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Abstract 
The interplay between abiotic (resource supply, temperature) and biotic (grazing) factors determines growth and loss processes in 
phytoplankton through resource competition and trophic interactions, which are mediated by morphological traits like size. Here, 
we study the relative importance of grazers, water physics, and chemistry on the daily net accumulation rates (ARs) of individual 
phytoplankton from natural communities, grouped into six size classes from circa 10 to 500 μm. Using a Random Forest modelling 
approach and 4 years of daily data from a lake, we find that water temperature is generally a pivotal control of all phytoplankton 
ARs. At the same time, nutrients and light are important for the smallest and the largest classes. Mesozooplankton abundance is 
a key predictor of the AR for small phytoplankton, with microzooplankton being important for the middle-size range. In our data, 
large and small phytoplankton have different (seasonal) blooming patterns: small forms are favoured by low temperature and grazing, 
and high phosphorus levels. Larger forms show positive ARs at high temperatures and low phosphorus (being relatively insensitive 
to zooplankton grazing). These results help us understand the opportunities and limitations of using size to explain and model 
phytoplankton responses to biotic and abiotic environmental change. 
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Introduction 
Understanding the relative importance of biotic and abiotic con-
trols of biodiversity change, in terms of taxa and traits, is critical 
in times of global and local anthropogenic impact on ecosystem 
processes. Phytoplankton in particular span enormous phylo-
genetic and functional diversity and regulate essential global-
scale processes and elemental cycles, such as those of carbon 
and nutrients [1]. The relative importance of nutrient supply 
and trophic controls driving phytoplankton community dynam-
ics can vary depending on the environmental conditions [2, 3], 
and affect large-scale ecosystem properties and processes [4, 5]. 
Recent studies suggest the importance of quantifying both divi-
sion and loss processes or their net outcomes when studying the 
environmental drivers of phytoplankton community dynamics 
[6, 7]. While temperature and nutrient supply mostly regulate 
growth processes [8], trophic controls (direct negative effects on 
net growth and indirect facilitation [9]) play a role in growth and 
loss, explaining grazing defence traits and variation in community 
structure [10–13]. The net rate of accumulation (AR) represents 
the balance between phytoplankton division rates and the sum 
of all loss rates (e.g. grazing, sinking, parasites), and it is essential 

for understanding controls of phytoplankton community diversity 
and for algal bloom prediction [6, 8, 14]. The AR of phytoplankton 
is, however, dependent on their ecological context: the outcomes 
of abiotic and biotic interactions are fluctuations in the daily AR 
of taxa [6, 7], which depend on ecological and physiological traits, 
and local environmental conditions [6, 8]. 

Morphological characteristics of phytoplankton, like the size of 
cells and colonies, are central traits linking the principal axes of 
resource competition and trophic interactions [8, 15, 16]. Realized 
size of organisms scales with species physiology and ecology, 
therefore with population growth and loss rates (i.e. AR), deter-
mining emergent properties of the whole food web [5, 8, 15]. 
Larger cell or colony size increases resistance against grazers, 
reduces the competitive ability for nutrient uptake, and increases 
sinking losses in stable water columns. Small cells generally 
possess lower sinking rates and higher maximum growth rates 
and should be favoured under low nutrient conditions. Under 
higher temperatures, small cells can maintain higher metabolic 
and growth rates than larger phytoplankton because they are 
better nutrient competitors due to their higher surface-to-volume 
ratio [16]. There are however uncertainties regarding these general
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and theoretical expectations, emerging from complex ecological 
interactions and variable environmental conditions. For example, 
spatial data in phytoplankton size-abundance relationships in 
lakes across the USA showed that communities do not show 
theoretically expected patterns based on local environmental 
conditions [17], while long-term responses of phytoplankton size-
abundance relationships in Swiss lakes suggest that small forms 
may be favoured under high resource levels and low tempera-
tures, whereas large (often mixotrophic) taxa prevail under low 
resource conditions and higher temperatures [17]. 

Resolving the above incongruencies would be important to 
understand the effects of climate change and eutrophication on 
plankton communities and aquatic ecosystem processes. Under-
standing the relative importance of biotic and abiotic controls 
on macroecological patterns such as size distributions in natu-
ral communities remains however a challenge. First of all, it is 
difficult and time-consuming to manually estimate the realized 
size of individual plankton organisms, which is a plastic trait 
(variable over space and time), as opposed to the nominal size 
of species (which is unrealistically fixed). Additionally, measuring 
ecologically relevant ARs would require monitoring of phyto-
plankton abundances at biologically relevant timescales, such as 
days (i.e. the generation time of the focal organisms), which is 
intractable with traditional monitoring methods. Lastly, to study 
the relative importance of abiotic and biotic factors influenc-
ing phytoplankton ARs, high-frequency monitoring of physico-
chemical water variables and zooplankton taxa would also be 
necessary. 

The purpose of this study was to investigate the temporal 
prevalence, relative strength, and effect of (i) available resources 
(phosphorus, nitrogen, light), (ii) water physics (temperature, tur-
bulence, stability), and (iii) herbivore grazers (daphnids, copepods, 
ciliates, rotifers), in controlling the daily AR of phytoplankton size-
classes spanning the range between circa 10 to 500 μm. We use 
a unique dataset of 4 years of daily automated in-situ imaging 
data of phytoplankton, zooplankton, and water physicochemical 
parameters from a freshwater lake. We study ARs with a non-
parametric machine-learning approach, i.e. Random Forest (RF) 
modelling, which allows us to overcome several limitations of 
statistical methods when dealing with large, high-dimensional 
datasets [18]. Specifically, we test the following hypotheses: 

• Smaller phytoplankton forms are favoured (i.e. have higher 
ARs) under low resource conditions, and/or higher tempera-
ture and water column stability. 

• Larger phytoplankton require higher resource levels than 
smaller forms, and/or have a competitive disadvantage under 
higher temperatures (low ARs), and are more susceptible to 
sinking losses under a stable water column. 

• Smaller phytoplankton forms are more strongly controlled by 
herbivores (low ARs) whereas large phytoplankton are more 
resistant to (size selective) grazers (high ARs). 

Materials and methods 
Plankton data collection/processing 
We used high-resolution monitoring data to study the plankton 
community in a lake in Switzerland (Lake Greifensee) between 
May 2019 and June 2023. Greifensee is a lowland moraine lake in 
the Swiss pre-alps, naturally meso-eutrophic (max. depth 32 m, 
average depth 18 m), with a documented history of anthropogenic 
eutrophication, which was reverted by controlling phosphorus 
releases in the 1980s–90s [4]. Greifensee completely mixes once 

per year in winter and, at circulation, has a load of 0.04 mg l−1 

of total P, which makes it Eutrophic according to the OECD 
guidelines, and a load of 1.25 total N (https://hydroproweb.zh. 
ch/Karten/JB%20Chemie%20Seen/Dokumente/02_Be.pdf). 

Plankton was monitored with a dual-magnification dark-field 
imaging microscope that captures all particles in the size range 
between ∼10 μm and  ∼1 cm at 3 m depth using two magnifi-
cation objectives: one for phytoplankton and small zooplankton 
(5.0×) and one for larger zooplankton (0.5×) [19, 20] (Fig. 1A). 
The choice of depth is motivated by the average structure of 
the lake water column during the growing season: the thermo-
cline is generally around 8 m (https://www.datalakes-eawag.ch/ 
datadetail/515) and the epilimnion is generally well mixed by 
daily thermal winds. The 3 m depth is generally a representative 
sample of the phytoplankton community of the photic zone. 
Images were collected at a rate of 1 s−1 for 10 min every hour  
and regions of interest (ROIs) were automatically identified by 
the instrument using a Canny edge detector [20]. A Python image 
processing script performed colour conversion, edge-detection, 
and morphological feature extraction (e.g. object dimensions) 
of detected raw ROIs (https://github.com/tooploox/SPCConvert). 
Objects were manually annotated and zooplankton was finally 
classified into taxa using an ensemble of trained deep-learning 
classifiers (convolutional networks) [21, 22]. We removed small 
zooplankton from the 5.0× data and estimated body size as the 
area of the binary image mask for each phytoplankton object 
[19]. Such body size estimates scale with traditional microscopy 
biovolume measurements [20]. 

To divide the phytoplankton community into size-bins, we 
temporarily excluded the first and last percentile of the size 
distribution before binning to give the tails of the distribution 
less weight. We then binned the remaining objects into six bins 
of equal length on a Log10 scale (bin function from the OneR 
package V2.2) and returned the first percentile to the first bin 
and the last percentile to the last bin (Fig. 1B and Table S1) 
[23]. Note that individual phytoplankton cells or colonies are 
assigned to different bins irrespective of their taxonomic identity, 
and solely based on each object size (Fig. S1). We aggregated 
(summed) hourly abundances per day per size-bin: abundances 
are in ROI s−1, which correlates with plankton concentrations 
[20]. We used locally estimated scatterplot smoothing (LOESS) 
regression to smooth the time series with a degree of smoothing 
of α = 0.025. We chose α to exclude only random (temporal non-
autocorrelated) noise. We calculated daily ARs, for each bin, as: 

ARi =
(
ln

(
Nt+1,i

) − ln
(
Nt,i

))

Where i = size-bin, Nt = abundance at time t and Nt + 1 = abun-
dance at time t + 1. 

As a measure of trophic controls on phytoplankton AR, we 
estimated the daily abundance (summed of hourly ROI s−1) of  
daphnids, cyclopoid copepods, calanoid copepods, nauplii and 
rotifers (from 0.5×), and ciliates (from 5.0×) (Fig. 1C, taxonomic 
composition of classes in Table S2). We scaled zooplankton abun-
dances to z-scores for modelling. 

Abiotic data collection/processing 
Lake physical and chemical variables were automatically mea-
sured four to eight times per day using a conductivity, tempera-
ture, dissolved oxygen (CTD) probe and profiler (www.idronaut.it). 
In addition, a meteorological station on the roof of the monitoring 
station collected data continuously (Vaisala Oyj WXT520 & OTT
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Figure 1. General workflow of the study, summarising (i) the type of input data, both biotic (A–C) and abiotic (D), (ii) the data analysis approach (E, F), 
and (iii) the modelling outcomes (G, H). Specifically: (A) Images of phytoplankton and zooplankton from the underwater microscope: size and 
taxonomic classification are obtained by image processing and deep learning, respectively. (B) Phytoplankton is assigned to six size-bins based on the 
area (as a measure of body size) of each imaged object (Table S2); daily ARs are calculated based on Log-abundances. (C) Mesozooplankton (daphnids, 
cyclopoid, and calanoid copepods) and microzooplankton (nauplii, rotifers, and ciliates) daily time series are also obtained from (A) (Table S2). (D) 
Water physicochemical variables are extracted from high-frequency CTD profiling data, whereas daily nutrient chemistry is predicted from weekly 
laboratory measurements (SI Methods). (E) RF models are validated, and used to study the relative importance and temporal prevalence of AR 
predictors with a rolling-window approach (F–H). (G) Partial effects of important AR predictors are extracted from the trained RF models. 
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HydroMet WS700-UMB). Once per week, in the same location, 
water samples from 3 m depth, near the underwater microscope, 
were analysed for nutrient chemistry (P-PO4, N-NO3, NO2, and  
NH4) (Fig. 1D). 

As abiotic predictors in the AR models and measures of 
water column physical structure, we calculated thermocline 
depth, mixed layer depth, epilimnetic temperature using the R 
package rLakeAnalyzer V1.11.4.1 [24] and CTD data from the 
monitoring station [25]. For the estimation of all variables, we 
used the temperature profiles generated by the CTD probe. For 
the estimation of the epilimnetic temperature, we used lake 
topology (depth and the lake area at each depth) in addition to 
the temperature profiles. If no thermocline was detected using 
a minimum density gradient of 0.1 m, we used site depth as 
thermocline depth. We calculated daily averaged values for all 
variables described above. 

As a proxy for light availability available to the phytoplank-
ton community, we extracted the depth where photosyntheti-
cally active radiation (PAR, wavelengths 400–700 nm) reached 
5 μEm−2 s−1 (the instrument’s detection limit/sensitivity), which 
we call light penetration depth, and depends on incoming irradi-
ance and water turbidity (Fig. S2). For this, we excluded all PAR 
measurements from the surface to the depth of maximum PAR, 
where the PAR sensor was shaded by the automated monitoring 
platform above. We then reported the depth at which a PAR value 
of 5 5 μEm−2 s−1 was found (Fig. S2). 

Measurements of the inorganic nutrients nitrate (NO3), ammo-
nium (NH4), and phosphate (P-PO4) were performed weekly. To 
obtain nutrient levels at a daily frequency, we predicted daily 
values using an RF model trained and validated for each nutrient 
(SI Methods). Nutrient levels fluctuate on a daily scale mostly due 
to variations in water physical parameters and meteorological 
conditions [26]. Interpolation of nutrient values based on auto-
correlation of the time series would not account for such a daily 
variation. We therefore trained RF models on weekly nutrient data 
(n = 201) based on CTD and Meteo information from the same date, 
tested and validated these nutrient models on unseen nutrient 
values (10-times cross-validation where 80% of the data were used 
for training and 20% for testing), and then used RF models to 
predict (as opposed to interpolate) daily nutrient concentrations 
based on daily data of water physics and meteorological condi-
tions (Fig. 1D). For more information on nutrient models and their 
performance see SI Methods, Table S4, and  Fig. S3. 

Random Forests for modeling complex 
relationships 
To extract robust patterns from our complex and large datasets 
we used RF [27, 28], which allowed us to overcome the most impor-
tant constraints of traditional statistical approaches: a priori spec-
ification of (i) functional forms for partial effects of explanatory 
variables, (ii) interactions and non-linearities, and (iii) error distri-
butions (Fig. 1E). By bootstrapping both data and variables, RFs are 
relatively robust to collinearity. To reduce the tendency of these 
models to overfit the data, we smoothed the response variables 
(AR, see above). 

Size-bin modelling 
We modelled daily ARs of size-bins (change in Log abundance 
between time t and t + 1) as a function of the abundance of 
each size-bin (the density dependence of each bin’s growth) and 
various abiotic and biotic explanatory variables, all at time t (i.e. 
lagged by 1 day), to capture contemporary (i.e. direct) effects 
of environmental conditions on phytoplankton dynamics. This 
allowed us to model the process of net (and proportional—given 

the Log scale) accumulation of phytoplankton in each size-bin 
by accounting for the density dependence of population growth, 
and the focal biotic and abiotic mechanisms. By focusing on 
these factors measured at the same time point, we targeted 
the mechanisms directly affecting daily phytoplankton dynamics, 
such as organismal division and loss. This approach is particularly 
suitable considering the short time scale (daily) of these processes. 
We acknowledge that lagged effects of environmental variables 
can also influence phytoplankton abundance, but these indirect 
and time-delayed interactions were not the focus of this study. 

Our RF approach, based on a rolling-window analysis of size-
bin time series (Fig. 1F), describes how the predictors of AR vary 
in their relative strength (i) over time (within size-bins) and (ii) 
between size-bins (Fig. S4). While the former can be expected in 
nonlinear dynamic and chaotic systems [29–31] and  will  not be  
discussed in detail, aggregating the relative importance of predic-
tors over time allows us to study the variation between different 
size-bins (Fig. 1H). Examining the partial effect of environmental 
predictors when the RF model is trained on all data (Fig. 1G) allows  
us instead to extract patterns of how size-bins’ ARs relate to the 
different abiotic and biotic environmental factors. 

Random Forest training and validation 
We used RF models to estimate the relative importance of each 
explanatory variable in predicting phytoplankton AR per size-bin 
and their effects as partial dependence plots [18]. We imputed 
missing values (2.7%) among predictors with the function rfIm-
pute and then trained an RF model for each size-bin, with the 
randomForest package V4.6.14 [32]. To rule out overfitting, we 
performed a random split 10-fold cross-validation, which was 
repeated 10 times. We extracted the R2 from a linear model fit 
between the observed and the predicted AR from an RF model 
based on 90% of the data. By comparing the performance in the 
training data with the validation data, we assessed how well the 
models generalize to unseen data. Once we assessed that our 
RF models performed well and did not show overfitting, we fit 
a model on the entire time series (Fig. 1E and Fig. S5). These 
bin-specific RF models yielded pseudo-R2 values of circa 60% 
(Table S1) [29]. We refer to the explanatory variables of our RF 
models as predictors, given the underlying method by which their 
importance is evaluated (loss of predictive skill of the model when 
the variable is omitted), without implying that patterns indicate 
causal links between explanatory and response variables. 

Rolling-window analysis for temporal 
importance 
To study both the temporal prevalence and the relative strength 
of AR predictors, we used a rolling-window approach. Within a 
temporal window of 28 days, shifting forward by one week at each 
round, we predicted the AR using the trained RF (see above) from 
which we calculated the increase in mean-squared-error (IncMSE) 
after randomly resampling (reshuffling with replacement) the 
vector of values of each predictor in sequence (Fig. 1F). Specifi-
cally: within each window, we predicted the AR with our RF model 
based on the entire time series. We then fit a linear model between 
the observed and the predicted AR. We calculated the MSE as: 

MSE = 
1 
n

∑n 

i=1

(
Yi − Ŷi

)2 

where n = number of observations,
(
Yi − Ŷi

)
= residual errors of 

each data point in a linear model of observed vs predicted AR, 
Yi = ith true data point, and Ŷi = ith estimated data point.
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In this process, for each explanatory variable, we disrupted 
the relationship of the given variable with all other variables 
by shuffling the values of the given variable inside the rolling 
window. We again predicted the AR and calculated the MSE. We 
then calculated the IncMSE. 

Given the complexity of models (based on 13 variables) and 
the frequency (information content) of data, the IncMSE emerging 
from shuffling variables’ vectors (as opposed to omitting the vari-
able) can be relatively small. Omitting variables would however 
change the model structure, making comparisons between mod-
els lacking different variables unfair. IncMSE in our approach is 
only used for comparisons between variables, with predictors with 
high IncMSE representing relatively more important variables for 
the model. This relative importance of predictors (IncMSE) was 
then reported and averaged over time, for each size-bin. 

Partial effects on accumulation rates 
To study the partial effects of important predictors on ARs, we 
trained an RF model with the whole dataset (to gain more con-
fidence on inferred patterns) for each size-bin, and extracted as 
partial dependence plots of ARs to the focal variables with the 
pdp package, V0.7.0 [30] (Fig. 1G, SI Methods). All data analyses 
were performed with R, V4.1.1 (R Core Team 2021), and figures 
were produced using the package ggplot2, V3.3.5 (Wickham 2016). 

Results 
The dynamics in the abundance of phytoplankton size-bins fol-
low roughly the seasonal blooming succession of a temperate 
eutrophic lake, with peaks in spring, a trough in May (the clear 
water phase), and peaks in summer and early autumn (Fig. 2A). 
Each year, however, shows slightly different patterns in the inten-
sity and number of phytoplankton peaks [31]. For example, the 
smallest size-bins are on average more abundant than the larger 
ones (Fig. 2A), as expected, except for winter 2022/2023 where 
the largest size-bin was dominant due to a very uncommon and 
persistent bloom of the diatom Aulacoseira sp. (Fig. S6). 

Coupled with seasonal changes in abundance, the daily process 
of net accumulation (AR) of each phytoplankton size-bin fluctu-
ates over time highlighting the start and the end of the blooming 
periods (Fig. 2B). ARs vary substantially within and between size-
bins, with larger phytoplankton showing a wider range of positive 
and negative ARs (Fig. 2C). Large phytoplankton do not show more 
rapid bloom dynamics compared to small ones (Fig. 2A). Among 
the herbivore grazers, whose trends follow the phytoplankton sea-
sonal succession, rotifers and ciliates are the most abundant and 
dynamic groups (Fig. 2D) [33]. Abiotic environmental conditions 
in Greifensee follow the seasonal pattern of a temperate and 
monomictic eutrophic lake and are reported in Fig. S7. 

The results of modelling the daily AR of each size-bin (Fig. 2B) 
as a function of their abundance and the focal abiotic and biotic 
explanatory variables (Fig. 2C and Fig. S7) highlight important 
general patterns and notable size-specific differences. Aggregat-
ing the relative importance of variables over time, we find that 
water temperature is among the most important predictors across 
all phytoplankton (Fig. 3). The relationships between AR and tem-
perature however, which emerge from the RF predictions of its 
partial effect, differ among size-bins (Fig. 4). Size-bins also vary 
in sensitivity to levels of nutrients and different grazers (Figs 3 
and 4). ARs of all size-bins show to have a similar response pattern 
to water mixing (mixed layer depth and thermocline depth— 
Figs S8 and S9A), which may indicate that the optimal depth of the 
photic zone (to balance light penetration and nutrient supply from 

the hypolimnion) is between 4 and 8 m for all phytoplankton in the 
lake [34]. We see that ARs saturate with increasing light intensity 
(depth at 5 PAR), as expected [18], and that larger phytoplankton 
have a higher AR at high light levels compared to smaller forms 
(Fig. S8). Size-bins display slight differences in the optimum levels 
of ammonia. The correlation between AR and phosphate variation 
is instead antithetical between small and large size-bins (Fig. 4): 
large phytoplankton show high ARs at low phosphorus concentra-
tions, while small forms peak in ARs (and saturate) at high levels. 

We find that the AR of smaller size-bins is related more strongly 
with water temperature, phosphate, and herbivore grazing by 
mesozooplankton (Fig. 3). Particularly, the AR of size-bins 1–2 
shows a peak of positive ARs for low water temperature and 
cyclopoid copepod abundance, and phosphate in the range 
between 15 and 30 μg l−1. Smaller phytoplankton also seem to 
have higher ARs at intermediate levels of light penetration (depth 
at 5 PAR) (Fig. 4). This is suggestive of a springtime blooming 
environment (Fig. S7), which is characterized by communities of 
small diatoms, green algae, and cryptophytes (bins 1–2, Fig. 1) 
[33]. Conversely, larger size-bins (i.e. 5–6, characterized by large 
colony-forming taxa, including cyanobacteria) were shown to be 
less controlled by grazers, compared to the other groups, and to 
have optima at high temperature and light penetration, and low 
phosphate levels, which are typical of summer conditions (Fig. S7). 

Increasing density of cyclopoid copepods shows negative 
effects on the AR of size-bins 1–4, suggesting trophic control 
(herbivory) on small and medium phytoplankton (Fig. 4). Similarly, 
daphnids also show generalized negative effects on ARs, and 
both daphnids and cyclopoids affect ARs in a nonlinear way 
that suggests some form of indirect facilitation on small and 
large phytoplankton forms, respectively, at high density (Fig. 4). 
Rotifers, which are important predictors of small to medium-sized 
phytoplankton, have a similarly nonlinear and slightly positive 
effect on ARs (Figs 3 and 4). Ciliates are relatively more important 
as predictors of medium-sized phytoplankton ARs (bins 4–5), with 
the expected negative effect of herbivore grazing (Figs 3 and 4). 
We note that, in general, and despite differences in their effects, 
microzooplankton is a very important biotic predictor of AR across 
all size-bins, but particularly for intermediate size. The largest 
size-bins (5–6) seem to be relatively less affected in their ARs by 
the density of zooplankton, the most important being, for these 
size classes, calanoid and cyclopoid copepods (Figs 3 and 4). 

Discussion 
In this study, we leverage a unique dataset of 4 years of auto-
mated plankton imaging data to investigate whether size-based 
phytoplankton groups respond to environmental conditions as 
expected from theory, experiments, and observations at coarser 
time scales [8, 15, 16]. This study is different from previous ones in 
four aspects. First, while body size derived from imaging individ-
ual organisms depends on some image processing assumptions 
[35, 36], with high-frequency measures of millions of individual 
plankton organisms across the entire community (from 10 to 
500 μm), we capture variation in this trait associated with inter 
and intraspecific processes (physiology, ecology, and, possibly, 
evolution) [37]. Second, having high-frequency data, we study 
dynamics at short time scales by modelling daily net ARs of size-
bins (a growth process), not their abundance (a state variable). 
Third, we model AR of size-bins based on abiotic and biotic 
variables measured in situ, the latter comprising virtually all of 
the functional components of the plankton community. Lastly, 
we use machine learning to reduce modelling assumptions to the
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Figure 2. Temporal dynamics of plankton in Greifensee (2019–2022). Vertical dashed lines mark 1 January of each year. (A) Daily abundance data of 
phytoplankton size-bins (smoothed, see Methods). (B) Daily ARs of size-bins. (C) Distribution of ARs in each size-bin time series. (D) Daily zooplankton 
abundance data (ciliates are on the right-side Y-axis because they were monitored through the 5.0× objective). 

minimum and to extract robust non-linear patterns from large 
and noisy datasets [ 28]. Our RF models have an R2 of circa 0.6 in 
validation (Fig. S5), which suggests that we captured deterministic 
environmental factors that relate to size-bin dynamics: here we 
discuss how much these patterns resemble known size-mediated 
mechanisms driving phytoplankton responses to environmental 
conditions. 

While the observed dynamics of phytoplankton size-bins fol-
low a seasonal pattern similar to the one expected by temperate 
eutrophic lakes [29], we note that each year shows differences in 
the intensity and number of phytoplankton peaks, highlighting 
the intrinsic challenge of understanding plankton communities 
in chaotic systems where even small perturbations can propagate 
over time influencing dynamics [30]. Larger phytoplankton also 
showed a wider range of positive and negative ARs (Fig. 2C), 
probably due to the AR of bins of larger organisms, which are 
less abundant, being more sensitive to daily variation in numbers 
compared to smaller, more common phytoplankton. 

In this context, we see little evidence for resources increasing 
in their relative importance with increasing phytoplankton size 
(Fig. 3 and Fig. S10), as expected from the Metabolic Theory of 
Ecology [16, 38]. This is because, in a eutrophic lake (high nutrient 
levels) and in the context of the complex and non-linear biotic and 
abiotic interactions of a plankton community, nutrient limitation 
may play an important role only sporadically (Fig. S4). We also 
find weak support for larger phytoplankton being favoured by 
deeper mixing (mixed layer depth—Fig. 4): this effect, however, 
may be confounded by the fact that deeper mixing is generally 
associated with upwelling of nutrients [39]. In line with previous 

studies [16, 40], we find that AR of smaller size-bins (1–2, Fig. 3) 
is more strongly correlated to water temperature and herbivore 
grazing. Smaller phytoplankton have higher ARs at intermediate 
levels of light, suggesting blooms during springtime, which is 
characterized by communities of small diatoms, green algae, and 
cryptophytes (bins 1–2, Fig. 1) [29]. We find in fact that small 
phytoplankton have higher ARs at low temperatures, and large 
forms have higher ARs at higher temperatures (Fig. 4). This has 
important implications for understanding and predicting algal 
blooms, which are generally characterized by large cells [41, 42]. 
Previous studies reported opposite trends [38, 43]; however, a 
similar pattern as in this study was previously reported in lakes, 
where summer blooms of cyanobacteria are common [40]. These 
differences can be attributed to the fact that species composi-
tion within size classes varies substantially over environmental 
gradients: specifically for this study, a large number of cold-
adapted species (e.g. diatoms, cryptophytes) can be found in the 
small size-bins, and many warm-adapted species (e.g. colonial 
cyanobacteria) in the large size-bins. Cold-adapted species have 
lower thermal optima, which leads to a steep decrease in AR when 
exposed to temperatures further away from their optimum (Fig. 4) 
[8]. Vice versa, warm-adapted species, present in the larger size-
bins, show AR that increases steadily with water temperature 
(Fig. 4 and Fig. S8). These results suggest that the blooming of 
small and large phytoplankton may be triggered by different biotic 
and abiotic mechanisms. 

One important pattern emerging from our data is that 
microzooplankton is an important predictor of ARs for all 
phytoplankton regardless of size. This finding has implications for
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Figure 3. Overall mean importance (IncMSE ± standard error) of each environmental variable over the entire study period for each size-bin. Colours 
indicate types of predictors. 

understanding the diversity of planktonic food webs and their 
responses to environmental change because microzooplankton 
are selective feeders, are highly dynamic (fast growth rate), 
and central to plankton interaction networks [ 4]. We expected 
microzooplankton to be selective for small phytoplankton forms 
[43] but, to our surprise, they appear very important for medium-
sized bins (4–5, Fig. 3 and Fig. S10). Even though in our study 
microzooplankton is composed of defined classes (nauplii, 
rotifers, and ciliates), each one of them is a heterogeneous 
group of microorganisms belonging to different species and 
lineages, with large cryptic diversity in terms of physiology, life 
history, and size selectivity—all of which also depend on the 
composition of the available preys and environmental conditions. 
Microzooplankton can exhibit varying degrees of size selectivity 
depending on the species and the available prey—while in 
general, they are supposed to prefer smaller phytoplankton 
sizes, their actual preference can vary from a few micrometres 
to several tens of micrometres (as in the case of preys such 
as diatoms or filamentous cyanobacteria) [44–46]. Rotifers are 
often opportunistic omnivores, with potential trophic cascade 
effects (e.g. indirect facilitation) on phytoplankton by eating 
flagellates and ciliates [47–49]. This may explain why rotifers 
positively correlate with large phytoplankton in our study. 
Alternatively, microzooplankton may contribute to releasing or 
recirculating nutrients locally when they are at high density 
[12, 50]. 

Mesozooplankton seems to be a more important predictor of 
small phytoplankton forms [43]. Daphnids graze on phytoplank-
ton with a size smaller than their gape, i.e. with a diameter 
of <20 or 30 μm, depending on the species [51, 52]. Calanoids 
and cyclopoids show differences in feeding behaviour, which also 
depend on life stages: cyclopoids prey mostly on large particles, 
while calanoids consume smaller particles [53]. Some cyclopoid 
species are also primarily carnivorous [54]. Contrary to these 
expectations, cyclopoid copepods in our study are important pre-
dictors of the AR of smaller-sized phytoplankton (bins 1–3). In gen-
eral, mesozooplankton are also more efficient grazers and, com-
bined with the higher encounter rates for the smaller and more 
abundant phytoplankton, could cause a larger grazing impact on 
the abundance of smaller forms, as opposed to larger, rarer, and 
more defended phytoplankton. This suggests that mesozooplank-
ton may have a role in the accumulation of large and colony-
forming phytoplankton, including a role in cyanobacterial bloom 
development [14]. 

The predicted effects of environmental conditions on ARs in 
our RF models are mostly non-linear (Fig. 4). Some of these cor-
relations match prior expectations from growth rate response 
curves obtained under laboratory conditions (e.g. responses to 
resources show a Monod or a Gaussian shape); others do not (e.g. 
temperature and P-PO4 with both concave and convex curves). We 
find that the shape of these effects varies between phytoplankton 
size-bins, while we were expecting them to be relatively universal
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Figure 4. Partial effects of selected environmental variables from RF model predictions (for all of them, see Fig. S8): these dependencies emerge from 
predicting the response (AR) over varying levels of the chosen predictor (X-axis, in the plot title) while holding the other variables in the RF model at 
their medians over the entire dataset. Each line represents one size-bin (colours as in Fig. 1). The distribution of observed data points is shown as black 
bars on top of each graph: high data-dense areas hold more confidence in the prediction. 

[ 8]. One explanation for this unexpected variability is that such 
effects may depend on the interaction between multiple environ-
mental factors, and show the expected patterns only in certain 
areas of a multi-parameter space. These interactions can be very 
complex and interdependent—e.g. the effects of nutrients depend 
on temperature (see Fig. S11) [4]. Similarly, also the effects of biotic 
factors depend nonlinearly on abiotic conditions like water tem-
perature (Fig. S12), implying that unidimensional response curves 
are strongly context-dependent, and for understanding and pre-
dicting phytoplankton dynamics a multidimensional approach is 
required [55]. Alternatively, the above and unexpected patterns 
may be due to four important caveats of our study. 

First, compositional turnover of taxa within size-bins may 
confound some of the detected partial effects of environmen-
tal conditions on ARs (Fig. 4), and possibly also their relative 
importance (Fig. 3): taxa composition and relative abundance 
change within size-bins over time (Fig. S13), and different taxa 
have different ecology and physiology. Second, the realized size 
of individual phytoplankton objects, as studied here, is not the 
taxon cell size as intended in most of the previous theoretical and 
experimental work: the realized size, whether cell or colony size, is 
a plastic trait at the individual level (e.g. mediated by physiological 
and ecological interactions), as opposed to a nominal feature— 
not measured for each individual object, but assumed based 
on species average dimensions and shape—as in many previous 
investigations [5, 15, 17, 40]. This could have influenced some of 
the unexpected results regarding the effects of grazers (which 
may target the cell inside the colony irrespective of colony size) 
and of abiotic factors (e.g. temperature—large taxa are colony-
forming summer species). We note that our study uses objects’ 
area as a measure of body size, instead of volume as in many 
previous studies: this difference should not however have an 
impact on the construction of the size-bins used here, and on the 
temporal dynamics of their abundances (see SI Results). Third, 

size, as acquired from imaging, shows high variation within and 
between taxa also due to organisms being photographed from 
different angles, and sometimes only partially imaged [36]. This 
variation is not related to responses to environmental conditions. 
Lastly, the dynamics of size-bins could have been mediated by 
cell shape. Environmental factors can influence the selection for 
body size and shape differently [56]: shape variation represents a 
competitive strategy for medium and large phytoplankton forms 
to acquire an advantageous surface area-to-volume ratio [57], or 
to reduce sinking velocity [58]. Future studies should consider 
including shape in trait-based modelling of size classes. 

In conclusion, we find only partial support for response 
patterns to environmental factors in size-based phytoplankton 
classes, as expected from the literature. This can be due to 
the difference in our study compared to previous work, as 
explained at the beginning of the Discussion section, or to the 
caveats mentioned above. More broadly, however, our study 
shows the power but also highlights some limitations of size-
based approaches to study plankton dynamics. First, studying 
phytoplankton communities may require complementing size 
information, measured at the individual level as done in this 
study, with either shape and/or taxonomic identity, to increase 
inference of mechanisms and interactions. Additionally, we may 
need to refine expectations from the literature by considering 
that the effects of biotic and abiotic environmental factors 
occur in a multidimensional space in nature and may be 
interdependent [55]. It would be important to understand how 
many of our expectations are confined only to certain areas of this 
multidimensional space by, for example, leveraging on monitoring 
data to infer responses of organisms in natural conditions (as 
in this study) or designing factorial experiments that explore 
complex interactions among environmental variables [59]. Size is 
a master trait explaining emergent and aggregated ecosystems’ 
properties at equilibrium [5, 23]. We should ask to what extent
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can size provide understanding and prediction of short-term 
dynamics when systems are out-of-equilibrium [60, 61]. 
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