doi.org/10.1016/j.gloenvcha.2011.11.004>.

Castree, N. (2022). The politics and science of climate change – Revisiting Demeritt (2001). *Progress in Human Geography*, 46, 926–931. <https://doi.org/10.1177/03091325221079566>.

Castro Torres, A. F., & Alburez-Gutierrez, D. (2022). North and South: Naming practices and the hidden dimension of global disparities in knowledge production. *Proceedings of the National Academy of Sciences of the United States of America*, 119, e2119373119. <https://doi.org/10.1073/pnas.2119373119>.

Celliers, L., Costa, M. M., Williams, D. S., & Rosendo, S. (2021). The 'last mile' for climate data supporting local adaptation. *Global Sustainability*, 4, e14. <https://doi.org/10.1017/sus.2021.12>.

Celliers, L., Mañez Costa, M., Rölf, L., Aswani, S., & Ferse, S. (2023a). Social innovation that connects people to coasts in the Anthropocene. *Cambridge Prisms: Coastal Futures*, 1, 1–22. <https://doi.org/10.1017/cft.2023.12>.

Celliers, L., Rölf, L., Rivers, N., Rosendo, S., Fernandes, M., Snow, B., & Costa, M. M. (2023b). Stratification of stakeholders for participation in the governance of coastal social-ecological systems *Ambio*, 52, 1418–1430. <https://doi.org/10.1007/s13280-023-01844-1>.

Chambers, J. M., Wyborn, C., Klenk, N. L., Ryan, M., Serban, A., Bennett, N. J., Brennan, R., Charli-Joseph, L., Fernández-Giménez, M. E., Galvin, K. A., Goldstein, B. E., Haller, T., Hill, R., Munera, C., Nel, J. L., Österblom, H., Reid, R. S., Riechers, M., Spierenburg, M., ... Rondeau, R. (2022). Co-productive agility and four collaborative pathways to sustainability transformations. *Global Environmental Change*, 72. <https://doi.org/10.1016/j.gloenvcha.2021.102422>.

Cinner, J. E., Caldwell, I. R., Thiault, L., Ben, J., Blanchard, J. L., Coll, M., Diedrich, A., Eddy, T. D., Everett, J. D., Folberth, C., Gascuel, D., Guiet, J., Gurney, G. G., Heneghan, R. F., Jägermeyr, J., Jiddawi, N., Lahari, R., Kuange, J., Liu, W., ... Pollnac, R. (2022). Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities. *Nature Communications*, 13, 3530. <https://doi.org/10.1038/s41467-022-30991-4>.

Clarke, B., Stocker, L., Coffey, B., Leith, P., Harvey, N., Baldwin, C., Baxter, T., Bruekers, G., Galano, C. D., Good, M., Haward, M., Hofmeester, C., De Freitas, D. M., Mumford, T., Nursey-Bray, M., Kriwoken, L., Shaw, J., Shaw, J., Smith, T., ... Cannard, T. (2013). Enhancing the knowledge–governance interface: Coasts, climate and collaboration. *Ocean & Coastal Management*, 86, 88–99. <https://doi.org/10.1016/j.ocecoaman.2013.02.009>.

Clarke, H., Cirulis, B., Borchers-Arriagada, N., Bradstock, R., Price, O., & Penman, T. (2023). Health costs of wildfire smoke to rise under climate change. *Npj Climate and Atmospheric Science*, 6, 102. <https://doi.org/10.1038/s41612-023-00432-0>.

Colloff, M. J., Martín-López, B., Lavorel, S., Locatelli, B., Gorddard, R., Longaretti, P.-Y., Walters, G., van Kerkhoff, L., Wyborn, C., Coreau, A., Wise, R. M., Dunlop, M., Degeorges, P., Grantham, H., Overton, I. C., Williams, R. D., Doherty, M. D., Capon, T., Sanderson, T., & Murphy, H. T. (2017). An integrative research framework for enabling transformative adaptation. *Environmental Science & Policy*, 68, 87–96. <https://doi.org/10.1016/j.envsci.2016.11.007>.

Costello, A., & Zumla, A. (2000). Moving to research partnerships in developing countries. *Bmjj*, 321, 827–829. <https://doi.org/10.1136/bmjj.321.7264.827>.

Dietz, T. (2020). Political events and public views on climate change. *Climatic Change*, 161, 1–8. <https://doi.org/10.1007/s10584-020-02791-6>.

Dunic, J. C., Brown, C. J., Connolly, R. M., Turschwell, M. P., & Côté, I. M. (2021). Long-term declines and recovery of meadow area across the world's seagrass bioregions. *Global Change Biology*, 27, 4096–4109. <https://doi.org/10.1111/gcb.15684>.

Eddy, T. D., Lam, V. W. Y., Reygondeau, G., Cisneros-Montemayor, A. M., Greer, K., Palomares, M. L. D., Bruno, J. F., Ota, Y., & Cheung, W. W. L. (2021). Global decline in capacity of coral reefs to provide ecosystem services. *One Earth*, 4, 1278–1285. <https://doi.org/10.1016/j.oneear.2021.08.016>.

Eisenack, K., & Paschen, M. (2022). Adapting long-lived investments under climate change uncertainty. *Journal of Environmental Economics and Management*, 116, 102743. <https://doi.org/10.1016/j.jeem.2022.102743>.

Esguerra, A. (2019). Future objects: Tracing the socio-material politics of anticipation. *Sustainability Science*, 14, 963–971. <https://doi.org/10.1007/s11625-019-00670-3>.

Fam, D., Clarke, E., Freeth, R., Derwort, P., Klaniecki, K., Kater-Wettstädt, L., Juarez-Bourke, S., Hilser, S., Peukert, D., Meyer, E., & Horcea-Milcu, A. I. (2019). Interdisciplinary and transdisciplinary research and practice: Balancing expectations of the 'old' academy with the future model of universities as 'problem solvers'. *Higher Education Quarterly*, 74, 19–34. <https://doi.org/10.1111/hequ.12225>.

Farbotko, C., Boas, I., Dahm, R., Kitara, T., Lusama, T., & Tanielu, T. (2023). Reclaiming open climate adaptation futures. *Nature Climate Change*, 13, 750–751. <https://doi.org/10.1038/s41558-023-01733-1>.

Fesenfeld, L. P., & Rinscheid, A. (2021). Emphasizing urgency of climate change is insufficient to increase policy support. *One Earth*, 4, 411–424. <https://doi.org/10.1016/j.oneear.2021.02.010>.

Fink, M., & Ratter, B. (2024). Blurring societal acceptance by lack of knowledge—insights from a German coastal population study on blue carbon. *Frontiers in Climate*, 6, 1283712. <https://doi.org/10.3389/fclim.2024.1283712>.

Gaill, F., Rudolph, T. B., Lebleu, L., Allemand, D., Blasiak, R., Cheung, W. W. L., Claudet, J., Gerhardinger, L. C., Bris, N. L., Levin, L., Pörtner, H.-O., Visbeck, M., Zivian, A., Bahurel, P., Bopp, L., Bowler, C., Chlou, F., Cury, P., Gascuel, D., ... d'Arvor, O. P. (2022). An evolution towards scientific consensus for a sustainable ocean future. *Npj Ocean Sustainability*, 1, 7. <https://doi.org/10.1038/s44183-022-00007-1>.

Gewin, V. (2023). Pack up the parachute: Why global north–south collaborations need to change. *Nature*, 619, 885–887. <https://doi.org/10.1038/d41586-023-02313-1>.

Gill, D. A., Blythe, J., Bennett, N., Evans, L., Brown, K., Turner, R. A., Baggio, J. A., Baker, D., Ban, N. C., Brun, V., Claudet, J., Darling, E., Di Franco, A., Estradivari, G. E., Gray, N. J., Gurney, G. G., Horan, R. P., Jupiter, S. D., Lau, J. D., ... Muthiga, N. A. (2023). Triple exposure: Reducing negative impacts of climate change, blue growth, and conservation on coastal communities. *One Earth*, 6, 118–130. <https://doi.org/10.1016/j.oneear.2023.01.010>.

Guterres, A. 2020. Alongside Pandemic, World Faces 'Triple Planetary Emergency', Secretary-General Tells World Forum for Democracy, Citing Climate, Nature, Pollution Crises, UN Meetings Coverage and Press Releases. SG/SM/20422, 16 November 2020, <https://press.un.org/en/2020sgsm20422.doc.htm> United Nations.

Haas, B., Mackay, M., Novaglio, C., Fullbrook, L., Murunga, M., Sbrocchi, C., McDonald, J., McCormack, P. C., Alexander, K., Fudge, M., Goldsworthy, L., Boschetti, F., Dutton, I., Dutra, L., McGee, J., Rousseau, Y., Spain, E., Stephenson, R., Vince, J., Haward, M. (2022). The future of ocean governance. *Reviews in Fish Biology and Fisheries*, 32, 253–270. <https://doi.org/10.1007/s11160-020-09631-x>.

Haelewaters, D., Hofmann, T. A., & Romero-Olivares, A. L. (2021). Ten simple rules for Global North researchers to stop perpetuating helicopter research in the Global South. *PLoS Computational Biology*, 17, e1009277. <https://doi.org/10.1371/journal.pcbi.1009277>.

Halpern, B. S., Frazier, M., Afflerbach, J., Lowndes, J. S., Micheli, F., O'Hara, C., Scarborough, C., & Selkoe, K. A. (2019). Recent pace of change in human impact on the world's ocean. *Scientific Reports*, 9, 11609. <https://doi.org/10.1038/s41598-019-47201-9>.

Harmáčková, Z. V., Yoshida, Y., Sitas, N., Mannetti, L., Martin, A., Kumar, R., Berbés-Blázquez, M., Collins, R., Eisenack, K., Guimaraes, E., Heras, M., Nelson, V., Niamir, A., Ravera, F., Ruiz-Mallén, I., & O'Farrell, P. (2023). The role of values in future scenarios: What types of values underpin (un)sustainable and (un)just futures? *Current Opinion in Environmental Sustainability*, 64, 101343. <https://doi.org/10.1016/j.cosust.2023.101343>.

Harvey, N., & Clarke, B. (2019). 21st Century reform in Australian coastal policy and legislation. *Marine Policy*, 103, 27–32. <https://doi.org/10.1016/j.marpol.2019.02.016>.

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. *Nature*, 466, 29–29. <https://doi.org/10.1038/466029a>.

Hobday, A. J., Hartog, J. R., Manderson, J. P., Mills, K. E., Oliver, M. J., Pershing, A. J., Siedlecki, S., & Bowman, H. (2019). Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. *ICES Journal of Marine Science*, 76, 1244–1256. <https://doi.org/10.1093/icesjms/fsy210>.

Hoegh-Guldberg, O., Jacob, D., Taylor, M., Bolanos, T. G., Bindi, M., Brown, S., Camilloni, I. A., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J., Hijioda, Y., Mehrotra, S., Hope, C. W., Payne, A. J., Portner, H. O., Seneviratne, S. I., Thomas, A., ... Zhou, G. (2019). The human imperative of stabilizing global climate change at 1.5 degrees C. *Science*, 365, eaaw6974. <https://doi.org/10.1126/science.aaw6974>.

Horcea-Milcu, A.-I., Leventon, J., & Lang, D. J. (2022). Making transdisciplinarity happen: Phase 0, or before the beginning. *Environmental Science & Policy*, 136, 187–197. <https://doi.org/10.1016/j.envsci.2022.05.019>.

Huntjens, P. (2021). *Towards a Natural Social Contract*. Switzerland: Springer Cham, XIV, 212. <https://doi.org/10.1007/978-3-030-67130-3>.

IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In S. Díaz, J. Settele, E. S. Brondizio, H. T. Ngo, M. Guézé, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, et al. (Eds.), *Global assessment report on biodiversity and ecosystem services* (pp. 1–56). Bonn, Germany: IPBES Secretariat.

IPCC. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), *Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* (pp. 1–41). Cambridge University Press.

IPCC. (2022) *Summary for policymakers*. In H.-O. Pörtner, D. C. Roberts, E. S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegria, M. Craig, S. Langsdorf, S. Löschke, V. Möller, & A. Okem (Eds.), *Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change* pp. (1–40). Cambridge University Press.

Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., Guerra, C. A., Jacob, U., Takahashi, Y., Settele, J., Diaz, S., Molnar, Z., & Purvis, A. (2022). The direct drivers of recent global anthropogenic biodiversity loss. *Science Advances*, 8, eabm9982. <https://doi.org/10.1126/sciadv.abm9982>.

Jentoft, S., & Chuenpagdee, R. (2009). Fisheries and coastal governance as a wicked problem. *Marine Policy*, 33, 553–560. <https://doi.org/10.1016/j.marpol.2008.12.002>.

Johnson, G. C., & Lyman, J. M. (2020). Warming trends increasingly dominate global ocean. *Nature Climate Change*, 10, 757–761. <https://doi.org/10.1038/s41558-020-0822-0>.

Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H., & Nyström, M. (2020). The blue acceleration: The trajectory of human expansion into the ocean. *One Earth*, 2, 43–54. <https://doi.org/10.1016/j.oneear.2019.12.016>.

Keele, S. (2019). Consultants and the business of climate services: Implications of shifting from public to private science. *Climatic Change*, 157, 9–26. <https://doi.org/10.1007/s10584-019-02385-x>.

Klepp, S., & Chavez-Rodriguez, L. (Eds.). (2018). *A Critical Approach to Climate Change Adaptation*. Routledge. <https://doi.org/10.4324/9781315165448>.

Knappe, H., Hofelder, A.-K., Löw Beer, D., & Nanz, P. (2019). The politics of making and unmaking (sustainable) futures: Introduction to the special feature. *Sustainability Science*, 14, 891–898. <https://doi.org/10.1007/s11625-019-00704-w>.

Kraemer-Mbula, E., Tijssen, R., Wallace, M. L., & McClean, R. (Eds.). (2020). *Introduction Transforming Research Excellence. New Ideas from the Global South*. African Minds. African Minds.

Kurth, C., & Pihkala, P. (2022). Eco-anxiety: What it is and why it matters. *Frontiers in Psychology*, 13, 981814. <https://doi.org/10.3389/fpsyg.2022.981814>.

Lahl, R., Ferse, S., & Bleischwitz, R. (2023). Reflecting on a Research Institute's Role as a Tool for Ocean Science Diplomacy—ZMT's Mission to Collaborate. In V. Ittekot & J. K. Baweja (Eds. XXIV, 356), *Science, Technology and Innovation Diplomacy in Developing Countries*. Singapore: Springer. https://doi.org/10.1007/978-981-19-6802-0_20.

Landrigan, P. J., Stegeman, J. J., Fleming, L. E., Allemand, D., Anderson, D. M., Backer, L. C., Brucker-Davis, F., Chevalier, N., Corra, L., Czerucka, D., Bottein, M. D., Demeneix, B., Depledge, M., Deheyn, D. D., Dorman, C. J., Fenichel, P., Fisher, S., Gaill, F., Galgani, F., ... Rampal, P. (2020). Human Health and Ocean Pollution. *Annals of Global Health*, 86, 151. <https://doi.org/10.5334/aogh.2831>.

Lang, D. J., Wiek, A., Bergmann, M., Stauffacher, M., Martens, P., Moll, P., Swilling, M., & Thomas, C. J. (2012). Transdisciplinary research in sustainability science: Practice, principles, and challenges. *Sustainability Science*, 7, 25–43. <https://doi.org/10.1007/s11625-011-0149-x>.

Lawrence, M. G., Williams, S., Nanz, P., & Renn, O. (2022). Characteristics, potentials, and challenges of transdisciplinary research. *One Earth*, 5, 44–61. <https://doi.org/10.1016/j.oneear.2021.12.010>.

Lenton, T. M., Rockstrom, J., Gaffney, O., Rahmstorf, S., Richardson, K., Steffen, W., & Schellnhuber, H. J. (2019). Climate tipping points - too risky to bet against. *Nature*, 575, 592–595. <https://doi.org/10.1038/d41586-019-03595-0>.

Lincke, D., Hinkel, J., Mengel, M., & Nicholls, R. J. (2022). Understanding the drivers of coastal flood exposure and risk from 1860 to 2100. *Earth's Future*, 10, e2021EF002584. <https://doi.org/10.1029/2021ef002584>.

Lubchenco, J. (1998). Entering the century of the environment: A new social contract for science. *Science*, 279, 491–497. <https://doi.org/10.1126/science.279.5350.491>.

Luijendijk, A., Hagenars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World's Beaches. *Sci Rep*, 8, 6641. <https://doi.org/10.1038/s41598-018-24630-6>.

McMichael, C., Dasgupta, S., Ayeb-Karlsson, S., & Kelman, I. (2020). A review of estimating population exposure to sea-level rise and the relevance for

migration. *Environmental Research Letters*, 15, 123005. <https://doi.org/10.1088/1748-9326/abb398>.

Miller, J., White, T. B., & Christie, A. P. (2023). Parachute conservation: Investigating trends in international research. *Conservation Letters*, 16, e12947. <https://doi.org/10.1111/conl.12947>.

Miner, K., Canavera, L., Gonet, J., Luis, K., Maddox, M., Mccarney, P., Bridge, G., Schimel, D., & Rattlingleaf, J. (2023). The co-production of knowledge for climate science. *Nature Climate Change*, 13, 307–308. <https://doi.org/10.1038/s41558-023-01633-4>.

Mortreux, C., Barnett, J., Jarillo, S., & Greenaway, K. H. (2023). Reducing personal climate anxiety is key to adaptation. *Nature Climate Change*, 13, 590–590. <https://doi.org/10.1038/s41558-023-01716-2>.

Newman, K., Bharadwaj, S., & Fransman, J. (2019). Rethinking Research Impact through Principles for Fair and Equitable Partnerships. In J. Georgalakis & P. Rose (Eds. 50 IDS Bulletin), *Exploring Research-Policy Partnerships in International Development*. IDS. <https://bulletin.ids.ac.uk/index.php/idsbo/article/view/3019/Online%20article>.

Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. *Nature Climate Change*, 11, 338–342. <https://doi.org/10.1038/s41558-021-00993-z>.

Nightingale, A. J., Eriksen, S., Taylor, M., Forsyth, T., Pelling, M., Newsham, A., Boyd, E., Brown, K., Harvey, B., Jones, L., Kerr, R. B., Mehta, L., Naess, L. O., Ockwell, D., Scoones, I., Tanner, T., & Whitfield, S. (2019). Beyond Technical Fixes: Climate solutions and the great derangement. *Climate and Development*, 12, 343–352. <https://doi.org/10.1080/17565529.2019.1624495>.

Nightingale, A. J., Gonda, N., & Eriksen, S. H. (2021). Affective adaptation = effective transformation? Shifting the politics of climate change adaptation and transformation from the status quo. *WIREs Climate Change*, 13, e740. <https://doi.org/10.1002/wcc.740>.

Norström, A. V., Agarwal, B., Balvanera, P., Baptiste, B., Bennett, E. M., Brondizio, E., Biggs, R., Campbell, B., Carpenter, S. R., Castilla, J. C., Castro, A. J., Cramer, W., Cumming, G. S., Felipe-Lucia, M., Fischer, J., Folke, C., DeFries, R., Gelcich, S., Groth, J., ... Spierenburg, M. (2022). The programme on ecosystem change and society (PECS) – A decade of deepening social-ecological research through a place-based focus. *Ecosystems and People*, 18, 598–608. <https://doi.org/10.1080/26395916.2022.2133173>.

Norström, A. V., Cvitanovic, C., Löf, M. F., West, S., Wyborn, C., Balvanera, P., Bednarek, A. T., Bennett, E. M., Biggs, R., de Bremond, A., Campbell, B. M., Canadell, J. G., Carpenter, S. R., Folke, C., Fulton, E. A., Gaffney, O., Gelcich, S., Jouffray, J. B., Leach, M., ... Österblom, H. (2020). Principles for knowledge co-production in sustainability research. *Nature Sustainability*, 3, 182–190. <https://doi.org/10.1038/s41893-019-0448-2>.

Obura, D. O., DeClerck, F., Verburg, P. H., Gupta, J., Abrams, J. F., Bai, X., Bunn, S., Ebi, K. L., Gifford, L., Gordon, C., Jacobson, L., Lenton, T. M., Liverman, D., Mohamed, A., Prodani, K., Rocha, J. C., Rockström, J., Sakschewski, B., Stewart-Koster, B., ... Zimm, C. (2023). Achieving a nature- and people-positive future. *One Earth*, 6, 105–117. <https://doi.org/10.1016/j.oneear.2022.11.013>.

Otero, V., Quishoudt, K., Koedam, N., & Dahdouh-Guebas, F. (2016). Mangroves at their limits: Detection and area estimation of mangroves along the Sahara Desert Coast. *Remote Sensing* 8, 512. <https://doi.org/10.3390/rs8060512>.

Pace, L. A., Saritas, O., & Deidun, A. (2023). Exploring future research and innovation directions for a sustainable blue economy. *Marine Policy*, 148, 105433. <https://doi.org/10.1016/j.marpol.2022.105433>.

Pahl-Wostl, C. (2009). A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. *Global Environmental Change*, 19(3), 354–365. <https://doi.org/10.1016/j.gloenvcha.2009.06.001>.

Partelow, S., Hornidge, A. K., Senff, P., Stabler, M., & Schlüter, A. (2020a). Tropical marine sciences: Knowledge production in a web of path dependencies. *PLoS One*, 15, e0228613. <https://doi.org/10.1371/journal.pone.0228613>.

Partelow, S., Schlüter, A., Armitage, D., Bavinck, M., Carlisle, K., Gruby, R. L., Hornidge, A.-K., Tissier, M. L., Pittman, J. B., Song, A. M., Sousa, L. P., Väidianu, N., & Van Assche, K. (2020b). Environmental governance theories: A review and application to coastal systems. *Ecology and Society*, 25, 19. <https://doi.org/10.5751/es-12067-250419>.

Penn, J. L., & Deutsch, C. (2022). Avoiding ocean mass extinction from climate warming. *Science*, 376, 524–526. <https://doi.org/10.1126/science.abe9039>.

Peters, K. (2020). The territories of governance: Unpacking the ontologies and geophilosophies of fixed to flexible ocean management, and beyond. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, 375, 20190458. <https://doi.org/10.1098/rstb.2019.0458>.

Renn, O. (2021). Transdisciplinarity: Synthesis towards a modular approach. *Futures*, 130, 102744. <https://doi.org/10.1016/j.futures.2021.102744>.

Riechers, M., Brunner, B. P., Dajka, J. C., Duse, I. A., Lubker, H. M., Manlosa, A. O., Sala, J. E., Schaal, T., & Weidlich, S. (2021). Leverage points for addressing marine and coastal pollution: A review. *Marine Pollution Bulletin*, 167, 112263. <https://doi.org/10.1016/j.marpolbul.2021.112263>.

Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., Mckay, D. I. A., Bai, X., Bala, G., Bunn, S. E., Ciobanu, D., Declerck, F., Ebi, K., Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S., ... Zhang, X. (2023). Safe and just Earth system boundaries. *Nature*, 619, 102–111. <https://doi.org/10.1038/s41586-023-06083-8>.

Rockstrom, J., Kotze, L., Milutinovic, S., Biermann, F., Brovkin, V., Donges, J., Ebbesson, J., French, D., Gupta, J., Kim, R., Lenton, T., Lenzi, D., Nakicenovic, N., Neumann, B., Schuppert, F., Winkelmann, R., Bosselmann, K., Folke, C., Lucht, W., ... Steffen, W. (2024). The planetary commons: A new paradigm for safeguarding Earth-regulating systems in the Anthropocene. *Proceedings of the National Academy of Sciences of the United States of America*, 121, e2301531121. <https://doi.org/10.1073/pnas.2301531121>.

Röller, L., Celliers, L., & Abson, D. J. (2022a). Resilience and coastal governance: Knowledge and navigation between stability and transformation. *Ecology and Society*, 27, 40. <https://doi.org/10.5751/ES-13244-270240>.

Röller, L., Ilosvay, X. E. E., Ferse, S. C. A., Jung, J., Karcher, D. B., Kriegl, M., Nijamdeen, T. M., Riechers, M., & Walker, E. Z. (2022b). Disentangling obstacles to knowledge co-production for early-career researchers in the Marine Sciences. *Frontiers in Marine Science*, 9, 893489. <https://doi.org/10.3389/fmars.2022.893489>.

Rosendo, S., Celliers, L., & Mechisso, M. (2018). Doing more with the same: A reality-check on the ability of local government to implement Integrated Coastal Management for climate change adaptation. *Marine Policy*, 87, 29–39. <https://doi.org/10.1016/j.marpol.2017.10.001>.

Salvador, C., Nieto, R., Vicente-Serrano, S. M., Garcia-Herrera, R., Gimeno, L., & Vicedo-Cabrera, A. M. (2023). Public health implications of drought in a climate change context: A critical review. *Annual Review of Public Health*, 44, 213–232. <https://doi.org/10.1146/annurev-pubhealth-071421-051636>.

Scheffer, M., van de Leemput, I., Weinans, E., & Bollen, J. (2021). The rise and fall of rationality in language. *Proceedings of the National Academy of Sciences*, 118, e2107848118. <https://doi.org/10.1073/pnas.2107848118>.

Schlüter, A., Van Assche, K., Hornidge, A.-K., & Väidianu, N. (2020). Land-sea interactions and coastal development: An evolutionary governance perspective. *Marine Policy*, 112, 103801. <https://doi.org/10.1016/j.marpol.2019.103801>.

Scholz, R. W., & Steiner, G. (2015). The real type and ideal type of transdisciplinary processes: Part II—what constraints and obstacles do we meet in practice? *Sustainability Science*, 10, 653–671. <https://doi.org/10.1007/s11625-015-0327-3>.

Schroeder, D., Chatfield, K., Singh, M., Chennells, R., & Herisone-Kelly, P. P. (2019). *Equitable Research Partnerships*. Springer. <https://doi.org/10.1007/978-3-030-15745-6>.

Schutter, M. S., Hicks, C. C., Phelps, J., & Waterton, C. (2021). The blue economy as a boundary object for hegemony across scales. *Marine Policy*, 132, 104673. <https://doi.org/10.1016/j.marpol.2021.104673>.

Shue, H. (2023). Unseen urgency: Delay as the new denial. *WIREs Climate Change*, 14, e809. <https://doi.org/10.1002/wcc.809>.

Simon, N., Raubenheimer, K., Urho, N., Unger, S., Azoulay, D., Farrelly, T., Sousa, J., van Asselt, H., Carlini, G., Sekomo, C., Schulte, M. L., Busch, P. O., Wienrich, N., & Weiland, L. (2021). A binding global agreement to address the life cycle of plastics. *Science*, 373, 43–47. <https://doi.org/10.1126/science.abi9010>.

Siregar, F. (2019). Utility over excellence: Doing research in Indonesia. In E. Kraemer-Mbula, R. Tijssen, M. L. Wallace & R. McClean (Eds.),

Transforming Research Excellence. New Ideas from the Global South. African Minds (pp. 119–137). Cape Town.

Smith, A. B. (2020). *U.S. Billion-dollar Weather and Climate Disasters, 1980 - present*. (NCEI Accession 0209268). in NOAA National Centers for Environmental Information, editor.

Spalding, A. K., Grorud-Colvert, K., Allison, E. H., Amon, D. J., Collin, R., de Vos, A., Friedlander, A. M., Johnson, S. M. O., Mayorga, J., Paris, C. B., Scott, C., Suman, D. O., Estradivari, A.-M. C.-M., Giron-Nava, A., Gurney, G. G., Harris, J. M., Hicks, C., Mangubhai, S., Micheli, F., ... Thurber, R. V. (2023). Engaging the tropical majority to make ocean governance and science more equitable and effective. *Npj Ocean Sustainability*, 2, 8. <https://doi.org/10.1038/s44183-023-00015-9>.

Spence, A., & Ogunbode, C. A. (2023). Angry politics fails the climate. *Nature Climate Change*, 13, 13–14. <https://doi.org/10.1038/s41558-022-01567-3>.

Spencer, T., Adams, J., Tissier, M. L., Murray, A. B., & Splinter, K. (2023). Coastal futures: New framings, many questions, some ways forward. *Cambridge Prisms: Coastal Futures*, 1, 1–11. <https://doi.org/10.1017/cft.2023.22>.

Staffa, R. K., Riechers, M., & Martin-Lopez, B. (2022). A feminist ethos for caring knowledge production in transdisciplinary sustainability science. *Sustainability Science*, 17, 45–63. <https://doi.org/10.1007/s11625-021-01064-0>.

Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P., Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fetzer, I., Lade, S. J., Scheffer, M., Winkelmann, R., & Schellnhuber, H. J. (2018). Trajectories of the Earth System in the Anthropocene. *Proceedings of the National Academy of Sciences of the United States of America*, 115, 8252–8259. <https://doi.org/10.1073/pnas.1810141115>.

Stephenson, R. L., Hobday, A. J., Allison, E. H., Armitage, D., Brooks, K., Bundy, A., Cvitanovic, C., Dickey-Collas, M., D. M. Grilli, N., Gomez, C., Jarre, A., Kaikkonen, L., Kelly, R., López, R., Muhl, E.-K., Pennino, M. G., Tam, J. C., & van Putten, I. (2021). The quilt of sustainable ocean governance: Patterns for practitioners. *Frontiers in Marine Science*, 8, 630547. <https://doi.org/10.3389/fmars.2021.630547>.

Talavera-Soza, S. (2023). Citizenship a determining factor in a geoscientist's career. *Nature Geoscience*, 16, 550–551. <https://doi.org/10.1038/s41561-023-01221-3>.

Thérien, J.-P. (2024). The north–south distinction: From consensus to contestation. *Global Studies Quarterly*, 4, ksae080. <https://doi.org/10.1093/isagsq/ksae080>.

Tosca, M. G., Galvin, A., Gilbert, I., Walls, K. L., Tyler, G. E., & Nastan, A. M. (2021). Reimagining futures. *Elementa: Science of the Anthropocene*, 9, 00016. <https://doi.org/10.1525/elementa.2021.00016>.

United Nations Development Programme (UNDP). 2022. The 2021/2022 Human Development Report. <https://hdr.undp.org/content/human-development-report-2021-22>.

Van Valkengoed, A. M., & Steg, L. (2023). Climate anxiety is about more than just personal risks. *Nature Climate Change*, 13, 591–591. <https://doi.org/10.1038/s41558-023-01718-0>.

Weiand, L., Unger, S., Rochette, J., Müller, A., & Neumann, B. (2021). Advancing ocean governance in marine regions through stakeholder dialogue processes. *Frontiers in Marine Science*, 8, 645576. <https://doi.org/10.3389/fmars.2021.645576>.

Whitehouse, H., Lui, F. W., Sellwood, J., Barrett, M. J., & Chigeza, P. (2014). Sea Country: Navigating Indigenous and colonial ontologies in Australian environmental education. *Environmental Education Research*, 20, 56–69. <https://doi.org/10.1080/13504622.2013.852655>.

Wiegble, V., & Bruns, A. (2018). What is driving the water-energy-food nexus? discourses, knowledge, and politics of an emerging resource governance concept. *Frontiers in Environmental Science*, 6, 128. <https://doi.org/10.3389/fenvs.2018.00128>.

Wiegble, V., & Bruns, A. (2025). Whose knowledge counts? unpacking the uneven geographies and politics of knowledge co-production in IPBES. *Human Ecology*, 53, 73–86. <https://doi.org/10.1007/s10745-025-00578-w>.

Wohlgezogen, F., McCabe, A., Osegowitsch, T., & Mol, J. (2020). The wicked problem of climate change and interdisciplinary research: Tracking management scholarship's contribution. *Journal of Management & Organization*, 26, 1048–1072. <https://doi.org/10.1017/jmo.2020.14>.

Woolston, C. (2023). Measuring societal impact: How to go beyond standard publication metrics. *Nature*, 614, 375–377. <https://doi.org/10.1038/d41586-023-00345-1>.

Wyborn, C., Davila, F., Pereira, L., Lim, M., Alvarez, I., Henderson, G., Luers, A., Harms, M. J. M., Maze, K., Montana, J., Ryan, M., Sandbrook, C., Shaw, R., & Woods, E. (2020). Imagining transformative biodiversity futures. *Nature Sustainability*, 3, 670–672. <https://doi.org/10.1038/s41893-020-0587-5>.

Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J. C., & Scheffer, M. (2020). Future of the human climate niche. *Proceedings of the National Academy of Sciences of the United States of America*, 117, 11350–11355. <https://doi.org/10.1073/pnas.1910114117>.