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Abstract

Groundwater, Earth’s largest source of liquid freshwater, is essential for sustaining ecosystems and
meeting societal demands. However, quantifying global groundwater withdrawals remains a
significant challenge due to inherent uncertainties in input data, sectoral allocation assumptions,
and model parameterization. In this study, we analyze global groundwater withdrawals from 2001
to 2020 using a newly developed data-driven Global Groundwater Withdrawal (GGW) model and
quantify uncertainties through Monte Carlo simulations. The GGW model integrates reported
country-level data with global grid-based datasets to estimate annual withdrawals across domestic,
industrial, and agricultural sectors at a 0.1° resolution (/=10 km). Our results indicate an average

global groundwater withdrawal of 648 km’ a™!

, with an uncertainty range of 465-881 km? a~!.

1

Agriculture accounts for 50% of total withdrawals, followed by domestic use at 34.5% and
industrial use at 15.5%. Temporal analysis shows increasing groundwater withdrawal in 66% of the
44 TPCC WGI reference regions over the 20 years, with a global average annual increase of 0.5%
(varying regionally from 6.5% annual increase to 9% annual decrease). Comparison with previous
studies highlights the impact of methodological choices and assumptions about groundwater
withdrawal on the resulting global estimates. Our findings underscore the need for comprehensive
uncertainty assessments and improved datasets. Expanding spatial coverage in underrepresented
regions and enhancing temporal resolution, particularly for dynamic variables like irrigated areas,
are crucial for more accurate groundwater withdrawal assessments. These improvements will
enable better management and conservation of this vital resource in the face of growing global

demands and climate change impacts.

1. Introduction

Groundwater, a critical component of the global
water cycle, sustains both natural ecosystems and
human societies. It supports biodiversity directly
as a habitat for subterranean life forms and indir-
ectly by providing water to groundwater-dependent
ecosystems across various hydrogeological and cli-
matic settings [1-3]. Groundwater provides humans
with essential social and economic needs and is
a reliable freshwater supply. However, despite the
continuously growing dependence on groundwa-
ter for irrigation, drinking water, and industrial

© 2025 The Author(s). Published by IOP Publishing Ltd

use, which is expected to peak around 2050 [4],
quantifications of groundwater withdrawal (GWW)
remain uncertain. Global groundwater withdrawal
patterns and their associated uncertainties remain
poorly understood due to inconsistent data availab-
ility, methodological differences, and limited direct
observations.

Groundwater provides domestic freshwater for
almost half of the world’s population [5], particu-
larly benefiting rural populations with limited access
to other water sources. In the industrial sector,
groundwater accounts for approximately 27% of total
withdrawals [6], especially in areas where surface
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water is scarce. Agriculture, however, is the main
consumer of groundwater, reported to be responsible
for about 70% of global groundwater withdrawals [5,
7]. This agricultural dependence is particularly pro-
nounced in countries like China, India, Iran, Pakistan,
and the United States, which collectively account for
a significant portion of global groundwater use for
irrigation [8, 9].

Human water use has increasingly been recog-
nized as an essential component of the global water
cycle [10]. Global hydrological models (GHMs) and
land surface models (LSMs) simulate GWW across
various sectors [11-14], and integrated assessment
models extend these analyses by endogenizing water
demand within coupled energy, land, and economic
systems, thereby capturing feedbacks between human
activities and water use [4, 15-17]. GHMs and
LSMs estimate domestic and industrial groundwa-
ter demand using nationally reported GWW data
for a base year and model its change over time.
The models’ temporal evolution of these demands is
typically driven by exogenously provided variables,
such as technological advancements, infrastructure
development, population growth, gross domestic
product (GDP), and electricity production [12, 14,
18]. Agricultural groundwater demand is usually
modeled as a function of irrigation efficiency (IE),
crop calendars, irrigated area, crop types, and climatic
conditions [19-21].

Existing global models often rely on complex
methodologies and extensive data requirements,
which can amplify uncertainties. Typically, these
models estimate total water demand for each sec-
tor and calculate groundwater demand by either
assessing the gap between total demand and avail-
able surface water resources [9] or applying fixed,
sector- and cell-specific fractions of groundwater use
to total demand [6]. In addition, methods such as
estimating irrigation demand based on crop water
requirements or using proxy indicators for economic
activities add complexity and increase the potential
for propagated errors. In contrast, simpler models
can achieve comparable results while offering clearer
assessments of uncertainties [22, 23]. However, they
may lack the ability to capture complex interactions
or region-specific drivers, which are represented by
more detailed, data-intensive models.

To address the challenges of data-intensive meth-
odologies, propagated uncertainties, and compu-
tational complexity in existing global models, we
developed a data-driven approach that provides a
transparent estimation of GWW across domestic,
industrial, and agricultural sectors. By leveraging
existing global datasets, our model directly estimates
GWW at a grid level while simultaneously evaluating
associated uncertainties.

S Nazari et al

The objectives of this study are threefold: first,
to provide estimates of annual GWW for each sec-
tor over a 20 year period (2001-2020), identifying
dominant groundwater users across different regions;
second, to assess the temporal variability of GWW
and pinpoint regions with increasing withdrawal
rates; and third, to evaluate the uncertainties on the
resulting GWW estimates.

2. Methods

The developed Global Groundwater Withdrawal
(GGW) model is a data-driven framework designed
to estimate annual GWW across three main sec-
tors: domestic, industrial, and agricultural. In this
study, withdrawal refers to the volume of groundwa-
ter abstracted from aquifers to meet sectoral demands
[24].

The GGW model relies on two primary national-
level datasets: (1) annual total GWW (GWWryga1.c.y)
sourced from FAO AQUASTAT [24], and (2)
sector-specific (s) fractions of GWW (GWWEac )
derived from International Groundwater Resources
Assessment Centre [25]. We cross-referenced and
updated the annual sector-specific GWW data for
European countries using Eurostat sources [26].

The model is implemented in Python and uses
these national-level datasets to calculate annual sec-
toral withdrawals for each country (c) and year
(y): domestic (GWWpom,;y), industrial (including
mining) (GWWiyq .y ), and agricultural (GWW agc )
(figure 1). Given that livestock water use accounts for
approximately 1% of total global water withdrawals
[12] and is generally assumed to rely on surface water
[27], the withdrawal fraction for livestock purposes is
considered to be negligible. Using the national-level
datasets, the GGW model applies a sector-specific
downscaling approach to estimate domestic, indus-
trial, and agricultural withdrawals at a spatial resolu-
tion 0f 0.1° (~10 km). Importantly, this downscaling
approach only redistributes water use spatially and
does not change the total amount of water used at the
country level.

For countries lacking reported data, the model
estimates withdrawals using a classification-based
gap-filling approach that groups countries based
on climatic (aridity index), socioeconomic GDP,
and regional similarities. This classification enables
the assignment of representative values from sim-
ilar countries to fill missing data (supplementary,
section 1.1).

2.1. Domestic GWW

Using nationally reported statistics, the model uses
domestic GWW at the country level as its base input
and calculates annual domestic GWW at the grid level
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Figure 1. Schematic representation of the data-driven Global Groundwater Withdrawal (GGW) Model. This diagram illustrates
the methodology used to estimate annual groundwater withdrawal for domestic (Dom), industrial (Ind), and agricultural (Agr)
sectors at the grid level. Country-level data (GWW,qa1c,y: annual country groundwater withdrawals [24], GWWgracsc: per-sector
country fraction of groundwater withdrawal [25]) are used and downscaled to 0.1° resolution using sector-specific spatial proxies
(e.g. population, irrigated area). The figure also shows country classification and gap-filling techniques. Inputs are presented in
italic font, and elements considered in the uncertainty assessment are marked in blue.
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by integrating two key datasets: population and water
table depth (WTD). Population and WTD are used
to proportionally distribute country-level domestic
GWW, reflecting both human demand and ground-
water availability.

Population data are taken from the Gridded
Population of the World, version 4 (GPWv4) dataset
[28]. A maximum WTD of 100 m is used to indic-
ate accessible groundwater. While groundwater can
be extracted from depths greater than 100 m [29],
most wells are shallower due to economic and tech-
nical constraints [30-32]. The global average well
depth is approximately 46 m [32], and around 60 m
in the United States [30]. In addition, this threshold
is consistent with categories proposed by Reinecke
et al. [33], who identify <100 m WTD as potentially
accessible for irrigation and domestic use. Therefore,
this study distributes domestic groundwater extrac-
tion only on grids with WTD below 100 m to rep-
resent accessible groundwater. The WTD data are
derived from the mean ensemble of four global
groundwater models [34-37] that estimate global
steady-state WTD (supplementary, section 1.2).

2.2. Industrial GWW

To estimate global industrial groundwater withdrawal
at the grid level, the model integrates three key
datasets: degree of urbanization, mining locations,
and WTD. Given the diversity of industries and
the lack of global datasets identifying their exact
locations, and considering the established correla-
tion between urban centers and the distribution of
industrial activities [38, 39], we use the degree of
urbanization as a proxy to identify areas likely to
host water-demanding industries such as food pro-
cessing, beverage production, paper manufacturing,
and textiles [40, 41].

The degree of urbanization is derived from the
Global Human Settlement Layers dataset [42], which
categorizes grid cells into eight settlement typologies
based on population density and the proportion of
built-up land (supplementary, section 1.3). As in the
domestic sector, only grids where WTD is up to 100 m
are considered. Additionally, recognizing the substan-
tial water requirements of mining activities, which are
often located in remote regions [43], the model incor-
porates global mining locations [44].

2.3. Agricultural GWW

The agricultural GWW per grid is calculated by
first estimating the total agricultural GWW (Total
GWW grgy) and then determining the net agricul-
tural GWW (Net GWW g.0.), defined as the por-
tion of groundwater not returned to the groundwater
system. To estimate the total agricultural GWW, the
model distributes each country’s agricultural GWW

S Nazari et al

(GWWjgrcy) proportionally to its groundwater-
irrigated areas [45], resulting in Total GWW g, ¢, for
each grid.

Return flows from irrigation are then estimated
using the return flow fraction to groundwater (F;g,),
which represents the proportion of non-consumed
irrigation water that percolates back into the aquifer.
To account for enhanced return flow to surface water
in areas with artificial drainage systems, the model
incorporates the artificially drained fraction (Fg;.)
[46]. This dataset is provided at a 5" resolution and
includes values ranging from 0 to 100%, enabling spa-
tial differentiation of drainage conditions across agri-
cultural areas. The GGW applies a method adapted
from the WaterGAP GHMs [6], and F,g,, is estimated
as Frg = 0.8-0.6"Fy i

To calculate net agricultural GWW, two key para-
meters are considered: F.g, and IE.. The country-
specific IE dataset used here [47] accounts for a
combination of partial efficiencies, specifically: con-
veyance efficiency, field application efficiency, and
a management factor representing distribution and
scheduling effectiveness. First, the groundwater con-
sumption by crops (GWCagg,) is estimated as the
product of IE. and Total GWW g, ¢, and then Net
GWW pgrgy is calculated as follows:

Net GWWAgr,g,y = Total GWWAgr,g,y - Fr,gw
x (Total GWWrgrgy — GWCagrgy) (1)

2.4. Temporal trend and uncertainty assessment

To assess the temporal dynamics of global GWW
(2001-2020), this study applies the pre-whitening
Mann-Kendall test [48, 49] at the grid level, a non-
parametric test commonly used to detect trends in
time series data (see supplementary section 1.4). The
results are then aggregated to the IPCC WGI ref-
erence regions (version 4) [50] by calculating the
average change in GWW across all grid cells within
each region. This method provides a regionally rep-
resentative trend and offers climatic and geograph-
ical coherence. It also enhances the relevance of the
findings for climate adaptation planning and water
resource policy frameworks [51].

In addition, this study assesses epistemic and
parametric uncertainties associated with model
development and input data, primarily due to imbal-
ances in data availability, quality, and gaps in system
understanding. A major challenge for global ground-
water models is the substantial regional variation in
data coverage and quality, as well as measurement
uncertainties. In addition, limited understanding of
GWW processes, particularly the fraction of water
withdrawn that returns to the source, introduces fur-
ther uncertainty.

To address these uncertainties, we evaluate key
input variables influencing sectoral withdrawals,
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Figure 2. Global distribution of groundwater withdrawal and dominant sectoral users (2001-2020): (a) average total groundwater
withdrawal, highlighting regions with the highest uncertainty with black dots, corresponding to countries with no reported data
on annual total groundwater withdrawal (section 2 and supplementary section 1.1). (b) Sectoral distribution of groundwater
withdrawal percentages (domestic, industrial, and agricultural), where white indicates no groundwater withdrawal. (c) Pie chart

20-year period.

illustrating the contribution of each sector, domestic, industrial, and agricultural to total groundwater withdrawal over the

including country-level annual total withdrawals,
sector-specific fractions, European sectoral data, IE,
and return flow fractions (blue variables in figure 1).
The uncertainty analysis employs Latin hypercube
sampling [52, 53], with 1000 model iterations, sys-
tematically varying key input parameters (supple-
mentary sections 1.5 and 1.6). To assess spatial uncer-
tainty distribution, relative uncertainty (RU) is used,
defined as the ratio of the 90% confidence interval to
the mean for each grid.

3. Results

3.1. Global distribution of GWW

The GGW model estimates an average global
GWW of 648 km® a=! for the period 2001-2020
(figure 2(a)). GWW of individual grid cells ranges
from zero to 0.29 km?® a—!. Half of the world’s grid

cells extract less than 5*107® km’ a~!, typically in
sparsely populated areas like central Australia and
western China, or regions less reliant on ground-
water. The top 25% of grid cells withdraw more
than 1.35*107® km> a~!, highlighting regions with
dense population centers, such as Indonesia, India,
and eastern China, or regions heavily dependent on
groundwater, including the Middle East, southern
Europe, and part of the United States.

Based on the GGW model, agriculture accounts
for 50% (324 km> a=!) of the total global GWW.
This dominance is particularly pronounced in regions
such as India, Iran, Pakistan, the United States, and
southern Europe (figures 2(b) and (c)). Domestic
use contributes 34.5% (224 km? a=!) of total with-
drawals, with a widespread global distribution and
notable prominence in Southeast Asia. Industrial use
accounts for a smaller share of withdrawals at 15.5%
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Figure 3. (a) The annual total groundwater withdrawal trend (10° m® a=!) from 2001 to 2020 across IPCC WGI reference regions
(version 4) [50] based on the Mann—Kendall test. Each bar chart displays the annual groundwater withdrawals for domestic,
agricultural, and industrial sectors. Regions with statistically significant trends are highlighted in bold text. (b) Regional
classification of dominant groundwater withdrawal users. Regions are categorized into nine groups, based on the dominance of
specific sectors. Single-sector dominance (agricultural, domestic, or industrial) is defined when a sector accounts for more than
60% of the total groundwater use. For IPCC WGI reference regions without single-sector dominance, the two most significant

users are indicated in descending order of contribution, as shown in the ternary legend.

(100 km® a~!) but is the predominant sector in some
regions. In parts of Europe, industrial demand out-
weighs other sectors; for example, 80% and 72% of
total withdrawals in Estonia and Norway, respectively,
are dedicated to industrial activities.

3.2. Temporal dynamics of global GWW

An analysis of the temporal dynamics of total
GWW reveals an average annual increase of
2.6107% km® a~! per grid over the 20 modeled
years. The temporal dynamic is calculated for the
44 TPCC WGI reference regions and shows a range
of withdrawal from declining by 0.31 km® a~! to
increasing up to 1.11 km® a~! (figure 3(a) and table

SP1). Notably, 63% of regions exhibited statistically
significant changes, with nearly two-thirds of those
showing increased withdrawal.

GWW has declined primarily in regions located
in Australia and Europe. The largest absolute annual
decreases were observed in East Asia (EAS) and
Western and Central Europe (WCE), with decreases
of 0.31 and 0.15 km?® a™!, respectively. Similarly,
South Australia (SAU) and Northern Europe (NEU)
showed a significant decrease of 0.07 km® a~

Conversely, GWW increased in 66% of the
regions, spanning diverse climatic zones. These
include tropical regions such as South Asia (SAS) and
Southeast Asia (SEA), as well as arid and semi-arid
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Figure 4. Temporal and spatial assessment of global groundwater withdrawal uncertainty (2001-2020) using the GGW model.
Panels (a)—(d) depict the temporal uncertainty ranges for domestic (GWWnponm), industrial (GWW/,q), agricultural (GWW g ),
and total (GWWro,) groundwater withdrawals, respectively, with a comparison to estimates from previous studies (see
section 2.4 for details) [8, 21, 25, 27, 54-56]. Panel (e) illustrates the spatial distribution of relative uncertainty, categorized into

six uncertainty levels ranging from very low to extreme.

areas like West Central Asia (WCA) and the Sahara
(SAH). Southeast Asia (SEA) recorded the highest
annual increase, with domestic groundwater use
rising on average by 1 km® a~!. In South Asia (SAS),
the world’s largest agricultural groundwater con-
sumer (126 km® a=!), growth was primarily driven
by increasing agricultural withdrawals, which rose by
0.6 km® a=! per year.

When considering relative rates of change (calcu-
lated as the ratio of the annual trend to the 20 year
average usage in each region), total withdrawal has
increased globally at an average annual rate of 0.5%.
The highest relative increase, 6.5% annually, was
observed in Northeast South America (NES), while
the most pronounced decline, 9% annually, occurred
in Central, East, and South Australia (CAU, EAU,
SAU). These relative rates highlight how regions with
smaller baseline withdrawals can experience rapid
growth, while high-usage areas may show smaller

relative changes despite substantial absolute increases
(for further details see Figure SP3, SP4 and table SP1).

3.3. Assessing uncertainty in global GWW

The 20 year uncertainty assessment indicates that,
on average, the total simulated withdrawal ranges
between 465 km?® a~! and 881 km? a~! (5th to 95th
percentile range; figure 4(d)).

Sector-specific analyses reveal distinct ranges of
uncertainty: domestic withdrawal spans from 154
to 306 km® a~!, industrial withdrawal ranges from
65-142 km® a1, and agricultural withdrawal varies
between 225 and 463 km® a=! (figures 4(a)—(c)). Of
these sectors, agriculture demonstrates the greatest
uncertainty. This reflects the combined influence of
variability in country-level input data, which is com-
mon to all sectors, as well as additional factors spe-
cific to agriculture, such as IE and return flow frac-
tions. This is consistent with the role of agriculture as
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the dominant global groundwater user, which ampli-
fies the effect of small changes in input parameters on
overall uncertainty.

Excluding regions where no data on total GWW
were reported, classified as areas of highest uncer-
tainty, we assessed the global spatial distribution of
RU (figure 4(e)). We found that only 0.5% of the
global area exhibits very low (RU < 0.05) or low
uncertainty (0.05 < RU < 0.1). In contrast, 9% of the
global area falls under extreme uncertainty, and 29%
is classified as having very high uncertainty.

4. Discussion

4.1. Regional dominant groundwater users

The dominant groundwater user in each IPCC
WGI reference region is determined by sector-
specific withdrawal fractions, population distribu-
tion, groundwater-irrigated areas, urbanization, and
mining activities. Agriculture dominates in 27% of
IPCC regions (figure 3(b)), accounting for over 60%
of total withdrawals, while domestic use dominates in
20%. Although the industrial sector has the smallest
global share, it dominates withdrawal in individual
regions, such as Central Australia (CAU) and Eastern
Asia (EAS), where mining and industrial demand are
substantial. These results indicate that while agricul-
ture remains the largest groundwater consumer glob-
ally, domestic and industrial withdrawals can domin-
ate in specific regions.

Often, it is a combination, not individual factors
that drive temporal variations in GWW patterns.
For instance, population growth and the changes in
groundwater demand appear to be decoupled (figure
SP5). This counterintuitive observation challenges
the common assumption that increasing population
leads to greater groundwater extraction. Instead, it
points to a more nuanced reality in which social, eco-
nomic, technological, and environmental factors con-
verge to influence groundwater use patterns.

For instance, in Australia, GWW has declined
despite population growth. This decline has been
attributed to reduced reliance on groundwater, driven
by increased surface water availability, and regulat-
ory changes introduced in 2016, including volumet-
ric limits on GWW, water trading mechanisms, and
adaptive management strategies [57-59]. Conversely,
in regions like Southeast Asia (SEA) and Western
Africa (WAF), population growth continues to drive
increases in GWW.

Understanding the interplay between these
regional GWW dynamics and variations in ground-
water recharge is key to developing water manage-
ment strategies that both protect resources and meet
growing demand [60]. For example, Africa, home to
13.6% of the world’s population, contributes 3.5%
to global GWW (supplementary table SP3 and figure
SP6). This disparity underscores the untapped poten-
tial of groundwater resources in Africa, warranting
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further exploration [7]. In addition, the literature
suggests that traditional groundwater management
methods, such as improving IE or changing cropping
patterns [61], should be complemented by innovat-
ive, region-specific measures, including incentive-
based policies [62, 63], water markets [64], and
awareness campaigns [65].

4.2. Methodological impacts on GWW estimates
Methodological choices in the sectoral withdrawal
calculations have a substantial impact on the estim-
ates. The evaluated uncertainties are compared with
previous global estimates [8, 21, 25, 27, 54-56]
(figures 4(a) and (b), table SP2). While most previous
studies fall within the uncertainty ranges determined
here, there are notable differences in annual sectoral
withdrawals due to variations in methodologies and
data gap-filling approaches.

For the domestic sector, previous studies typ-
ically modeled groundwater demand by incorpor-
ating socioeconomic indicators (e.g. GDP) along-
side population data and adjustments for daily tem-
perature variations [54, 56]. In contrast, the GGW
model uses country-level annually reported data and
addresses data gaps by employing a representative
country approach (supplementary, section 1.1). This
method, especially for countries with missing data
like Nigeria, where large populations rely heavily on
groundwater [7], influences the estimated values.

The methodology employed in different stud-
ies also influences the temporal dynamics of estim-
ations. This is evident when comparing industrial
withdrawal of the GGW model and WaterGAP2.2¢e
[56]. While both models report similar ranges for
2005 (=103 km’ a~!), their simulations diverge
over time. In the GGW model, the annual indus-
trial GWW estimates remain relatively stable. In con-
trast, WaterGAP 2.2e uses 2005 as a base year and
dynamically adjusts industrial groundwater estimates
by accounting for technological advancements and
economic trends, incorporating indicators such as
manufacturing gross value added.

In the agricultural sector, the impact of meth-
odological differences is even more pronounced.
Compared to previous studies, the GGW model
consistently reports lower agricultural withdrawals
(figure 4(c)). In previous estimations, total agri-
cultural water demand was estimated and allocated
to groundwater based on surface water availability
[54] or sectoral groundwater fractions [27, 56].
The GGW model, however, restricts groundwater
use to explicitly groundwater-irrigated areas, lever-
aging the found linear correlation between irrig-
ated areas and water withdrawals [66]. Furthermore,
prior models incorporate factors such as climatic
variables, cropping patterns, and growing season
lengths, elements not included in the GGW modeling
approach.
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The variability among studies underscores the
need to report uncertainty ranges rather than rely-
ing solely on point estimates. Providing these ranges
is essential for robust scientific conclusions and for
identifying areas where data availability and method-
ologies require improvement.

4.3. Spatial variability and drivers of uncertainty
The highest uncertainty levels are mainly observed
in areas with significant variability in reported total
withdrawals or near river networks where the return
flow fraction to groundwater shows spatial variation
(figure 4(e)). These annual variations in reported
GWW are caused by changes in surface water availab-
ility, population dynamics, economic developments,
technological developments, and climate change [7].
These areas of high variability indicate where future
projections are likely to have greater uncertainty and
should be considered in GWW projections, as histor-
ical variability often has greater uncertainty in projec-
ted trends.

4.4. Limitations

The GGW model provides an alternative framework
for global-scale assessment of GWW by prioritiz-
ing simplicity and transparency. However, its exclus-
ive focus on groundwater, without accounting for
surface water contributions, limits its scope. This
design choice aligns with the primary objective of
the study: to estimate sectoral and spatial patterns
of GWW based on nationally reported totals. Rather
than estimating total water demand and partition-
ing it between sources, the GGW model uses repor-
ted national GWW values and distributes them across
sectors and grid cells using sector-specific fractions
and spatial proxy data.

To better represent the accessibility of groundwa-
ter and improve the spatial allocation of withdrawals,
WTD was included in the modeling framework using
a fixed threshold of 100 m WTD. While the simplifica-
tion was necessary due to the lack of direct groundwa-
ter accessibility data, it may not fully reflect regional
hydrogeological variability. Yet, it is consistent with
literature and empirical well depth distributions [30,
32, 33].

The GGW model relies on the applied method-
ology and the quality of input datasets. One limita-
tion is lack of the temporal resolution in some inputs,
such as sector-specific fractions, which are treated
as static. This limits the model’s ability to fully cap-
ture temporal shifts in sectoral groundwater use at
the national level. We have addressed this limitation
through the uncertainty analysis, where variability in
these fractions was incorporated to reflect plausible
temporal changes.

This dependence on available datasets can
also lead to overestimations in densely populated
regions, where domestic and industrial water use
may primarily rely on surface water. Similarly, in the
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agricultural sector, relying on data from irrigated
areas may not fully capture regional differences. This
can result in a more uniform distribution across the
country that overlooks localized variability. To fur-
ther illustrate the impact of these assumptions, we
compared the GGW model results with the national
data sets of the example countries (supplementary
section 2.5 and figures SP8 and SP9).

5. Conclusion

This study presents global estimates of GWW from
2001 to 2020 by integrating country-reported val-
ues with sector-specific fractions and spatial proxy
data. Our findings show that global GWW over
the past two decades ranged between 465 and
881 km?> a~!, with an average annual increase of 0.5%.
In two-thirds of IPCC regions spanning all climatic
zones, GWW increased. However, some regions with
decreasing withdrawal warrant closer examination to
determine if their experiences can serve as examples
of successful water conservation policies.

Regions with greater historical variability in
GWW also show higher RU in our estimates. The
compiled input datasets, grid-based sectoral with-
drawal estimates, and uncertainty ranges from this
study can serve as training data for machine learn-
ing applications in global groundwater assessments.
These estimates can also serve as inputs for large-scale
studies examining groundwater depletion.

Given the increasingly high resolution of models
used to assess the impacts of climate change, there
is a need to reduce the significant uncertainties in
representing the effects of human water use on the
hydrologic cycle. Future research on GWW should
focus on two areas: first, enhancing data availabil-
ity in regions with limited reporting and expand-
ing access to temporally resolved datasets, espe-
cially for groundwater-irrigated areas, IE, and sec-
toral withdrawal fractions. Second, including uncer-
tainty assessments for critical input datasets, such as
irrigated area maps, population density, and mining
locations, would further improve global withdrawal
estimates.
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