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Abstract 
Over time, the historical development of work processes can lead to inefficiencies in data collection and 
data processing. This was also the case for the laboratory data from the MAREE at the Leibniz Centre 
for Tropical Marine Research (ZMT). To address this issue, a pilot project was initiated as part of the Use 
Case 27 of the NFDI4Biodiversity. The project aimed to systematically record and improve the processing 
of research data from the ZMT’s experimental laboratories, with a particular focus on establishing a 
structured collection of nutrient data from the MAREE’s water tanks. This paper discusses the challenges 
encountered in this data processing, outlines the procedure applied to overcome them, and provides 
recommendations that are applicable to other data processing challenges in research institutes. 

1 Background 
The efficient processing and management of scientific data is critical to ensure the reliability and 
accuracy of research results. However, historical practices and the evolution of work processes can lead 
to inefficiencies, especially when dealing with large and complex datasets. At the Leibniz Centre for 
Tropical Marine Research (ZMT), the laboratory data collection and processing methods used to monitor 
water tank nutrients in the MAREE were found to be fragmented and prone to error. This situation 
highlighted the need for a more structured and streamlined approach to data management. As part of 
the Use Case 27 of the NFDI4Biodiversity, this pilot project aimed at identifying the challenges, providing 
recommendations and consolidating existing nutrient data in a database. 

The initial challenge involved the fragmented storage of weekly nutrient measurements across multiple 
Excel files. Although each file contained the relevant data, the decentralised structure significantly 
hindered the efficient and reliable generation of time-series visualisations. Manual data aggregation via 
copy-and-paste methods – already used in some instances – proved to be not only labour-intensive, but 
also prone to transcription errors and inconsistencies, resulting in incomplete datasets. A key 
requirement for subsequent analysis was the reconstruction of a comprehensive chronological dataset 
encompassing MAREE water tanks, nutrient concentrations, and associated standard substances.  

https://gepris.dfg.de/gepris/projekt/442032008?context=projekt&task=showDetail&id=442032008&
https://nfdi4biodiversity.org/en/what-we-do/use-case-zmt/
https://nfdi4biodiversity.org/en/what-we-do/use-case-zmt/


2 

2 Procedure 
In order to address the aforementioned challenges, nutrient data from the years 2023 and 2024 were 
consolidated into a unified PostgreSQL database. This integration facilitates comprehensive data 
analysis and enhances the identification of temporal correlations. The consolidation process involved 
the systematic import of numerous individual Excel files into the database. For this purpose, an ETL 
(Extract, Transform, Load) tool – specially Pentaho – was employed to extract and integrate the datasets. 
This approach enabled the automated and reusable merging of heterogenous data sources. Throughout 
the implementation, several technical and procedural challenges emerged, which are examined in detail 
in the following sections. Based on these insights, a set of recommendations is provided to support the 
prevention or more efficient resolution of such issues in future projects. 

3 Common Challenges and Recommendations 
The following section summarizes the challenges associated with the preparation of the dataset.  

3.1 Filenames and Metadata Extraction 
The filenames of Excel files containing laboratory data frequently encode essential metadata such as 
measurement dates, responsible personnel, and versioning information. To ensure the preservation and 
accessibility of this metadata, it is systematically extracted and stored alongside the laboratory data 
within the central database. This extraction process is implemented using the ETL tool Pentaho which 
interprets filenames as structured text strings according to a set of predefined parsing rules and naming 
conventions: 

• An underline (_), used exactly once between each component, serves as the delimiter separating 
distinct metadata elements within the filename. 

• Relevant files begin with a standardized prefix in the form “xx_NUT_MAREE_”, where “xx” 
denotes a two-digit numerical code indicating the measurement run or rerun sequence. This 
prefix is immediately followed by an underscore and the fixed identifier “NUT_MAREE_”. 

• The subsequent string encodes the date if laboratory analysis in the format “YYYYMMDD”. 
• If the underscore following the date is not immediately succeeded by the string “ver”, the 

intermediated substring (from this underscore to the one preceding “ver”) is interpreted as the 
project identifier. 

• Finally, the filename concludes versioning information. The substring “ver” is followed by a 
numerical version code in the format “X.XX” (a single-digit integer, a decimal point, and two 
decimal places), indicating the specific version of the Excel file and the processing state of its 
content. 

 
Despite the clear structure of the naming conventions, inconsistencies and minor deviations in 
filenames – although typically easy for humans to recognize and interpret – can significantly hinder 
automated metadata extraction. Table 1 illustrates this issue using three illustrative examples from the 
MAREE dataset. The left column lists filenames that conform to the established conventions and can be 
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processed correctly by the import tool. The middle column presents filenames with minor errors or 
deviations, which are difficult for rule-based parsing algorithms to interpret accurately. The right third 
column identifies and explains the specific issues in each non-conforming filename. 
  

Table 1: Ilustrative Examples of Non-Conforming Filenames 
Compliant File Names  Incorrect File Names Identified Error 

01_NUT_MAREE_20230116_Ana_Grillo_ver1.06.xlsb 01_NUT_MAREE_20230116_Ana_Grillo_ver1.6.xlsb “..ver1.6…” : zero missing  

01_NUT_MAREE_20230123_Ana_Grillo_ver1.06.xlsb 01_NUT_MAREE_20230123__Ana_Grillo_ver1.06.xlsb “.. 23__Ana …”:  double underline 

01_NUT_MAREE_20231009_ver.1.09.xls 01_NUT_MAREE_202310009_ver.1.09.xls “…EE_202310009_v…” not a date, 
because of redundant zero 

 
Recommendation 1: Rule-based software systems, such as the ETL processes employed here, rely on 
strict adherence to predefined filename patterns; even slight deviations can result in failed parsing or 
misclassification of data. 

3.2 Variable Naming 
A persistent challenge in managing the dataset stems from the involvement of multiple technicians over 
time, each bringing unique backgrounds and recording habits. Consequently, the same variable is 
frequently labelled using different nomenclature or spelling conventions across entries. This lack of 
standardization introduces a significant barrier to data harmonization and analysis, as it requires 
comprehensive knowledge of all synonymous or semantically equivalent terms. 
For instance, the following pairs represent cases where identical data points have been inconsistently 
labelled: 
• shrimp tank vs. shrimptank 
• AQ03 vs. Glasrosen 
• EA (Experimental Aquarium) vs. ET (Experimental Tank) 

 
These discrepancies can result in erroneous data classification, where semantically identical records are 
mistakenly treated as separate categories. 

Recommendation 2: It is essential to develop a controlled vocabulary or synonym mapping to ensure 
terminological consistency. Additionally, defining the acceptable values for each descriptive column and 
storing them as predefined lists is recommended to standardize data entry and prevent future 
inconsistencies. 

3.3 Data Formats 
In Microsoft Excel, columns are typically defined by headers that implicitly specify the expected data 
type for the values contained within each column. For instance, a column labelled “insert date” is 
expected to contain temporal data entries (i.e., dates), rather than free-text or alphanumeric strings. 
Despite this implicit expectation, Excel does not enforce strict data type validation, thereby allowing 
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users to input values that deviate from the intended format. From the perspective of the Excel file, this 
may be acceptable as long as data entries are mutually exclusive, i.e., they don’t overlap in meaning or 
data type and do not cause errors in the intended processing workflows.  

These structural and semantic inconsistencies present significant challenges in the context of processing 
the MAREE data. In the specific case examined here, quantitative laboratory measurements – typically 
reported in micromoles per liter (µmol/L) – are expected to populate dedicated columns within a 
measurement series. However, in the provided Excel files, certain columns intended to contain 
measured values of nutrient concentrations (specifically NOx), were instead filled with yellow-
highlighted textual interpretations, rather than actual data. This blending of numerical and textual 
content within a single column introduces inconsistencies that obstruct automated parsing and 
transformation routines required for database integration. An illustrative example of this issue is 
provided in Table 2. 

Table 2: Blending of Numerical and Textual Content Within a Single Column 
NOx[µmol/L]  

24,29 
779,99 

10,63 
0,00 
0,00 

too high 
too high 

174,83 
116,55 

80,13 
119,86 
123,52 

 
Recommendation 3: Text interpretation is not qualified for evidence-based data storage. Every 
information of importance should be a discrete notation with a dedicated position within the Excel 
worksheet. 

Recommendation 4: Each row within an Excel worksheet should represent a single, consistently defined 
data record, with all values conforming to predefined data types and formats across columns. 

3.4 Naming and Identifiers 
A recurring issue within the MAREE Excel sheets for nutrient data is the inconsistent use of names, 
abbreviations, and project identifiers. These inconsistencies complicate data integration and hinder 
traceability. The following examples illustrate the variation in how this information is currently recorded: 

• Marilyn Meier 
• Project 006/2023 
• EA850 
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The absence of a unified naming convention across MAREE datasets represents a substantial barrier to 
effective data consolidation and integration with other data sources. In many cases, project references 
rely on the name of the responsible contact person, which, while practical in an operational context, is 
insufficient for systematic data linkage. Instead, the use of a unique, institutionally assigned project 
number – such as the ZMT project ID – would provide a solution. Such identifiers can be linked to 
associated metadata, including contact persons, project descriptions and other relevant information 
associated with the project. 
 
Recommendation 5: To ensure reliable identification of datasets and consistent referencing of shared 
information, a standardized schema for project names, project numbers, and abbreviations should be 
implemented. 
 
Recommendation 6: Several value ranges, such as those in the MAREE tanks, are not limited to 
individual datasets, but recur across different data sources. These should be recognized as cross-cutting 
contextual variables and treated accordingly. A ZMT-wide agreement should be reached on naming 
conventions for tanks and water types, as well as similar classification attributes. 

3.5 Structure of the Excel Sheets 
The Excel files intended for import into the database were originally designed by technicians as tools to 
support the nutrient analysis process. The initial goal was not focused on periodic database imports. As 
simple table structures proved insufficient for a working process, the Excel files became increasingly 
complex, containing multiple sheets and numerous formulas. However, this complexity has made them 
less suitable for straightforward database transfers.  

Over time, the requirements for the Excel file as a working tool have evolved, leading to changes in their 
content. In particular, the data structure has become unstable and the position of the data within the 
sheets has shifted over time. This problem has been intensified by the frequent insertion of comment 
lines, which makes the consistency of the data structure more difficult. This means that the import 
program has to be adapted regularly, even if there are no fundamental changes to the data structure. 

Recommendation 7: For reliable and periodical database imports, a simple and stable data structure in 
the files should be established – one that contains mainly fields and data, with minimal formulas or 
references. The Excel sheets for static data should be separated from those supporting the working 
process. 
 
Recommendation 8: Each column should have a clearly defined meaning, and once column name and 
meaning are established, they should never change. However, columns may remain empty if they are 
no longer needed. 
 
Recommendation 9: To maintain a stable data structure, new information or columns should only be 
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appended at the end of the sheet. Ad hoc information does not belong in a standardized Excel file (e.g., 
avoid writing notes between the data to be imported). If necessary, a defined area for notes should be 
created. 

3.6 Number, Date and Time Conventions 
Differences in Excel settings between the English and German versions are also relevant to the data 
import process. Variations in data formats and numerical notations can lead to misinterpretations if not 
recognized. The issue is made even more complex, because of multiple photometers and connected PCs 
which are configured differently. Depending on which PC is connected to a particular photometer, a 
numerical value such as '1.000' may be interpreted either as “one thousand” or “one”, leading to 
potential inconsistencies. Similarly, discrepancies in date formats between language or regional settings 
of various PCs and associated devices add another layer of complexity. 

Recommendation 10: To avoid mistakes and misinterpretation of data, it is recommended to 
standardize the regional settings of all computers, PCs, and laptops at ZMT to English, as the most widely 
used language.  

4 Data Model 

4.1 Motivation of the Model 
Nutrient measurement data represent only a small fraction of the scientific and other datasets collected 
at ZMT. At the same time, they are directly or indirectly connected to a wide range of additional 
information: 

• Projects: Some measurements were commissioned within the scope of specific projects and 
can therefore be linked to them. This allows connections between different laboratory 
processes to be established via project assignment – provided that such links have been 
methodically prepared. 

• People: Projects involve researchers for whom the nutrient data are relevant. Consequently, 
information such as project duration, research objectives, or funding can also be associated 
with the measurement data. 

• Tanks: Samples for nutrient analyses originate from tanks, which may be categorized as 
permanent or experimental. These properties are included in the data model and can be 
extended with further details if needed – for example, the plants or animals inhabiting a tank 
and their native regions. 

Since all information at ZMT is interrelated and interdependent, a data model has been documented 
and implemented within this pilot project. It describes the relevant entities and their relationships, 
ensuring that nutrient data can later be correlated with other ZMT datasets. This, in turn, enables 
integrated queries and reports across different domains of knowledge. 
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4.2 Design of the Model 

To ensure a reliable, consistent, and efficient data import process, the data model has been designed as 
an Entity-Relationship Model (ERM) (see Figure 1). This modeling approach is widely used for semantic 
data modeling, representing objects, their attributes, and the relationships between them. 

The objectives of the ERM are: 

• to avoid redundancy and ensure consistency in the typing of objects and attributes, 

• to provide a clear graphical representation of entities and their relationships, 

• and to allow for flexible extensions that capture additional logic and business rules specific to 
ZMT. 

A central aspect of the ERM is the distinction between transaction data and master data, which together 
form the structural backbone of the model: 

• Transaction Data: Measurement results are classified as transaction data. Each measurement 
represents an independent and self-contained event. While older data lose direct relevance once 
new measurements are taken, they remain important for historical reference and time-series 
analysis. 

• Master Data: Core objects such as tanks, nutrients, projects, and operational devices are 
modeled as master data. These are stable over time, uniquely identifiable, and consistently 
referenced across multiple measurement events. Standardized master data ensure semantic 
consistency, contextual accuracy, and uniform terminology throughout the database. 

This separation between transaction and master data provides a solid foundation for consistent imports, 
reliable queries, and the long-term integration of datasets. To achieve full interoperability, the identified 
master data candidates should be incorporated into ZMT’s central master data system, which is 
currently under development. This integration will allow nutrient data to be harmonized with other 
institutional datasets, enabling cross-domain analyses and comprehensive reporting. 
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Figure 1: Data Model for Nutrient Measurement at ZMT 

 

Recommendation 11: A data model should clearly distinguish between master data that is relatively 
static, and transaction data that are dynamic.  

5 Establishment of a Stable Import Process 
In light of the identified challenges and building upon the outlined recommendations, the structure of 
the Excel spreadsheets used for laboratory data imports has been significantly simplified. Raw 
measurement data, calculations and staff-generated reports are now stored in separate files, marking a 
major step toward automating the import process. The only remaining manual input is the mapping 
between the position in the measuring sequence and the corresponding samples. This mapping must 
be entered once into the machine-exported file. Furthermore, the worksheet names must be manually 
adjusted to match the expected format. Despite these minimal manual steps, the import process is now 
much more robust. 

During the ETL process, the following implicit, but contextually valuable information (metadata) is 
derived from the original data (also see Figure 1): 
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Sample Type: The Sample Type indicates the origin or nature of the analysed sample – for example, 
whether it represents a reference material, water from a MAREE tank, or water from an experimental 
tank. This information can be systematically inferred from the sample name and from the attributes of 
the tank the sample was taken from.  

1) A sample name that matches the name of a tank serves as a reference to that specific tank. Based on 
the tank’s attributes, the sample type can be categorized as either a MAREE tank or an experimental 
tank. 

2) Some identifiers correspond to "calibration samples" or "sample matrix reference materials" that are 
used for the external calibration of analytical methods or quality assurance. 

Project Assignment: The association between experimental tanks and specific research projects can be 
derived through defined programmatic procedures, for example: (1) Project Assigment based on sample 
name; (2) Project Assignment based on time interval. 

6 Temporal Data Visualisation 
Once the laboratory data are stored in a structured database, they are ready for a wide range of 
analytical purposes. This includes the generation of graphical representations, in which the previously 
inferred metadata (e.g. sample type, project affiliation) can be visualised within temporal sequences. 

Examples 

1) Standard Substance 

Figure 2 is a visualisation of measured Total Alkalinity (TA) values in the Certified Reference Material 
(CRM Kanso, Lot no. CP) recorded over a selected period of five months. In the model, by using the 
check boxes the nutrient, the standard substance and the period can be changed. Such visualization 
makes it easier to monitor the behavior of reference materials, e.g., the degradation process and the 
need to use a new bottle. 

Figure 2: Time series visualisation of measured Total Alkalinity (TA) values 
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2)  MAREE water tanks 

Figure 3 illustrates the measured concentrations for nitrogen oxide “NOX” in a MAREE water tank 
designated KL4 over the year 2024. Additionally, a table with the exact values and the dilution factors is 
shown. By using the check boxes the nutrient, the MAREE water tank and the period can be changed in 
the generate other visualisations over time. These easily modifiable time periods, tanks and parameters 
offer a quick overview of the tanks, enabling measures to be taken to improve water quality or monitor 
long-term developments. 

Figure 3: Time series visualisation of NOX Concentrations in then MAREE Tank KL4 (2024) 

 
 

3) Project 

Figure 4 is a visualization of measured phosphate (PO₄) concentrations in the experimental tank ET13 
over the duration of the ZMT project Trans_Tourismn. In addition, a corresponding table presents the 
exact measured values alongside the applied dilution factors. By using the check boxes the nutrient, the 
experimental tank, the period and the project can be changed. MAREE tanks can easily be filtered by 
project, as project and storage tank data are measured together. There is no need to copy and paste or 
create multiple files. 
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Figure 4: Time series visualisation of measured values for phosphate (PO4) 

 

7 Conclusion 
The outcomes of this pilot project highlight the critical importance of implementing structured and 
standardized data management practices in research settings, particularly when dealing with large and 
complex datasets. The challenges encountered during the processing of nutrient data from the MAREE 
at ZMT reflect common issues faced by many research institutions, where legacy workflows and evolving 
procedures often result in inefficiencies and data inconsistencies.  

The integration of distributed data segments into a centralized Master Data System represents a key 
step toward the creation of a unified and interoperable information infrastructure. Such a system offers 
substantial benefits not only for the management of nutrient data but also for broader research data 
contexts. Cross-functional master data will serve as the link between databases and operational systems 
at ZMT. 

By consolidating and optimising data collection and processing workflows, this project not only 
addressed specific technical or workflow issues, but also established a foundation for long-term 
improvements in lab data management. Integrating the lessons learned from this project into the 
NFDI4Biodiversity framework will further strengthen the infrastructure for data management, 
promoting more effective collaboration and facilitating data sharing within the scientific community. 


