
1 of 12Hydrological Processes, 2025; 39:e70058
https://doi.org/10.1002/hyp.70058

Hydrological Processes

SCIENTIFIC BRIEFING OPEN ACCESS

A Perceptual Model of Drivers and Limiters of Coastal 
Groundwater Dynamics
Daniel V. Kretschmer1,2   |  Holly A. Michael3  |  Nils Moosdorf4,5  |  Gualbert H. P. Oude Essink6,7   |  Marc F. P. Bierkens6,7  |  
Thorsten Wagener2   |  Robert Reinecke1,2

1Institute of Geography, Johannes Gutenberg-University Mainz, Mainz, Germany  |  2Institute of Environmental Science and Geography, University of 
Potsdam, Potsdam, Germany  |  3Department of Earth Sciences, University of Delaware, Newark, Delaware, USA  |  4Department for Biogeochemistry/
Geology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany  |  5Institute of Geosciences, University of Kiel, Kiel, Germany  |  6Unit 
Subsurface and Groundwater Systems, Deltares, Utrecht, The Netherlands  |  7Department of Physical Geography, Utrecht University, Utrecht, The 
Netherlands

Correspondence: Daniel V. Kretschmer (dkretsch@uni-mainz.de)

Received: 15 May 2024  |  Revised: 16 September 2024  |  Accepted: 1 January 2025

Funding: D.V.K. is funded by Deutsche Forschungsgemeinschaft (GZ: RE 4624/1-1). R.R. and T.W. were funded by the Alexander von Humboldt 
Foundation in the framework of the Alexander von Humboldt Professorship endowed by the German Federal Ministry of Education and Research. H.A.M. 
was funded by the US National Science Foundation Coastal Critical Zone project (EAR2012484). M.F.P.B. was funded by the ERC Advanced Grant Scheme 
(project GEOWAT no. 101019185).

Keywords: anthropogenic impact | coastal groundwater | drivers | perceptual model | salinisation | seawater intrusion | study sites | submarine 
groundwater discharge

ABSTRACT
Coastal groundwater is a vital resource for coastal communities around the globe, and submarine groundwater discharge (SGD) 
delivers nutrients to coastal marine ecosystems. Climatic changes and anthropogenic actions alter coastal hydrology, causing 
seawater intrusion (SWI) globally. However, the selection of SWI and SGD study sites may be highly biased, limiting our process 
knowledge. Here, we analyse hydroenvironmental characteristics of coastal basins studied in 1298 publications on SGD and SWI 
to understand these potential biases. We find that studies are biased towards basins with gross domestic product per capita below 
(SWI) and above (SGD) the median of all global coastal basins. Urban coastal basins are strongly overrepresented compared to 
rural coastal basins, limiting our progress in understanding undisturbed natural processes. Despite the connection between 
anthropogenic activity and coastal groundwater issues, and the consequential overrepresentation of urban basins in coastal 
groundwater studies, perceptual (or conceptual) models of coastal groundwater rarely include anthropogenic influences aside 
from pumping (e.g., subsidence, land use change). Taking a holistic view on coastal groundwater flows, we have developed an 
editable perceptual model illustrating the current understanding, including both natural and anthropogenic drivers. As SGD and 
SWI in new areas of the globe are studied, we advocate for researchers to utilise and further edit this perceptual model to openly 
communicate our process understanding and study assumptions.

1   |   Introduction

Groundwater is essential to meet freshwater demand of coastal 
communities (Johnson et al. 2022) and strongly impacts coastal 
ecosystems (Johannes 1980; Starke, Ekau, and Moosdorf 2020; 
Liu, Du, and Yu 2021). Given that 36% of the global population 

lives within 100 km of the coast (CIESIN  2012), coastal water 
resources are crucial to reach sustainable development goals 2 
(Zero hunger) and 6 (Clean water and sanitation). As groundwa-
ter flow is driven by hydraulic gradients (Darcy 1856), changes 
in hydraulic gradients at the land-sea boundary cause changes 
in submarine groundwater discharge (SGD) and recharge 
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(SGR)—the exchange of water between aquifers and the ocean 
(Kohout  1964; Taniguchi et  al.  2002; Michael, Mulligan, and 
Harvey  2005). The interacting terrestrial and oceanic drivers 
create complex coastal settings, making it difficult to predict 
seawater intrusion (SWI) (Werner et al. 2013) (Table 1).

Around the world, high freshwater demand and climate change 
have changed hydraulic gradients, decreasing fresh SGD and in-
creasing SWI. Already, 32% of the global coastal metropolitan 
cities have been threatened by SWI (Cao, Han, and Song 2021). 
This situation is exacerbated by the fast-growing population in 
the low elevation coastal zone (i.e., below 10 m of elevation), pre-
dicted to grow from 0.6 to 1.3 billion people between 2000 and 
2060 (Neumann et  al.  2015). Anthropogenic activity reduces 
groundwater flow to the coast through urbanisation, and asso-
ciated surface sealing causing decreased groundwater recharge 
(GWR) (Crossland et al. 2005; Loc et al. 2021). The biggest an-
thropogenic impact on coastal groundwater flow and the main 
cause of horizontal SWI is groundwater pumping (Ferguson and 
Gleeson 2012; Post et al. 2018).

Locations of SGD and SWI study sites have been mapped in lit-
erature reviews (Santos et al. 2021; Cao, Han, and Song 2021), 
but characteristics of the studied coastal basins (e.g., population 
density, aridity index) and thus possible biases remain unstud-
ied. Expecting to find biases in study site selection, we analyse 
hydroenvironmental characteristics of coastal basins subject to 
SGD and/or SWI studies based on an extensive review of study 
site locations. The analysis reveals that coastal groundwater re-
search accumulates in urban coastal catchments with a certain 
level of gross domestic product.

Despite the many studies in basins with high anthropogenic 
activity and despite the knowledge of various anthropogenic 
influences on coastal groundwater flows, perceptual models 
(also called conceptual models) of coastal groundwater flows 
rarely show anthropogenic drivers but groundwater pumping. 
While there are exceptions (e.g., Taylor et al. 2013; Richardson 
et al. 2024), even perceptual models in review articles generally 
focus on some of the many natural drivers (i.e., tidal pumping, 
GWR) (e.g., Taniguchi et al. 2002, 2019; Robinson et al. 2018). 
Here, we present a literature-based perceptual model of coastal 
groundwater, including various anthropogenic influences on 
coastal groundwater flows. This perceptual model represents 
our current system understanding and is also biased by the 
studied coastal basins and could look different if we had more 
knowledge about rural areas or geographical locations that have 
rarely been studied (e.g., the West Coast of South America or 
the Arctic). We use the perceptual model to describe drivers and 
limiters of the different coastal groundwater flows at the wide 
range of temporal and spatial scales studied in the literature.

2   |   Materials and Methods

To analyse coastal groundwater study site locations, we searched 
Web of Science for terms related to coastal groundwater, SWI 
and SGD (Text S1), and retrieved 5896 publication records on 12 
August 2022. To increase the likelihood of screening relevant 
records, we used an artificial intelligence software that proposes 
the next record based on decisions regarding the relevance of 

previous records: AS Review (https://​asrev​iew.​nl/​ and Text S2). 
Criteria for inclusion in the study site analysis were (1) the main 
topic is related to coastal groundwater flows, (2) the study is not 
a review or theoretical (i.e., not representing actual sites) numer-
ical model, (3) the language is English and (4) it was published 
online before 2022. During screening, AS Review initially iden-
tified that SGD studies are relevant, and hence, roughly the first 
700 studies marked relevant were from that field. After that, the 
hit rate worsened until it picked up that SWI studies are relevant 
for us, too, and it started showing them with high frequency. We 
screened 1502 of the 5986 records. Of those, 1332 were deemed 
relevant and only 170 were excluded (Figure S1). According to 
AS Review, the use of AS Review increased the share of relevant 
records from about 25% to almost 90% (Figure S2).

The 1332 records classified as relevant in the screening were 
joined with 26 publications identified through citations in high-
impact reviews and manual Google Scholar searches. These 
1358 records were then checked thoroughly for eligibility, and 60 
publications were removed since they did not meet the criteria 
for inclusion. Hence, the final number of publications included 
in the study site analysis is 1298 (see PRISMA (Page et al. 2021) 
flow chart, Figure S1). The vast majority of these publications 
are peer-reviewed articles. We extracted the coastal groundwa-
ter flow type, main topic, shore type and study site/s (Table S1) 
from the publications. The results of the study site analysis adopt 
a publication bias due to its setup focussing on published journal 
articles (Dickersin and Min 1993) in English. Another limitation 
is that the records were retrieved via online search. Thus, no 
study from before the 1990s is included in the analysis of study 
sites. However, the distribution of SGD study sites from the 
1960s to 1990s (Taniguchi et al. 2002) is very similar to our find-
ings, while the number of publications per year has multiplied 
since the early 2000s (Figure S4).

We compare the basin characteristics of coastal subbasins (i.e., 
subbasins draining into the ocean) with study sites to all coastal 
subbasins in the BasinATLAS dataset (Linke et al. 2019; https://​
www.​hydro​sheds.​org/​hydro​atlas​; average area of coastal ba-
sins: 136 km2). To account for the high variability at the coast, 
the most detailed delineation of coastal subbasins available in 
BasinATLAS, Pfafstetter level 12 (Verdin and Verdin 1999), was 
used. Besides the basin shapes, BasinATLAS provides many hy-
droenvironmental variables, including terrain slope (Robinson, 
Regetz, and Guralnick 2014), aridity index (Zomer et al. 2008), 
population density (CIESIN  2016) and gross domestic prod-
uct (GDP) per capita in administrative areas (Kummu, Taka, 
and Guillaume  2018). Two variables from other data sources 
were added to the analysed dataset: hydraulic conductivity by 
Huscroft et  al.  (2018) and fresh SGD estimates by Luijendijk, 

TABLE 1    |    Abbreviations and respective terms used in this 
manuscript.

Abbreviation Term

GWR Groundwater recharge

SGD Submarine groundwater discharge

SGR Submarine groundwater recharge

SWI Seawater intrusion

 10991085, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.70058 by L

eibniz-Z
entrum

 Fuer M
arine T

ropenforschung (Z
m

t) G
m

bh, W
iley O

nline L
ibrary on [13/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://asreview.nl/
https://www.hydrosheds.org/hydroatlas
https://www.hydrosheds.org/hydroatlas


3 of 12

Gleeson, and Moosdorf (2020). Topographic slope and hydrau-
lic conductivity are used as proxies for groundwater flow. The 
aridity index, defined as Mean Annual Precipitation

Mean Annual Potential Evapotranspiration
 (Zomer 

et al. 2008), is used as a surrogate for (ground)water recharge. 
High population density has been associated with SWI since it 
is related to increased groundwater extraction (Cao, Han, and 
Song  2021). GDP per capita is used to assess economic pro-
ductivity in basins where researchers study coastal ground-
water flows. Fresh SGD estimates by Luijendijk, Gleeson, and 
Moosdorf (2020) are used to compare locations of SGD and SWI 
studies. Terrain slope, aridity index, population density, GDP 
per capita, hydraulic conductivity and fresh SGD show low-to-
moderate correlation between each other both for the entire set 
of coastal basins and for the subset of basins with a study site 
(Text S3, Tables S2 and S3). After filtering coastal basins with 
very high hydraulic conductivities (above 1 m/s) and negative 
SGD values, 43 213 coastal basins remained.

3   |   Studied Coastal Aquifers Are Characterised by 
High Anthropogenic Action

We identified 841 different study sites in the 1298 records 
(Figure 1). Most of the analysed SGD studies estimated/mea-
sured the amount of SGD or its chemical content, not distin-
guishing between fresh and saline SGD. Hence, we do not 
distinguish between SGD components here either, SGR is often 
studied implicitly in both SGD and SWI studies. We find that 

many investigations were performed in proximity to coastal 
megacities (> 10 million inhabitants), especially in China 
and India, while large parts of the global coastline, especially 
South America and Sub-Saharan Africa, are understudied. 
Together with groundwater pumping and sea-level rise, reduc-
ing GWR (severe in red areas of Figure  1) could change the 
focus of coastal studies from SGD to SWI, for example, at the 
US East Coast.

SGD and SWI study sites are often far apart (Figure 1), and just 
5% of all analysed studies looked at SGD and SWI simultane-
ously. Studies of both SGD and SWI are scattered around the 
world and most of them focus either on sea-level rise or fluctuat-
ing drivers like tides and seasonality of precipitation. While the 
vast majority of SWI studies are in North Africa and East India, 
SGD studies dominate the eastern coasts of the United States 
and Australia. 75% of coastal groundwater studies that identified 
a coastal ecosystem at the study site (i.e., lagoons, mangroves, 
salt marshes, estuaries and coral reefs) were SGD studies (46% 
of analysed SGD studies). Regions with large ecosystems (green 
areas in Figure  1, see also Figure  S5) are frequently studied, 
especially when they are close to highly populated areas (i.e., 
Great Barrier Reef, Florida Mangroves, Pichavaram Mangrove 
Forest).

Table  2 and the cumulative density functions of selected at-
tributes (Figure S6) show that study sites of SGD and SWI are 
often characterised by anthropogenic activity. Approximately 

FIGURE 1    |    Study locations of SGD, SWI and both. Zoom-ins at the top show frequently studied regions in North America, Mediterranean and 
Asia. In red areas, GWR per year is projected to be reduced by over 10 mm at global warming of 2°C (Reinecke et al. 2020). Green areas show large 
marine ecosystems (see also Figure S5). Black squares mark megacities (> 10 million inhabitants). Numbers add up to more than the number of study 
sites (sum here: 893, study site number: 841) since at some locations both SGD and SWI were studied. Markers placed far inland (in North America 
and India) are subcontinental studies.
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70%/80% of SGD/SWI studies were located in coastal basins 
(i.e., draining into the ocean) with a population density of over 
100 people/km2, which occurs only in 20% of the 43 213 coastal 
basins (Figure S6). While more than half (58%) of the SWI stud-
ies are performed in urban (population density ≥ 300 people/
km2) coastal basins (Eurostat 2021), only 13% of all coastal ba-
sins are urban. This is sensible since high population densities 
have been linked to the occurrence of SWI (Post, Eichholz, and 
Brentführer 2018; Cao, Han, and Song 2021).

GDP per capita strongly separates the lines of SGD and SWI 
study site locations (Figure S6): GDP is below the median of all 
coastal basins in just a third of SGD studies, and in 80% of the 
coastal SWI studies (Table  2). Groundwater salinity issues re-
lated to SWI, which can be decisive for agricultural and domestic 
water use, seem prioritised over SGD-related topics (e.g., coastal 
ecosystems) in regions with lower GDP. Another reason may be 
that shallower wells, vulnerable to SWI, have been installed in 
regions with lower GDP, but while international compilations 
of well data contain many data points in the United States and 
Australia, just few are in less developed regions (e.g., Jasechko, 
Perrone, and Seybold  2020; Thorslund and van Vliet  2020; 
Jasechko, Seybold, and Perrone 2024).

Compared to the cumulative density function of all coastal ba-
sins, basins with SWI and/or SGD studies have rather low terrain 
slopes, frequently below 2°. Among the SWI studies, 81% were 
done in basins with a relatively permeable aquifer (hydraulic 
conductivity > 10−5 m/s) (Bear 1972). SGD often is a surficial pro-
cess and the assessed hydraulic conductivity data (GLHYMPS 
2.0) rather reflects deeper layers. This may explain why basins 
associated with SGD studies show lower hydraulic conductivity 
values than basins associated with SWI studies. As expected, 
water-limited basins (aridity index below 1) make up a large 
part (76%) of SWI study sites (Zomer et al.  2008). Meanwhile, 
energy-limited basins make up 60% of SGD studies sites. SGD es-
timations from Luijendijk, Gleeson, and Moosdorf (2020) match 
reasonably with the occurrence of SWI and SGD studies: just 
24% of SWI studies were conducted in coastal basins where they 
estimated high fresh SGD (above 10 m2/year), and 42% of SGD 
studies (Table 2).

4   |   A Perceptual Model of Drivers and Limiters of 
Coastal Groundwater Dynamics

Many perceptual (or conceptual) models have been published 
in the literature. Although the influence of anthropogenic 
action and climate change on coastal groundwater is diverse, 
perceptual models rarely include drivers besides groundwater 
pumping and sea-level rise. Theoretical numerical models, 
reviews, and publications after August 2022 were excluded 
from the literature for the analysis of study sites. No litera-
ture was excluded in the development of our perceptual model 
(Figure  2), which takes a rather holistic view on coastal 
groundwater flows. Besides natural processes and geologic 
conditions driving or limiting coastal groundwater flows, it 
shows that many drivers of coastal groundwater flows are 
affected by anthropogenic action and climate change. The 
perceptual model is editable and intended to be adjusted 
and reused by the community (https://​zenodo.​org/​recor​ds/​
13762771).

Since scales of impact are rarely reported, the scales at which 
drivers act remain uncertain (Text  S5). Figure  S8 shows the 
spatiotemporal scales at which drivers impact SWI and SGD ac-
cording to the assessed literature, ranging from hours to millen-
nia and from centimetres to tens of kilometres. This wide range 
of spatial and temporal scales was included in our perceptual 
model, targeting to create a holistic reflection of coastal ground-
water flows and their drivers. Thus, bioirrigation and sea-level 
rise, impacting coastal groundwater at very different scales, are 
both in the perceptual model.

Causal relations exist between many drivers of coastal ground-
water changes. Consequently, processes increasing the amount 
of groundwater flowing towards the coast (e.g., GWR) can in-
crease fresh SGD and reduce vulnerability to SWI (Michael, 
Russoniello, and Byron  2013). On the other hand, geological 
settings allowing for high SGD rates (e.g., high hydraulic con-
ductivity) allow for high SGR, too. In the following, we use 
our perceptual model to discuss coastal groundwater pro-
cesses, flows and their major drivers of change (see overview 
in Table 3).

TABLE 2    |    Shares of basins with SGD/SWI/SGD and SWI sites where population density, GDP per capita, hydraulic conductivity and aridity index 
are above/below their respective thresholds. Thresholds are shown in Figure S6. *Median GDP of coastal basins.

Population 
density GDP per capita

Hydraulic 
conductivity Aridity index

Estimated 
SGD

Rural Urban
Below 

median*
Above 

median* Low High
Water-
limited

Energy-
limited Low High

Basins with 
SGD site

60% 40% 33% 67% 35% 65% 40% 60% 58% 42%

Basins with 
SWI site

42% 58% 80% 20% 19% 81% 76% 14% 76% 24%

Basins with 
SGD & SWI 
site

47% 53% 45% 55% 23% 77% 53% 47% 68% 32%

All basins 87% 13% 50% 50% 35% 65% 44% 56% 68% 32%
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4.1   |   Coastal Aquifer Interaction With the Ocean

4.1.1   |   Fresh SGD

Driven by hydraulic gradients, meteoric groundwater (i.e., de-
rived from precipitation) can enter the ocean as fresh SGD (top 
zoom-in in Figure  2). While topography influences the steep-
ness of the hydraulic gradients, the amount of groundwater that 
can flow through an aquifer at a given gradient depends on its 

transmissivity (i.e., the product of hydraulic conductivity and 
saturated aquifer thickness) (Darcy  1856). Assuming uniform 
hydraulic gradient, hydraulic conductivity controls groundwa-
ter flow and determines how fresh SGD is distributed along the 
coast (Russoniello et al. 2013; Qu et al. 2014). Where heteroge-
neity in hydraulic conductivity enables preferential flowpaths, 
focussed areas of high fresh SGD rates may develop (Kreyns, 
Geng, and Michael 2020; Geng and Michael 2021). Particularly 
high rates of fresh SGD are associated with flow through 

FIGURE 2    |    A perceptual model of groundwater flows in coastal basins, including factors that drive and limit change (Kretschmer and 
Reinecke 2024). Many of those factors are impacted by anthropogenic action and/or climate change and may be causally related. SGD—submarine 
groundwater discharge, SGR—submarine groundwater recharge, SWI—seawater intrusion.

TABLE 3    |    Coastal groundwater processes, respective flows and their major drivers of change.

Coastal groundwater 
dynamics Coastal groundwater flows Major drivers of change

Coastal aquifer 
interaction with the 
ocean (4.1)

Fresh SGD (4.1.1) GWR, groundwater pumping

Saline SGD and SGR (4.1.2) Tides, waves, seasonality of GWR, winds, 
storms, salinity distributions

Seawater recirculation 
(4.2)

Density-driven seawater 
recirculation (4.2.1)

Salinity and temperature differences 
between meteoric and saline water

Intertidal seawater 
recirculation (4.2.2)

Change in tidal amplitude between spring 
and neap tide, wave height

SWI (4.3) Horizontal SWI (4.3.1) Groundwater pumping, sea-level rise, seasonality of GWR

Vertical SWI (4.3.2) Storm surge overwash, tidal inundation, river salinisation
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conduits, for example, in volcanic rocks and permeable karst 
(Befus et al. 2014; Yu et al. 2021; Samani et al. 2021). At shorter 
temporal and smaller spatial scales, the morphology of a beach 
is a major control of fresh SGD distribution through the beach 
face (Zhang et al. 2017).

GWR (right zoom-in in Figure  2) can raise groundwater lev-
els and increase fresh SGD rates (McKenzie, Dulai, and 
Fuleky  2021) at moderate-to-high hydraulic conductivities. 
However, low hydraulic conductivity limits GWR and ground-
water flow irrespective of the groundwater head (Darcy  1856; 
Luijendijk, Gleeson, and Moosdorf 2020). Groundwater tables, 
and in turn fresh SGD, follow seasonally changing rates of GWR 
(Michael, Mulligan, and Harvey 2005; Fang et al. 2022) and pre-
cipitation (Gwak et al. 2014; Beebe et al. 2022) with a temporal 
lag. Individual precipitation events can induce higher fresh SGD 
with a lag of several days to weeks (Santos et al. 2009; McKenzie, 
Dulai, and Fuleky 2021; Yu et al. 2021). Investigations of mon-
soon seasons and El Niño Southern Oscillation events have 
shown the importance of precipitation events in rates of fresh 
SGD (Anderson and Emanuel  2010; Das et  al.  2022). When 
the natural aquifer is disturbed by fresh groundwater pump-
ing (Figure  2), this reduces the amount of fresh groundwater 
flowing towards the ocean and fresh SGD (Peng et  al.  2008). 
Locally, GWR through rivers can also enhance fresh SGD (Yu 
et al. 2021).

While SGD is high and salty during ebbing tide, it was found 
to be less and fresher at low tide (Urish and McKenna 2004). 
Results from a coastal lagoon suggest that fresh SGD is par-
ticularly large at spring tide and decreases towards neap 
tides (Rocha, Ibanhez, and Leote  2009). Similarly, Glaser 
et  al.  (2021) found increased fresh SGD in a tidal creek at 
spring tides. However, these findings depend on the site: for 
example, fresh SGD at a beach was found to be higher at neap 
tides than at spring tides (de Sieyes et al. 2008) which is sup-
ported by simulations of different tidal amplitudes at another 
beach site showing higher fresh SGD at smaller tidal ampli-
tudes (Li et  al.  2009). This behaviour was found in aquifers 
with permeabilities below 0.1 cm/s, where saltwater may ac-
cumulate within the aquifer and low rates of fresh SGD occur 
at high tidal amplitudes (de Sieyes et al. 2008; Li et al. 2009; 
Abarca et al. 2013).

4.1.2   |   Saline SGD and Recharge

Saline SGD and SGR (i.e., saline groundwater outflow to and in-
flow from the ocean) are oscillating counterparts (top zoom-in 
in Figure 2), driven by tidal pumping, sea-level changes, wave 
runup and changing density gradients (Taniguchi et  al.  2002; 
Burnett et al. 2003; Robinson et al. 2018). However, persistent 
landward hydraulic gradients and density differences may cause 
SGR to exceed saline SGD beyond usual oscillations, causing 
horizontal SWI (Werner et al. 2013). Similar to fresh SGD, het-
erogeneity in hydraulic conductivity affects saline SGD and SGR 
(Russoniello et al. 2013; Kreyns, Geng, and Michael 2020; Geng 
and Michael 2021). The exchange of saline groundwater with the 
ocean at the scales of centimetres (i.e., porewater exchange) can 
be significantly increased by bioirrigation (i.e., deliberate bur-
row flushing by benthic organisms) (Meysman et al. 2006) and 

by the increased hydraulic conductivity from burrows dug by 
animals (Smith et al. 2016; Stieglitz, Clark, and Hancock 2013).

SGR and saline SGD incorporate the in/outflows from inter-
tidal seawater recirculation and density-driven seawater recir-
culation, exceeding fresh SGD amounts by far (Li et  al.  1999; 
Taniguchi, Ishitobi, and Saeki 2005). Saline SGD and SGR are 
particularly large at higher tidal ranges, and thus, can experi-
ence a reduction of flow volumes from spring tide towards neap 
tide (de Sieyes et al. 2008; Abarca et al. 2013; Wilson et al. 2015). 
Furthermore, due to the low slope allowing larger area per 
coastline to interact with ocean water, saline SGD per coast-
line length is larger from a coastal wetland than from a beach 
(Evans, White, and Wilson 2020).

Saline SGD and SGR are not independent of GWR to the aqui-
fer. A coastal aquifer can be salinised by SGR during a season 
of low GWR and freshened in the following wet season when 
increased GWR upstream causes high saline SGD during the 
flushing of saltwater (Michael, Mulligan, and Harvey 2005). 
Similarly, seasonally in/decreased sea levels cause larger 
SGR/saline SGD rates (Michael, Mulligan, and Harvey 2005; 
Gonneea, Mulligan, and Charette  2013). The effect of sea-
level changes can be much larger at coastal wetlands than at 
beaches (Wilson et  al.  2015), because wetlands exist at low 
slopes.

SGR/saline SGD may increase/decrease during a storm event 
due to wind and waves pushing saline water into the aquifer, fol-
lowed by a decrease/increase in the weeks after the storm, when 
the saline water is transported back into the ocean (Wilson et al. 
2011; Xin et al. 2014). Similarly, where winds blow offshore, re-
gionally depressed sea levels can cause significant SGD, likely 
from confined aquifers (George et al. 2020; Moore et al. 2022), 
potentially contributing to groundwater discharge at the size of 
river discharge (George et al. 2020).

4.2   |   Seawater Recirculation

4.2.1   |   Density-Driven Seawater Recirculation

Density-driven seawater recirculation begins where SGR enters 
the subterranean estuary in the lower subtidal zone (top zoom-in 
in Figure 2). Newly recharged saline groundwater flows down-
ward towards the fresh-saline water mixing zone, and then 
upward along the freshwater–saltwater interface, eventually 
flowing back into the ocean as saline SGD (Taniguchi, Ishitobi, 
and Saeki 2005; Robinson et al. 2018). The circulation is limited 
by aquifer properties and the density gradient. Large values of 
horizontal (Qu et al. 2014) and vertical hydraulic conductivity 
(Smith 2004) have been shown to enable density-driven circula-
tion, and large anisotropies (i.e., horizontal hydraulic conductivity

vertical hydraulic conductivity
) reduce 

the circulation (Wilson 2005; Qu et al. 2014). Heterogeneity in 
hydraulic conductivity, creating preferential flowpaths and com-
plex salinity distributions can greatly increase density-driven 
recirculation rates if multiple density-driven circulation cells 
develop (Michael et al. 2016; Kreyns, Geng, and Michael 2020). 
Assuming constant temperature in the aquifer, Smith  (2004) 
showed the highest density-driven recirculation rates for in-
termediate dispersion values: (1) if there is no salt transport by 
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dispersion, a sharp interface between fresh and saline water re-
mains in the aquifer and (2) if dispersion is too large, freshwa-
ter and saline water mix rapidly, leaving no density gradients 
to circulate along. Higher freshwater temperatures, increasing 
the density gradient between fresh and saline groundwater, may 
increase density-driven seawater recirculation (Pu et al. 2020). 
Fresh SGD rates can enhance density-driven seawater recircu-
lation when they create a stable dispersion zone with sufficient 
density gradients (Smith 2004).

4.2.2   |   Intertidal Seawater Recirculation

In beach-like shores, seawater may circulate in the intertidal 
zone at the top, driven by wave setup and changing hydraulic 
gradients due to tidal oscillation (top zoom-in in Figure 2). SGR 
occurring at the top of the intertidal zone is pushed down along 
hydraulic gradients and is discharged back into the ocean as sa-
line SGD (Taniguchi et al. 2002). At spring tide (i.e., when tidal 
amplitude is the highest), the intertidal seawater recirculation is 
exceptionally high (Taniguchi et al. 2002; Nguyen et al. 2020).

A consequence of intertidal seawater recirculation is the upper 
saline plume—a zone of saline water above the freshwater zone 
at the coastline (Robinson et al. 2007). Upper saline plume for-
mation can be enabled by high hydraulic conductivity and beach 
slopes (Evans and Wilson 2016). The top zoom-in in Figure 2 
shows the plume disconnected from the underlying saline 
zone, occurring at moderate-to-high fresh groundwater flows 
towards the ocean (Evans and Wilson 2016; Fang et al. 2021). 
Increasing tidal amplitudes can cause plume expansion 
(Robinson et  al.  2007; Nguyen et  al.  2020), mixing the plume 
with underlying fresh groundwater flowing to the ocean and 
potentially connecting it with the saltwater wedge below (Evans 
and Wilson 2016; Fang et al. 2021).

4.3   |   SWI Processes

4.3.1   |   Horizontal SWI

The perceptual model in Figure  2 shows a coastal groundwa-
ter system where the flows are in an approximate balance. 
Horizontal SWI (top zoom-in in Figure  2) occurs when the 
amount of SGR is larger than saline SGD, moving saline water 
inland, shifting the position of the saline wedge landward. 
Horizontal SWI is often caused by head gradient changes (i.e., 
lowering or shifting landward), allowing saline water to in-
trude the aquifer (Werner et al. 2013). Aquifer resilience against 
horizontal SWI can be increased by large GWR rates creating 
hydraulic heads that push against the saline wedge (Michael, 
Russoniello, and Byron  2013; Rajendiran et  al.  2019; Costall 
et al. 2020; Jung et al. 2020). Consequently, land drainage, re-
ducing the aquifer water table, can increase vulnerability to 
horizontal SWI (Barlow and Reichard 2010). Besides the head 
gradient change, horizontal SWI is driven by the density dif-
ferences between freshwater and saline water (Pacheco-Castro 
et al. 2021).

Urbanisation, related surface sealing and other human activi-
ties significantly alter hydraulic gradients in coastal aquifers, 

often causing SWI (Deng et al. 2017; Uddameri, Singaraju, and 
Hernandez  2014). Infiltration of shallow coastal groundwater 
into ageing sewer systems can cause sewer overflows, discharg-
ing untreated sewage (Su et  al.  2020). Where large volumes 
are withdrawn from the coastal aquifer, withdrawal is a major 
driver of SWI (Barlow and Reichard  2010; Shi and Jiao  2014; 
Lyra et al. 2021; Jeen et al. 2021), potentially causing horizontal 
SWI at scales of kilometres within a few years (Langevin and 
Zygnerski 2013; Chang et al. 2016; Dibaj et al. 2020). Strategies 
to mitigate horizontal SWI often use artificial or managed GWR, 
to change the hydraulic gradient (García-Menéndez et al. 2018; 
Jarraya Horriche and Benabdallah 2020). Alternatively, physical 
barriers within the aquifer (i.e., cutoff walls or subsurface dams) 
can be used to effectively reduce the horizontal extent of SWI, 
but they are highly expensive (Hussain et al. 2019).

Sea-level rise may locally cause horizontal SWI to reach kilo-
metres inland (Sherif and Singh 1999; Giambastiani et al. 2007; 
Guha and Panday 2012). The impact of sea-level rise on horizon-
tal SWI depends strongly on the aquifer's capability to level out 
the newly developing hydraulic heads at the coast (Rasmussen 
et al. 2013): aquifers, whose water table is limited by flux into 
the system or GWR and not limited by topography, can develop 
higher groundwater levels balancing the new sea levels, and 
are thus more resilient to horizontal SWI from sea-level rise 
(Michael, Russoniello, and Byron  2013). However, such aqui-
fers are also prone to experience SWI due to reducing GWR 
(Richardson et al. 2024).

Horizontal hydraulic conductivity is a key factor for the SWI 
rate (Qu et al. 2014; Deng et al. 2017; Costall et al. 2020). Low hy-
draulic conductivities limit the rate of SWI but also the recovery 
from it (Shi and Jiao 2014). While aquifers extending deep below 
the ocean show higher vulnerability to SWI, higher seaward 
slopes at the aquifer bed increase resilience against horizontal 
SWI (Mazi, Koussis, and Destouni 2013; Ketabchi et al. 2016).

4.3.2   |   Vertical SWI

Vertical SWI occurs when seawater recharges an aquifer from 
above, on the landward side of the intertidal recirculation zone 
(top zoom-in in Figure  2). River flow reduction by dams and 
groundwater pumping (Loc et al. 2021; Shi and Jiao 2014) can 
enable seawater to move further into coastal rivers and deltaic 
estuaries (Mikhailova 2013; Peters et al. 2022). Where the coastal 
aquifer is recharged from the coastal river, vertical SWI from 
surface water salinises aquifers significantly faster and further 
landward than horizontal SWI (Hingst et  al.  2022; Smith and 
Turner  2001). Groundwater pumping can even cause vertical 
SWI from below: in proximity to groundwater wells, saline water 
may be pulled upwards into the well, called upconing (Werner 
et al. 2013; Alfarrah and Walraevens 2018). Furthermore, sea-
water may flood coastal plains after subsidence (Ketabchi 
et al. 2016; Eslami et al. 2021), often caused by anthropogenic 
groundwater abstraction (Giambastiani et  al. 2007). Another 
key driver is seawater inundation caused by storm surges (Terry 
and Falkland 2010; Xiao and Tang 2019), which is exacerbated 
by land-surface connectivity (Yu et al. 2016) and sea-level rise 
(Hoque et al. 2016; Gingerich, Voss, and Johnson 2017; Cantelon 
et al. 2022).
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5   |   Conclusions

The expected growth of coastal communities, GWR changes 
with climate change and sea-level rise pose serious threats to 
coastal fresh groundwater resources worldwide. Analysing 
the study sites of over 1200 publications, we show that coastal 
groundwater study sites are biased towards coastal basins with 
high population density. We further find that while 80% of SWI 
studies are conducted in basins with GDP per capita below the 
median of coastal basins, 67% of SGD studies are conducted in 
basins with GDP per capita above the median of coastal basins. 
This shows that the availability of fresh groundwater is elemen-
tal for coastal regions but threatened in many regions with low 
GDP per capita. Many of the assessed publications show the 
strong impact of anthropogenic action on coastal groundwater 
(e.g., groundwater pumping) causing SWI and altering SGD 
flows. Since perceptual models in the literature rarely include 
anthropogenic drivers, we present a literature-informed percep-
tual model taking a rather holistic view on coastal groundwa-
ter flows. We use our perceptual model of coastal groundwater 
flows to discuss drivers and limiters of coastal groundwater 
flows, highlighting impacts by anthropogenic action. The per-
ceptual model is editable and can be modified to any study focus. 
It is intended to continuously improve over time with increasing 
knowledge about the shown processes and impacts. We call for 
researchers to use holistic perceptual models of environmental 
processes to guide their decisions (e.g., in study design, site se-
lection and simulation model development) and to communicate 
their research.
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