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A B S T R A C T

The German brown shrimp (Crangon crangon) fleet in the North Sea is declining due to rising fuel costs and 
unpredictable shrimp prices. Furthermore, this fishery is adapting their area use to new EU Natura 2000 regu-
lations. We analyze thirteen years of Vessel Monitoring System (VMS) data spatially and temporally to inves-
tigate fisher behavior for this specific métier. A total of 1938408 VMS pings from 211 vessels are clustered into 
four behavioral groups differing in vessel length, engine power, total brown shrimp catch, and landing per unit 
effort (LPUE). We evaluated the potential effect of recently implemented and future marine protected area (MPA) 
closures linked to the EU Action Plan 2023. The former have negligible overlap with areas exploited by shrimp 
fishers, but the latter cover grounds from which 70 % of brown shrimp landings originated during 2009–2021. 
The most affected behavioral group includes 119 vessels, characterized by smaller sizes (vessel length ~ 16 m), 
with potential landings decreasing by up to 80 % without effort relocation or behavioral adaptation. Our results 
show that vessels targeting the same species differ in fishing behavior and spatial footprints. More generally, our 
approach assesses diversity in fishing behavior and highlights varying adaptability to changing economic and 
management conditions.

1. Introduction

The brown shrimp (Crangon crangon) fishery is the largest part of the 
German fishing fleet in the North Sea (ICES et al., 2021). The fleet is 
rather old with an average vessel age of approximately 40 years. Vessels 
are mostly family-owned and operated by one skipper and one crew 
member (Döring et al., 2020). The German brown shrimp industry used 
to have a high economic value, with annual landings peaking in 2018 
(ICES, 2023; STECF, 2020, 2019). However, since 2018, profits have 
declined owing to two factors. Firstly, the COVID-19 pandemic affected 
the supply chain, causing difficulties in sustaining the outsourcing of the 
peeling to Morocco, where personnel costs are lower (Goti-Aralucea 
et al., 2021). Secondly, the shrimp market price remained low while fuel 
costs continued to increase (ICES et al., 2021). Substituting the demand 
for brown shrimp products with other seafood products in Germany is 
not straightforward since the fishery has an important cultural and 
touristic value in coastal communities (Döring et al., 2020).

The North Sea brown shrimp stock is neither consistently monitored 

nor managed by any legislative authority and there is no species-specific 
regulation or Total Allowable Catch (TAC)(STECF, 2020). The major 
spatial restriction is the so-called plaice box, which excludes fishing 
vessels with an engine power above 221 kW from fishing (Amelot and 
Hintzen, 2022; Beare et al., 2013; European Parliament, Council of the 
European Union, 2019a) (Fig. 5). Bycatch regulation is planned but not 
yet implemented at the time of writing this article. Catch prices are 
mainly decided by the retailer. However, in 2011 shrimp prices were so 
low that almost all the regional (German, Dutch and Danish) fleets went 
on strike for 3 weeks and completely stopped fishing (STECF, 2020). 
This resulted in an increase in price and a 50 % increase in the average 
annual income of the fleet in the following years. In Germany, a harvest 
control rule (HCR) started to be applied in 2011 based on monitoring of 
the weekly total landings as a self-management strategy (Steenbergen 
et al., 2017). In 2014, following the demand from retailers, the shrimp 
fishery started an application for the Marine Stewardship Council (MSC) 
label (“Certificates North Sea Brown Shrimp - MSC Fisheries,” n.d.). This 
requires having an effective management system in place to ensure a 
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long-term sustainable yield and minimal ecosystem impacts. In order to 
meet these requirements, the fishery set up national producer organi-
zations and started self-management. There were a few temporary 
management strategies applied by the producer organizations such as 
weekend closures. However, these regulations are not well documented 
and reported in the scientific literature.

The global expansion of marine protected areas (MPAs) reflects 
increasing recognition of the need to safeguard biodiversity, with 
Europe aligning to international targets like the EU Biodiversity Strategy 
aiming to protect 30 % of marine waters by 2030 (European Parliament, 
Council of the European Union, 2020; Rechberger et al., 2024). On the 
other hand, assessments indicate that 86 % of marine protected areas in 
the European Union exhibit low levels of protection or incompatibility 
with conservation targets (Aminian-Biquet et al., 2024, p. 80). MPAs and 
other access restrictions can profoundly impact fishing fleets by redis-
tributing effort, altering catch composition, and potentially increase fuel 
use, as evidenced by varied international case studies (Grip and 
Blomqvist, 2020; Hogg et al., 2024; McDonald et al., 2024; Rufener 
et al., 2023; Scherrer et al., 2024).

The vessels that target North Sea brown shrimp use beam trawls and 
nets with 16 mm to 22 mm mesh size. They can be identified by so-called 
fleet segmentation using vessel-specific information such as vessel 
length, target species, gear type and net mesh size (Bastardie et al., 
2022; Sulanke et al., 2025). Metier is another category commonly used 
by the EU to define and characterize fishing activities (European 
Parliament, Council of the European Union, 2009). It refers to fishing 
operations that target similar species with similar gear, and operate 
during the same period of the year and/or in the same geographic area. 
This type of fleet segmentation is useful for aggregating and quantifying 
fisheries in a standardized manner across countries or regions. However, 
spatial aspects are usually not considered. Vessels within the same fleet 
segment might conduct fishing trips with different fishing strategies and 
behaviors according to changing conditions (weather, holidays, etc.) 
(Kroodsma et al., 2018). This may result in a variety of spatial and 
temporal efforts within one fleet segment.

The availability of high-resolution spatial data enables new per-
spectives for monitoring and managing fisheries. For several decades EU 
fishing vessels have been using logbooks to report fishing trips, gear 
used and catch per species. In this case, the catch is mostly reported at 
the level of ICES (International Council for the Exploration of the Sea) 
squares, that is cells of 1◦ longitude and 0.5◦ latitude. Since 2005 vessels 
larger than 15 m and since 2012 vessels above 12 m are obliged to use a 
vessel monitoring system (VMS), which records the position (latitude, 
longitude), direction, and speed of vessels at least every two hours 
(European Parliament, Council of the European Union, 2015, 2011). 
With increasing VMS coverage of the EU fleets, we now have more than 
a 10-year-long time series of detailed data on individual vessel move-
ment. For practical reasons, this spatial and temporal information is 
often summarized at the fleet level in fishing effort maps. However, 
these maps mask the variety of core fishing areas of individual vessels. 
Using spatial and temporal information would thus improve fleet seg-
mentation and allows to manage the fleet at appropriate scales. In 
addition, it would contribute to a clearer understanding of how spatial 
regulations or closures impact fishing dynamics.

Incorporating human behavior into fisheries models is essential for 
accurately simulating fleet dynamics and predicting responses to 
external factors such as regulatory changes, market fluctuations, and 
environmental shifts (Andrews et al., 2021; van Putten et al., 2012). 
Agent-based models (ABMs) are particularly effective in capturing the 
complexity of fisher decision-making processes, offering more realistic 
representations of these dynamics (Christensen and Raakjær, 2006). 
Other models, such as discrete choice random utility models (DCM) 
(Wang et al., 2024), generalized linear mixed effects models (Riekkola 
et al., 2024) or bioeconomic models (Carr and Heyman, 2014; Nielsen 
et al., 2018) can account for human behavior and provide insights into 
the relationship of fishing activities and management strategies.

The aim of this paper is to investigate the behavioral patterns of the 
German brown shrimp fishing fleet. For this we calculated vessel- 
specific spatial and temporal parameters from VMS data over the past 
13 years and clustered vessels into groups with similar fishing strategies. 
We were interested in the extent to which the clusters identified reflect 
differences in the economic performance of individual vessels and vessel 
characteristics, and the extent to which they are affected by current and 
future area closures.

2. Methods

2.1. Data sources and preparation

The spatial and temporal distribution of vessel-specific fishing effort 
of the German brown shrimp fishing fleet in the North Sea was estimated 
from VMS data for the years 2009–2021. Earlier years are not repre-
sentative as VMS technology was not widely available in the fleet. The 
data were aggregated monthly and used to identify behavioral clusters.

The VMS data used to identify and describe fishing style groups 
(clusters) were matched with three additional data sources: the EU Fleet 
Register (“Fleet Register,” n.d.), commercial fishing logbooks, and sale 
slips (landing data). All the data were collected under the EU data 
collection framework for the European fishing fleet and processed pri-
marily by the German Federal Office for Agriculture and Food (BLE) 
(European Parliament, Council of the European Union, 2019a).

VMS data (pings broadcasted per vessel) consist of geo-coordinates 
(latitude and longitude), timestamp, vessel speed, and vessel direction. 
The frequency of reported VMS pings varies between flag states and use 
of a regulated marine spatial planning area, but is at least once every 2 h. 
For VMS data, we followed the cleaning steps suggested by (Bastardie 
et al., 2010b; Hintzen et al., 2012; ICES, 2022): we discarded vessel 
positions on land, implausibly high speeds, headings outside compass 
range, duplicated records, pseudo-duplicated records at less than 5 min 
intervals, and vessel positions lying either in harbors or very close to 
harbors.

In Germany, we prepare logbook data and sale slip information (for 
revenues) to fit the ICES Working Group on Spatial Fisheries Data 
(WGSFD) format: spurious mesh sizes, vessel length, total catch, dupli-
cated or overlapping records, and trips with an arrival date before de-
parture date are removed (ICES, 2022). After the ICES recommended 
cleaning steps, the VMS and logbook data were merged for each year at 
the fishing trip level using the R package VMStools version 0.75 
(Hintzen et al., 2012). We used vessel speed to distinguish fishing pings 
from steaming pings and matched fishing pings to the corresponding trip 
landings. After cleaning the VMS data and matching the trip information 
from the logbooks to the pings, a total of 192302 individual trips and 
4722311 pings remained for the investigated time period. The number 
of vessels ranged from 226 to 286 and thus represent the entire German 
fleet. We then processed the data with four additional filtering steps to 
narrow down the data to the brown shrimp fleet specifically. 1. We 
limited our study area to fishing trips that took place in the North Sea 
(ICES Statistical Fishing Areas 27.4.b and 27.4.c). 2. We discarded trips 
with unrealistically high catch values over 40000 Euros per trip. 3. We 
focused on vessels that mostly catch brown shrimp. For this we followed 
a “once a shrimper always a shrimper” rule whereby vessels that have 
derived at least 90 % of their total income from shrimp catch in any 
given month are categorized as shrimpers. 4. We only considered 
months with at least five fishing pings per month to calculate the 
monthly home range of a vessel. The final data set included 211 vessels, 
1938408 pings and 142839 fishing trips for the 2009–2021 period. We 
used the R programming language for all data processing and statistical 
analysis (R Core Team, 2021).

2.2. Spatial and temporal attributes

We used 10 monthly estimated attributes to describe the temporal 
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and spatial fishing behavior of vessels and for each attribute, we 
calculated the interannual mean and the interannual standard deviation 
to take temporal variability into account. The 10 attributes are listed in 
(Table 1).

Fishing vessels operate differently in terms of the length of their 
fishing trips, how far they go offshore and how variable their fishing 
areas are. In order to investigate this variability we analyzed the size of 
the so-called home range of a vessel. In animal ecology, home range 
defines the area individuals often visit for hunting or resting (Burt, 
1943). Fishing vessels are operated by captains who also have site fi-
delity for areas they regularly visit (Powell and Mitchell, 2012). We 
applied the kernel density utilization (KUD) method to estimate the 
home range of each vessel for each month (Worton, 1989). Since we 
aggregated our data monthly, we refer to this attribute as the "core area 
index" to clarify that we are only using it to compare vessels and months 
as opposed to describing the size of the fishing grounds. We used 
R-package, adehabitatHR for our analysis (Calenge, 2006). As suggested 
by previous studies(Boyle, 2021), we investigated various smoothing 
parameter (h-value) options and decided to use the best suitable algo-
rithm, reference bandwidth (href) method, in the R function kernelUD 
that uses the Epanechnikov kernel method (epa) (Laver and Kelly, 2008; 
Silverman, 1986). To make it consistent between the vessels, we used 
the same grid (with 0.01 degree by 0.01 degree resolution) for all vessels 
and months. By combining a consistent grid with tailored bandwidths, 
we achieve both comparability across datasets and improved precision 
in our individual estimations. We reported the settings for our analysis 
in a R script. We were able to estimate home range values for 21803 
vessel/months over the 13 years study period.

The area-use pattern of one vessel for one month is presented in 
Fig. 1. The 50 % kernel utilisation distribution (KUD) is defined as the 
core area index. The relative area flexibility is calculated by dividing the 
90 % KUD by 50 % KUD. The 100 % home range includes all recorded 
locations. The 50 % KUD focuses on the most revisited portion of the 
monthly fishing activity. The maximum distance to departure port is 
calculated per trip and then the monthly maximum is taken. Monthly 
mean of trip length and monthly sum of fishing hours are also calculated. 
The definition of each attribute used for clustering is provided in 
Table 1.

2.3. Statistical analyses

Our statistical analyses comprised three steps. In the first step, we 
used the spatial and temporal attributes described in Section 2.2 to 
identify behavioral groups by clustering. In the second part, we inves-
tigated the differences between clusters using vessel characteristics and 
catch. We then used multinomial regression models to select which 
variables explain the differences among clusters best. In the last step, we 
analyzed each attribute and predictor separately to determine their 
significance within the clusters.

In the first step the 10 attributes described in Table 1 were analyzed 
with hierarchical clustering using Ward’s method and Euclidean 

distance (Ward Jr, 1963). To identify the optimal number of clusters, we 
used both the average silhouette score (Rousseeuw, 1987) and visual 
inspection of the dendrogram. Four clusters were found to be the most 
coherent and distinct. Furthermore, we performed a Principal Compo-
nent Analysis (PCA) using the same Euclidian distance measure. We 
used the R-package factoextra for all the steps mentioned in this section 
and plotting the related figures(Kassambara, 2016).

In the second step, we explored additional vessel-specific attributes 
that could explain the differences among the identified clusters. These 
predictors were not included in the clustering analysis and have been 
used by other studies for fleet segmentation (Boonstra and 
Hentati-Sundberg, 2015; Letschert et al., 2023; Meyer and Krumme, 
2021; Parsa et al., 2020; Schadeberg et al., 2021). We started with 12 
predictors (Supplementary Table 3), aiming to include at least one 
predictor for landing, fishing effort and vessel characteristic. The pair-
wise Pearson correlation coefficient (Supplementary Figure 9) was used 
to identify pairs of predictors that were highly correlated with each 
other and thus potentially describe roughly the same feature. In this 
case, only one of the two predictors was used in subsequent analyses, 
prioritizing predictors derived from publicly available data when 
possible to improve reproducibility. The final set of predictors 
comprised two variables that commonly define vessel properties (vessel 
length (m) and vessel engine power (KW) recorded in logbooks in 2021) 
and three predictors related to catch and catch efficiency (total brown 
shrimp catch (kg), landing per unit effort (LPUE), and total species catch 
that are not brown shrimp (kg)). LPUE represented the efficiency of 
fishing trips that resulted in successful catches of North Sea brown 
shrimp. This measure was obtained by dividing the brown shrimp 
landing in kg by the fishing hours excluding steaming.

To investigate the relationship between the clusters and the vessel- 
specific variables, we employed multinomial logistic regression. This 
approach is well-suited for modeling discrete outcome variables, align-
ing with the clusters in our study. To determine the most appropriate 
model, we employed a simple to complex model selection approach, 
which identifies the significant predictors influencing the variation be-
tween the four fisher groups that we identified. We fitted a total of 26 
models (from a simple one-predictor model to a full model with all five 
predictors and all possible two-way interactions) and compared their 
performance with the Akaike Information Criterion (AIC) and likelihood 
ratio test for significance.

Finally, we examined each attribute and predictor independently for 
the significance among the clusters. We used non-parametric Dunn’s 
pairwise test and reported significant differences above 0.05 in Holm- 

Table 1 
Attributes used in the multivariate analysis: each value is calculated per vessel.

No. Interannual 
Statistic

Attribute Definition

1 Mean Core area index Home range calculated by 
kernel utility distribution 50 % (km2)2 SD

3 Mean Relative area 
flexibility

Home range 50 % 
Home range 90 %4 SD

5 Mean Trip length Total time per fishing trip, 
steaming excluded (h)6 SD

7 Sum Total fishing hours Cumulative total fishing time, 
steaming excluded (h)8 SD

9 Mean Distance to 
departure port

The trips’ maximum distance to the 
departure port (km)10 SD

Fig. 1. Illustration of the spatial parameters used to quantify fishing behavior. 
Pink dots represent monthly fishing pings of one vessel (derived from vessel 
monitoring systems data). Dashed lines are the 90 % kernel utilization density 
(KUD) areas and the inner polygon with solid line is the 50 % KUD area. The 
maximum distance to departure port is calculated per trip and the monthly 
maximum is taken. We used the 50 % KUD to define the core area index and the 
ratio between 90 % and 50 % KUD to define monthly area flexibility.
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adjusted p values.

2.4. Regulations and conservation initiatives in the German North Sea

The consolidated version of the EU 2017/118 Regulation was 
updated on March 8, 2023 with the implementation of Delegated 
Regulation (EU) 2023/340(European Commission, 2023, 2017), which 
has significantly changed the spatial area and fisheries management in 
the German North Sea exclusive economic zone (EEZ). This regulation 
includes several fisheries measures within the designated Natura 2000 
areas. Since May 1st 2023 all fishing activities in the Natura 2000 area of 
the Amrum Bank which was previously an intensively fished ground of 
the international brown shrimp fishery were banned. Furthermore, 
mobile bottom-contacting gears are excluded in the middle part of the 
Sylt outer reef and Borkum reef grounds. As part of the measures, 
although not relevant for the vessels using beam trawls, a year-round 
ban on fishing with gill and entangling nets has been introduced in 
the German nature reserve Doggerbank. Furthermore, in February 2023, 
the EU Commission released an "Action Plan to protect and restore 
marine ecosystems for sustainable and resilient fisheries". The plan 
suggests different steps to reduce the accidental catching of endangered 
animals, many of which are already under the protection of European 
Union regulations. Given the urgent need to protect and revive Marine 
Protected Areas (MPAs), which are crucial hubs of biodiversity, the 
Commission urges Member States to gradually stop bottom fishing in 
both current and future MPAs by 2030 (European Commission, 
Directorate-General for Maritime Affairs and Fisheries, 2023). As the 
shrimp fishery takes place mainly in the National Park area and beam 
trawling has an impact on the seabed, it will be affected by the forth-
coming regulations of the Action Plan.

2.5. MPA scenarios

We investigated two scenarios for the brown shrimp fishing fleet: 1st 
the impact of the gear-specific regulations implemented in 2023 (current 
state (European Commission, 2023, 2017)), and 2nd the proposed reg-
ulations by the action plan. For the scenario of the EU Action Plan, all 

areas in accordance with the Habitats Directives (In German: 
FFH-Gebiete) were taken into account that are in German EEZ and 
coastal waters (territorial sea) (European Commission, 
Directorate-General for Maritime Affairs and Fisheries, 2023). The 
percentage of landings in potential closed areas was calculated in rela-
tion to the total landings in each cluster. The interannual average 
landings of North Sea brown shrimp (Supplementary Figure 7) in the 
whole of the German EEZ and coastal waters were used as the basis for 
calculating the percentage change.

3. Results

3.1. Fishing behaviour

A clustering analysis was conducted to categorize fishing vessels 
based on a set of spatial and temporal attributes derived from individual 
vessel movement data (Table 1). Four distinct clusters were revealed 
(Fig. 2, a): Clusters 1 and 2 exhibited the lowest dissimilarity. In 
contrast, clusters 3 and 4 were separated at a higher dissimilarity level, 
as evident from their separation at higher branch heights in the 
dendrogram (Fig. 2, a). The largest group was cluster 3, comprising 119 
vessels, followed by cluster 1 with 63 vessels. Cluster 2 (N = 17) and 
cluster 4 (N = 12) have formed smaller groups despite the clustering 
method favoring even distribution. In the PCA biplot, clusters 3 and 4 
show the largest differences along the first axis, whereas clusters 1 and 2 
are located in between. (Fig. 2, b). The first axis explains 55.7 % of the 
variance, while the second dimension explains 13.7 %. Mean trip length 
and mean distance to the port explained a large proportion of the vari-
ation along the first dimension, each contributing more than 15 % to the 
variation of this axis (Supplementary Figure 8). Area flexibility (both 
standard deviation SD and mean) captured 55 % of the variation in the 
second dimension (Supplementary Figure 8), but this axis did not 
contribute to differentiate the four clusters (although the spread of this 
attribute along the second axis varied between the clusters, Fig. 2, b).

All attributes underwent a Shapiro-Wilk normality test which indi-
cated non-normal distribution. The values of the key attributes used in 
the clustering analysis are shown for each cluster in Fig. 3b-f. Cluster 3 

Fig. 2. Identification of fishing strategy clusters. The clustering analysis identified four different fishing strategies, which are color-coded (a). Branch length rep-
resents the dissimilarity between clusters and individual vessels. Leaves are the vessels included in the study and total number per cluster is stated at the bottom of 
the tree. Clusters are also visualized in the PCA biplot (b). The variable vectors represent the direction and strength of the attributes in reduced space, showing their 
contribution to each axis. The description of the attributes is provided in Table 2. The four clusters are color-coded and 90 % confidence interval ellipses are shown 
for each cluster.
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had the lowest median in all attributes. It had the smallest core area 
index (155 km2), covering a median distance of less than 50 km from the 
departure ports. In three of the five attributes, core area index, area 
flexibility and total fishing hours, cluster 3 was the only group that was 
significantly lower than the others. Median annual fishing time was 
1012 h and trip length was less than one day(median:16 h). In cluster 1, 

the fishing areas were the second smallest, with trips extending a 
maximum of 100 km from the port and typically lasting 1.5 days 
(median:32 h). Cluster 2 conducts fishing trips up to 170 km from the 
port, typically lasting two days(median: 45 h). Cluster 4 exhibited a 
significantly higher core area index compared to the other clusters; 
maintaining high total fishing hours (2150 h), with mean trip length of 

Fig. 3. Key attributes used in the clustering analysis. The total number of vessels per cluster is shown in (a), followed by key attributes used in the clustering process, 
which capture the spatial and temporal fishing characteristics of the vessels. These attributes include the core area index (b), area flexibility (c), total fishing hours 
(d), trip length (e), and distance to departure port (f). Significant differences below 0.05 are shown above each attribute. For detailed descriptions of these attributes, 
please refer to Table 1.

Table 2 
Behavioral clusters in the German North Sea Brown shrimp fishery are labelled to aid the interpretation of results.
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approximately 65 h, i.e. about three days. Dividing total fishing hours by 
average trip length provided the following average annual trip counts 
(in descending order): 64 (cluster 3), 52 (cluster 1), 49 (cluster 2) and 33 
(cluster 4). To capture the dominant spatial and temporal patterns while 
acknowledging vessel variability and flexibility between groups we 
labelled them (Table 2). Nearshore mid-rangers (cluster 1) and local 
regulars (cluster 1) comprise the majority of the fleet.

3.2. Vessel and catch properties

We then explored whether identified clusters could be also described 
by vessel characteristics and landing data.The most parsimonious model 
with the lowest AIC value (AIC = 225.9) had four predictors: vessel 
length, vessel engine power (KW), total brown shrimp catch (kg), and 
landing per unit effort (LPUE) - and no interactions among predictors 
(Fig. 4). Since there was no interaction among predictors, we indepen-
dently tested all five predictors separately.

The landing of species other than the brown shrimp did not signifi-
cantly improve the most parsimonious model (Fig. 4-f). Nevertheless, 
cluster 4 had the highest median, and differed significantly from clusters 
3 and 1. Cluster 1 also differed significantly from both cluster 2 and 
cluster 4. Interannual and cluster median landing of species other than 
the brown shrimp were, in descending order: 123050 kg (cluster 4), 
1216 kg (cluster 2), 10 kg (cluster 1) and 1 kg (cluster 3). We present the 
clusters in order of their group size, from largest to smallest.

Cluster 3 (N = 119) showed significant differences in all five 

predictors compared to all other clusters. It was also the group with the 
highest number of vessels. This cluster exhibited the highest LPUE 
(52 kg/h) despite having the lowest annual brown shrimp landings (52 
tons), indicating high efficiency. The vessels in this group were char-
acterized by the smallest ships and the lowest engine power (15 m, 
191 kW). All other clusters had a median vessel engine power of 
221 kW.

In cluster 1 (N = 63), vessels had significantly different median 
vessel length (19 m) compared to all other clusters. This cluster also 
showed the second-highest annual brown shrimp landings (76 tons) 
which was still significantly lower than cluster 2. However, clusters 1 
and 2 presented similar LPUE values, 41 and 45 kg/h respectively.

Cluster 2 (N = 17), had the highest annual brown shrimp landings 
(104 tons) and the second-highest median vessel length (22 m).

In cluster 4 (N = 12), the main target species during the study period 
was not the North Sea brown shrimp and brown shrimp landings (10 
tons) differed significantly from clusters 1 and 2. Vessels were charac-
terized by the largest median length (24 m) and only in this group there 
were vessels whose engine power exceeded 221 kW (N = 3).

In both cluster 3 (typical shrimpers) and cluster 4 (occasional- 
shrimpers), the total number of vessels declined over the years 
(Supplementary Figure 7-a.). Cluster 4 showed increasing landings of 
species other than brown shrimp from 2009 to 2016 and decreasing 
landings from 2016 to 2021. Additionally, the years 2014–2016 showed 
a negative trend in brown shrimp landings in all clusters (Supplementary 
Figure 7b. and c.).

Fig. 4. Vessel-specific predictors influencing fishing behavior: (a,b) Vessel engine power (kW), (c) vessel length (m), (d) annual mean brown shrimp landings per 
vessel (kg), (e) LPUE (Landing Per Unit Effort) for brown shrimp only, and (f) landings of species other than North Sea brown shrimp. Significant differences 
(p < 0.05) are shown above each predictor.
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3.3. Spatial distribution of fishing effort

The four clusters differed in terms of geographic effort distribution 
(Fig. 5). Clusters 1 and 3 showed extremely high fishing effort (h) close 
to the coast, locally exceeding 200 h/year and 0.025◦ x 0.025◦ grid cell 
(~4.42 km2). In contrast, vessels of cluster 2 and cluster 4 did not fish in 
areas close to the coast. Cluster 2 had fishing activity at the border of 
plaice box in Dutch EEZ. Cluster 4, which represented the group of 
vessels fishing mainly for species other than brown shrimp, showed a 
completely different spatial distribution of fishing effort within three 
main offshore fishing areas.

3.4. Overlap of spatial measures and brown shrimp landings across 
clusters

Finally, we calculated the potential impact of spatial management 
measures on the catches of the four groups of vessels for the "current 
management" and "EU action plan" scenarios (Fig. 6). The first one re-
flects the current regulations that were initiated in 2023 (European 
Commission, 2023, 2017) and the second one includes all areas 
mentioned for possible mobile contact gear closure in the EU action plan 
for 2024. The aim of this analysis was to assess the spatial overlap be-
tween MPAs and brown shrimp landings for the different clusters. This 
overlap analysis provides insight into how much of these current and 
planned areas cover the fishing grounds for brown shrimp from the 

Fig. 5. Spatial distribution of average fishing effort (in hours) per cluster over the entire study period (2009–2021). Dashed lines mark the plaice box borders, solid 
lines outline national Exclusive Economic Zone (EEZ) borders and for Germany the 12 nm border. Grid cells below 1 h are removed. Grid cell size is 0.025◦ x 0.025◦.
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study period (2009–2021). Baseline brown shrimp landings were the 
interannual mean for the German EEZ and territorial waters. The exact 
values and spatial distribution of landing can be found in supplementary 
material (Table 4 and Figure 10). The current management scenario 
affected cluster 4 the most but only represented a 6 % potential decrease 
in catch. On the other hand, the EU action plan scenario covered the 
areas from which more than 70 % of all the brown shrimp landings come 
from and thus affected cluster 3 with a 80 % potential decrease 
compared to the baseline catch. The current management scenario did 
not affect areas with high landings, but the largest portion of the fleet 
(cluster 3) showed the highest overlap with the EU action plan scenario. 
The impact of the current management scenario is primarily observed in 
areas with lower landings.

4. Discussion

Spatial and temporal limitation regulations of fishing areas and 
fishing gears play an important role for fisheries management, com-
plementing the common tool of setting annual quotas (European Com-
mission, 2023, 2017). Fishing activities can be described and managed 
by economic segments or by the use of métiers (defined as fleet segments 
based on specific fishing practices, gear types, and target species) 
(European Parliament, Council of the European Union, 2009). In the EU, 
economic segmentation and métier level six are two distinct methods 
employed for clustering. At métier level six, fleet segments are defined 
with greater specificity, incorporating not only the gear type but also 
details like mesh size and target species. Economic segmentation, on the 
other hand, relies on broader classifications such as vessel size and 
fishing gear. However, the fleet segments are not static and in the North 
Sea, individual vessels, switch between segments or métiers. More 
importantly, vessels can show strong spatial and temporal differences in 
their fishing behaviour resulting in variable responses to area regula-
tions. In this study, we therefore have introduced a segmentation that 
accounts for the spatial and temporal diversity of individual vessels and 
evaluated the implications of current and potential future management 
actions on the fleet.

Different terminologies are used to define behavioural subgroups in a 
fleet: fishing strategy (Abernethy, 2010; Allen and McGlade, 1986; 
Christensen and Raakjær, 2006), fishing style (Boonstra and 
Hentati-Sundberg, 2015) or behavioral types (O’Farrell et al., 2019; 
Pollnac et al., 2001). Here, we focus on the data derived from vessel 
movement and use the term fishing behaviour to interpret the patterns 

derived from vessel movement data. We use the term "cluster" to refer to 
groups of boats that have a similar fishing behaviour. By doing so we 
acknowledge that vessels are operated by captains who ultimately take 
the final decision for the fishing trip itinerary (Barz et al., 2020).

We describe the characteristics of the German North Sea brown 
shrimp fleet and show that this single-target fishery is not a homoge-
neous unit. 86 % of the vessels are typical shrimpers, with cluster 1, 
nearshore mid-rangers and 3, local regulars, exclusively targeting brown 
shrimp. They use beam trawls with mesh sizes of 16–31 mm. Cluster 2, 
long-distance flexiables, have the highest annual brown shrimp landings 
per vessel but also target a small amount of plaice and sole. For cluster 4, 
offshore explorers, brown shrimp is a by-catch or have been the primary 
target species in earlier years of the study period. Main target species are 
rather Norway lobster, plaice or sole, and the primary gears are beam 
trawls with mesh size larger than 80 mm (Letschert et al., 2021).

Our results show that vessel movement data enables to identify 
groups with different vessel properties and fishing success. Whereas 
bigger vessels can move further due to higher catch capacity and fuel 
storage, smaller vessels fish in more coastal areas and are more efficient 
and successful in catching brown shrimp, indicated by a particularly 
high LPUE. Geomorphology of the North Sea tidal flats can also explain 
the correlation of bigger vessels preferring seaward regions despite low 
LPUE. Tidal basins behind the islands are submerged for almost half of 
the day for two separate periods making them only available to vessels 
that can navigate dynamic depths between 1 and 5 m, for a limited 6 h 
and fuel consuming tidal currents. Previous studies on the same fleet 
also pointed out that extended vessel length tends to correlate with 
reduced LPUE (Schulte, 2015). Our findings also align well with a series 
of interviews on the Dutch brown shrimp fishery that revealed signifi-
cant differences in trip length among groups, with smaller and more 
experienced vessels exhibiting higher LPUE (Schadeberg et al., 2021).

Although cluster 4 only targets brown shrimp as by-catch, their in-
clusion in the study is justified as the majority of their earnings were 
derived from brown shrimps for at least one month within the study 
period. Cluster 4 showed a positive trend in landings of species other 
than brown shrimp from 2009 to 2016 and a decrease in brown shrimp 
landings from 2014 to 2016 (Supplementary Figure 7). These contrast-
ing trends in landings of brown shrimp compared to other species from 
2014 to 2016 may reflect a buffer scenario where other species provide 
an alternative for vessels when the availability of brown shrimps has 
been low.

Given the heterogeneity in the behaviour of the brown shrimp fleet, 

Fig. 6. Overlap between MPAs and brown shrimp landings for two scenarios “current management” (purple) and “EU action plan” (pink). The "current management" 
scenario depicts areas closed to shrimp fishing since May 2023. The "EU action plan" scenario illustrates MPAs potentially subject to regulations on mobile contacting 
gears starting from 2024, as outlined in the 2023 action plan. Right: Percentage overlap in brown shrimp landings in comparison to the total average landings from 
the entire study period (2009–2021) and both German EEZ and territorial sea, assuming that no compensation is possible. Dashed lines mark the plaice box borders, 
and solid lines outline national Exclusive Economic Zones (EEZs).
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not all vessels are equally affected by the spatial management in the 
North Sea. The Plaice box has been active since 1995, and the regulation 
has a strong effect on the fleet’s engine power as fishing is prohibited for 
vessels with engine power exceeding 221 kW within the box. Our study 
group has 130 vessels with engines below 221 kW and 78 vessels with 
engines of 221 kW. There are only 3 vessels with more than 221 kW 
engine power and they all belong to cluster 4, i.e. brown shrimp is not 
their primary target species. In cluster 2 we have vessels bigger than 
20 m, that could accommodate higher engine power, yet no vessel ex-
ceeds the limit: 16 of these large vessels have exactly 221 kw and one has 
an engine power below 221 kw. In this way they keep their access to 
areas inside the plaice box while maximising their engine power. These 
findings align with previous evaluations of plaice box regulation (Beare 
et al., 2013). However, there are indications of under-reporting of en-
gine power in the EU fleet register. An EU report from 2019 revealed 
that nearly half of the inspected Dutch and German beam trawlers in the 
North Sea could potentially increase their engine power to 300 kW 
(European Parliament, Council of the European Union, 2019b). How-
ever, the clustering was independent from engine power, thus avoiding 
the problem of misreporting.

Our overlap analysis with the Natura 2000 no-take areas enforced in 
2023 suggest little overlap with the brown shrimp fishing areas and thus 
little impact on the landings. However, the possible restrictions sug-
gested in the EU action plan would affect all clusters significantly. More 
than 50 percent of the brown shrimp current landings come from areas 
considered for marine protection. The local regulars that fish close to the 
coast and have a low core area index and little area flexibility (cluster 3) 
would be the most affected, as the entire Wadden Sea National Park is 
being considered for closure to fishing. These shrimpers also make up 
the majority (60 percent) of the German brown shrimp fleet. This em-
phasizes the importance of considering the heterogeneity within fishing 
communities when formulating management strategies.

The cluster that only occasionally targets brown shrimp (Cluster 4), 
provides valuable information on the potential range of adaptation, such 
as changing target species or gear. Although reaching the fishing 
grounds for e.g. Norway lobster requires more steaming, switching to 
this species could still be profitable due to its high market price 
(Letschert et al., 2021). However, Norway lobster is managed by TACs 
and therefore requires a quota in addition to a larger vessel, all of which 
makes the fleet adaptation costly. The spatial overlap between fishing 
grounds and future area closures provide insights on how much of the 
landings are at risk. The ability to adapt to new regulations and mea-
sures will then certainly be an advantage for the fishery.

Given the spatial overlap between fishing activity and marine pro-
tected areas, our findings suggest that sustainability certifications like 
the MSC may benefit from incorporating more rigorous spatial conser-
vation considerations into their assessment criteria (Lester et al., 2013). 
This could help future-proof the fishery and ensure its long-term sus-
tainability. Additionally, the existing self-management strategies 
employed by the fishery could enable them to address these spatial 
challenges rapidly and proactively. This has the potential to enhance 
their reputation as stewards of sustainable practices, ultimately driving 
demand within the sustainable seafood market (Farmery et al., 2022).

4.1. Limitations

We deliberately selected a limited number of attributes for clustering 
to maintain simplicity and focused exclusively on movement-related 
information. While latitude and longitude might initially seem critical, 
we decided against their inclusion. The first researchers applying clus-
tering methods on spatial data for a fleet with one target species 
included geographical parameters of the vessels (latitude-longitude) to 
segment the fleet (Joo et al., 2015). This approach was effective in Peru, 
where a long, north-south coastline allowed clear distinctions between 
fishing areas. However, in the German Bight, the compact and irregular 
shape of the region limits the utility of such geographical attributes for 

distinguishing spatial behavior. Other fisheries studies, such as O’Farrell 
et al. (O’Farrell et al., 2019) included total home range area size along 
with other trip and vessel specifications to define fishing strategies and 
analyze the variation in fleet response to environmental impacts. While 
we adopted a comparable approach by customizing the attributes for our 
fleet, we intentionally excluded technical vessel features. In our study 
we only used logbook data to select our study group and to statistically 
analyse the differences between the clusters. Clustering was based solely 
on attributes derived from satellite-based vessel tracking data. This al-
lows for our method to be applied in regions where satellite tracking is 
available but logbook data are limited due to national data protection 
regulations.

Intra- and interannual variability of the brown shrimp and the fleet 
has been recorded previously where the proportion of ovigerous brown 
shrimp females rises from October, peaks in May, and declines until 
October (Hünerlage et al., 2019; Saborowski and Hünerlage, 2022). 
Fisheries also show consistent seasonal pattern (Respondek et al., 2014). 
Studies also show that locations with high LPUE for the fleet fluctuate 
significantly from year to year (Schulte et al., 2020). We account for 
interannual variability in fishing behaviour by including the interannual 
standard deviation of our clustering attributes. However, interannual 
differences can represent a trend but also discrete changes e.g. due to a 
change of the owner or sale to another company or country. We did not 
particularly investigate the change of ownership or vessels that left the 
fleet during the study period. However, we note that in both the local 
regulars (Cluster 3) and offshore explorers (Cluster 4), the total number 
of vessels decreased over the years, indicating that some vessels left the 
German fleet and were not replaced (Supplementary Figure 7). 2030 
future scenarios developed during an expert based foresight workshop to 
investigate cumulative effects in the German North Sea also suggests a 
smaller fishing fleet in next decade (Stelzenmüller et al., 2024). Previous 
research reports an increasing number of vessels targeting Norway 
lobster and brown crab in the German fleet (Letschert et al., 2021).

Fisheries data from VMS or electronic logbooks can contain errors as 
well as biases in collection and processing methods. The processing of 
VMS data has been optimized in previous studies (Bastardie et al., 
2010a; Gerritsen and Lordan, 2011; Katara and Silva, 2017; Watson and 
Haynie, 2016). However, VMS data has been shown to provide more 
accurate effort estimations for long fishing activities as the vessels send 
out pings usually every two hours (Gerritsen, 2023; Skaar et al., 2011). 
Yet in German brown shrimp vessels one haul is often shorter than 2 h, 
so fishing activity might go undetected, hence underestimating the effort 
as reported in Portuguese fisheries (Katara and Silva, 2017). We also 
note that using monthly home ranges (kernel utilization distributions) 
tends to overestimate the size of fishing areas in months when the 
number of pings is low (Calenge, 2006). However, as we only use the 
size of the fishing area (core area index) to compare vessels, any over-
estimation would affect all vessels equally, keeping them comparable. 
Merging VMS data with logbook and landing data can improve the ac-
curacy of the spatial distribution of fishing effort (Russo et al., 2018).

4.2. Perspectives and conclusions

We show that vessel movement data can be used to cluster fishing 
strategies and provide an alternative to segmenting the fleet. Our 
analysis can be useful for other fisheries to identify groups that are 
differently affected by spatial management measures.

We did not engage with fishers to enhance the clustering process. 
However, such stakeholder involvement would be advantageous for 
future investigations as interviews found to be useful to build decision 
trees and understand the mechanisms behind fishing activity 
(Christensen and Raakjær, 2006; Schadeberg et al., 2021). Building trust 
between the community and scientists is crucial for obtaining quality 
interview data, and having data to discuss with fishers can facilitate this 
trust, although this process can be time-consuming (Holm and Soma, 
2016). Additionally, our findings align with the behavioral groups in the 

S. Örey et al.                                                                                                                                                                                                                                     Fisheries Research 283 (2025) 107285 

9 



Dutch fleet without incurring the additional economic and time costs 
associated with interview-based methods (Schadeberg et al., 2021).

The clusters and patterns of behaviour identified in this study can be 
used in the parameterization of models aimed at simulating the behav-
iour of fisheries, such as agent-based models and can support the results 
from questionnaires. Such models can improve our understanding of the 
response of fishers and fleets to area closures, increased fuel costs, 
fluctuating shrimp prices, and regulatory changes (Bailey et al., 2019; 
Bastardie et al., 2014; Lemmen et al., 2024; Wijermans et al., 2020). 
Future studies could adopt methodologies similar to those developed by 
Cimino et. al. (Cimino et al., 2019), who used a comprehensive approach 
integrating oceanic variables, climate indices, and vessel flag data to 
predict fishing activity. Such integration allows for a better under-
standing of the implications of climate change on the fishing behavior of 
smaller vessels. This is particularly important given their vulnerability 
to extreme weather events which limits their active days at sea and lead 
to subsequent reductions in profitability (Pfeiffer, 2020; Sainsbury et al., 
2021; Schadeberg et al., 2021).This analysis could inform management 
strategies, such as spatial management measures and adaptive policies, 
to mitigate the impact of changing environmental conditions on fish-
eries dynamics.

The obvious overlaps of area closures with existing fishing grounds 
indicate the need to develop new management strategies for the coex-
istence of different users of marine areas. The findings of this study 
indicate that the implementation of new area closures will inevitably 
overlap with existing fishing grounds, creating challenges for the fishing 
industry. Fisheries experts working in the German North Sea have noted 
that this overlap is likely to accelerate the reduction in fleet size 
(Stelzenmüller et al., 2024). This concern is partially issued in a recent 
press release by the German government announcing a fleet capacity 
reduction funding initiative (“Nachhaltige Fischerei stärken,” 2024). 
Alternatively, there is potential to adopt fuel-efficient gear and engine 
technologies, develop regional processing facilities, and explore tourism 
as an additional income source for the region (Steins et al., 2021; Weiss 
et al., 2018). The results of this study show that the analysis of vessel 
movements by cluster analysis can help to identify fleet segments and is 
therefore also transferable to fisheries analyses in other regions.
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S. Örey et al.                                                                                                                                                                                                                                     Fisheries Research 283 (2025) 107285 

11 

https://doi.org/10.1016/j.ecolecon.2014.03.011
https://doi.org/10.1016/j.fishres.2006.06.018
https://doi.org/10.1016/j.fishres.2006.06.018
https://doi.org/10.1038/s41598-018-36915-x
https://doi.org/10.1007/978-3-030-37371-9_23
https://doi.org/10.1007/978-3-030-37371-9_23
https://doi.org/10.1007/s11160-021-09663-x
https://webgate.ec.europa.eu/fleet-europa/search_en
https://webgate.ec.europa.eu/fleet-europa/search_en
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref20
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref20
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref20
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref21
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref21
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref22
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref22
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref22
https://doi.org/10.1007/s13280-019-01279-7
https://doi.org/10.1016/j.fishres.2011.11.007
https://doi.org/10.1016/j.fishres.2011.11.007
https://doi.org/10.1016/j.biocon.2024.110848
https://doi.org/10.1016/j.biocon.2024.110848
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref26
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref26
https://doi.org/10.1111/fog.12453
https://doi.org/10.1111/fog.12453
https://doi.org/10.1016/j.fishres.2014.12.004
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref29
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref29
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref30
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref30
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref30
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref31
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref31
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref32
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref32
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref32
https://doi.org/10.1371/journal.pbio.1001730
https://doi.org/10.1093/icesjms/fsab204
https://doi.org/10.1093/icesjms/fsab204
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref35
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref35
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref35
https://doi.org/10.1073/pnas.2400592121
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref37
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref37
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref37
https://www.bmel.de/SharedDocs/Pressemitteilungen/DE/2024/145-nachhaltige-fischerei.html
https://www.bmel.de/SharedDocs/Pressemitteilungen/DE/2024/145-nachhaltige-fischerei.html
https://www.bmel.de/SharedDocs/Pressemitteilungen/DE/2024/145-nachhaltige-fischerei.html
https://doi.org/10.1111/faf.12232
https://doi.org/10.1073/pnas.1906766116
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref40
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref40
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref41
http://refhub.elsevier.com/S0165-7836(25)00022-0/sbref41
https://doi.org/10.1016/S0964-5691(01)00064-3
https://doi.org/10.1016/S0964-5691(01)00064-3
https://doi.org/10.1644/11-MAMM-S-177.1
https://doi.org/10.1093/icesjms/fsu016
https://doi.org/10.1093/icesjms/fsu016
https://doi.org/10.1016/j.jenvman.2023.119735


Rousseeuw, P.J., 1987. Silhouettes: a graphical aid to the interpretation and validation of 
cluster analysis. J. Comput. Appl. Math. 20, 53–65.

Rufener, M.-C., Nielsen, J.R., Kristensen, K., Bastardie, F., 2023. Closing certain essential 
fish habitats to fishing could be a win-win for fish stocks and their fisheries – Insights 
from the western Baltic cod fishery. Fish. Res. 268, 106853. https://doi.org/ 
10.1016/j.fishres.2023.106853.

Russo, T., Morello, E., Parisi, A., Scarcella, G., Angelini, S., Labanchi, L., Martinelli, M., 
D’Andrea, L., Santojanni, A., Arneri, E., et al., 2018. A model combining landings 
and VMS data to estimate landings by fishing ground and harbor. Fish. Res. 199, 
218–230.

Saborowski, R., Hünerlage, K., 2022. Hatching phenology of the brown shrimp Crangon 
crangon in the southern North Sea: inter-annual temperature variations and climate 
change effects. ICES J. Mar. Sci. 79, 1302–1311.

Sainsbury, N.C., Schuhmann, P.W., Turner, R.A., Grilli, G., Pinnegar, J.K., Genner, M.J., 
Simpson, S.D., 2021. Trade-offs between physical risk and economic reward affect 
fishers’ vulnerability to changing storminess. Glob. Environ. Change, 102228. 
https://doi.org/10.1016/j.gloenvcha.2021.102228.

Schadeberg, A., Kraan, M., Hamon, K.G., 2021. Beyond métiers: social factors influence 
fisher behaviour. ICES J. Mar. Sci. 78, 1530–1541.

Scherrer, K.J.N., Langbehn, T.J., Ljungström, G., Enberg, K., Hornborg, S., Dingsør, G., 
Jørgensen, C., 2024. Spatial restrictions inadvertently doubled the carbon footprint 
of Norway’s mackerel fishing fleet. Mar. Policy 161, 106014. https://doi.org/ 
10.1016/j.marpol.2024.106014.

Schulte, K.F., 2015. The monitoring of the spatiotemporal distribution and movement of 
brown shrimp (Crangon crangon L.) using commercial and scientific research data 
(PhD Thesis). University of Hamburg.

Schulte, K.F., Siegel, V., Hufnagl, M., Schulze, T., Temming, A., 2020. Spatial and 
temporal distribution patterns of brown shrimp (Crangon crangon) derived from 
commercial logbook, landings, and vessel monitoring data. ICES J. Mar. Sci. https:// 
doi.org/10.1093/icesjms/fsaa021.

Silverman, B.W., 1986. Density estimation for statistics and data analysis. CRC press.
Skaar, K., Jørgensen, T., Ulvestad, B., Engås, A., 2011. Accuracy of VMS data from 

Norwegian demersal stern trawlers for estimating trawled areas in the Barents Sea. 
ICES J. Mar. Sci. 68, 1615–1620.

STECF, 2019. Scientific, Technical and Economic Committee for Fisheries (STECF) - The 
2019 Annual Economic Report on the EU Fishing Fleet (STECF 19-06), JRC Science 
for policy report. Publications Office of the European Union. https://doi.org/ 
10.2760/911768.

STECF, 2020. Scientific, technical and economic committee for fisheries (STECF) - The 
2020 Annual Economic Report on the EU Fishing Fleet (STECF 20-06) (No. 
JRC123089). Publications Office of the European Union. https://doi.org/10.2760/ 
500525.

Steenbergen, J., Trapman, B.K., Steins, N.A., Poos, J.J., 2017. The commons tragedy in 
the North Sea brown shrimp fishery: how horizontal institutional interactions inhibit 
a self-governance structure. ICES J. Mar. Sci. 74, 2004–2011. https://doi.org/ 
10.1093/icesjms/fsx053.

Steins, N.A., Veraart, J.A., Klostermann, J.E.M., Poelman, M., 2021. Combining offshore 
wind farms, nature conservation and seafood: lessons from a Dutch community of 
practice. Mar. Policy 126, 104371. https://doi.org/10.1016/j.marpol.2020.104371.
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