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oceanographic conditions. At the same time, it reminds of 
Cenozoic, in particular pre-Upper Miocene (i.e., before 8.5 
million years ago), coral-associated assemblages, when 
coral bioherms preferentially occurred in mesophotic rather 
than euphotic settings. The present study thus contributes to 
improving the interpretation of those fossil bioherms with 
respect to their ecosystem dynamics and environmental 
significance.

Keywords  Mesophotic ecosystems · Red Sea · Corals · 
Large benthic foraminifers · Encrusting foraminifers · 
Holocene

Abstract  While mesophotic assemblages in the Gulf of 
Aqaba have been described in some detail, in the Red Sea 
proper, data are rare. Here we present a first report on a 
detached carbonate platform fragment from the Northern 
Red Sea off Al Wajh that stretches over a water depth range 
of 25 to 130 m. The assemblages observed comprise depth-
typical large benthic foraminifers, crustose coralline algae, 
and mesophotic scleractinian corals (e.g., Leptoseris spp.). 
Encrusting bryozoans and foraminifers are abundant. A soft 
sediment cover in the deeper areas indicates the absence of 
strong currents. Radiocarbon ages confirm that this com-
munity is currently thriving. This example resembles the 
previously known occurrences of mesophotic reefs in the 
Gulf of Aqaba with respect to assemblage despite different 

Supplementary Information  The online version contains 
supplementary material available at https://​doi.​org/​10.​1007/​
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Introduction

Modern mesophotic coral-associated assemblages have 
received intensive scientific attention in recent years (Slat-
tery et al. 2024). Nevertheless, they are still much less inten-
sively studied than shallow-water coral reefs (Hinderstein 
et al. 2010). Besides the gaps in understanding the composi-
tion and dynamics of those ecosystems, this has biased the 
interpretation of fossil coral reefs of the Cenozoic toward an 
interpretation analogous to modern euphotic coral ecosys-
tems with a typical arrangement of a lagoon, a reef fringe, 
and a steep fore-reef slope. In contrast to that view, however, 
several studies of fossil coral bioherms have pointed to a 
predominantly mesophotic nature of those ecosystems thriv-
ing as mounds on deeper slopes, prior to the late Miocene, 
i.e., before 8.5 million years ago (Pomar and Hallock 2007; 
Pomar et al. 2017). This means that the presence of corals in 
the geological record in particular before the late Miocene 
does not necessarily imply a euphotic setting, and apply-
ing modern euphotic analogs can lead to misinterpretation 
(Pomar et al. 2017).

Modern Mesophotic Coral Ecosystems (MCEs) have been 
described since the 1960s (Busby 1966; Brock and Cham-
berlain 1968; Strasburg et al. 1968; Goreau and Goreau 
1973; Bouchon 1981; Sheppard 1982; Schlichter et  al. 
1985, 1986, 1994, 1997; Fricke and Meischner 1985; Colin 
et al. 1986; Fricke and Knauer 1986; Fricke et al. 1987; 
Thresher and Colin 1986; Schlichter and Fricke 1991; Kaiser 
et al. 1993; Pyle 2019; Reolid et al. 2024). MCEs are light-
dependent tropical and subtropical ecosystems that occur 
in water depths between ca. 30 m to the lower limit of the 
photic zone at ca. 150 m; depending on the local conditions, 
they thrive in shallow settings where low water transpar-
ency is limiting light penetration, while in clear and oli-
gotrophic waters they grown at greater water depth, given 
that oceanographic conditions provide the trophic resources 
(e.g., Lesser et al. 2009; Hinderstein et al. 2010; Pyle and 
Copus 2019; Pomar et al. 2017).

The definition of MCEs is not unequivocal, and in the 
geological record relies on inference from modern meso-
photic analogs. A major hindrance in identifying and inter-
preting fossil MCEs is the scarcity of studies on modern 
occurrences beyond the classical locales such as the Gulf 
of Aqaba. While the Red Sea has long been recognized as 
a hotspot of marine biodiversity and endemism (Briggs 
and Bowen 2012; DiBattista et al. 2016), as for many other 
regions of the world, mesophotic waters have not been stud-
ied as intensively as the shallower ones, and there is still 
incomplete knowledge of these environments (Berumen 
et al. 2013, 2019). In particular, most of the studies of meso-
photic organisms in the Red Sea are focused on scleractinian 
corals of the Eilat coast of the Gulf of Aqaba (see for exam-
ple Fricke and Hottinger 1983; Fricke and Schuhmacher 

1983; Fricke and Knauer 1986; Schlichter et  al. 1986; 
Mass et al. 2007; Stambler et al. 2008; Alamaru et al. 2009; 
Einbinder et al. 2009; Nir et al. 2011), while few studies 
address Egyptian and Sudanese waters (Kühlmann 1970; 
Fricke 1996). There is little information on the mesophotic 
ecology and the composition of other marine taxa, such as 
octocorals (Shoham and Benayahu 2017; Eyal et al. 2019), 
bryozoans (Scholz and Hillmer 1995; Hillmer et al. 1996), 
and crustose coralline algae (CCA) (Hottinger 1983; Dullo 
et al. 1990). Recently, some expeditions with a focus on the 
mesophotic zone were carried out along the Saudi Arabian 
Red Sea (Ziegler et al. 2015; Purkis et al. 2022; Maggioni 
et al. 2022; Terraneo et al. 2022, 2023; Bracchi et al. 2023; 
Anker et al. 2023; Vimercati et al. 2023, 2024a, 2024b; 
Vicario et al. 2024a, b). However, the geomorphology, the 
composition, as well as the vertical zonation of the ben-
thic taxa in the mesophotic zone are still only incompletely 
described or understood, beyond a few studies focusing on 
the Gulf of Aqaba (Weinstein et al. 2021) or the Central Red 
Sea (Watts 2022). In particular, mesophotic ecosystems in 
the Saudi Arabian part of the Northern Red Sea remain still 
largely unknown.

The present study aims at adding to the knowledge on 
modern MCEs, and thus to contribute to the identification 
and discussion of fossil MCEs, by studying an isolated car-
bonate platform to the south of the land-attached Al Wajh 
carbonate platform in the Saudi Arabian Northern Red Sea 
(Fig. 1).

Study area

The Red Sea is a semi-enclosed young ocean basin spread-
ing at a low rate (e.g., Tapponnier et al. 2013; Augustin et al. 
2021; Delauny et al., 2023). The continental rifting started 
during the Oligocene, and first marine flooding is thought to 
have taken place during the Early Miocene. Restricted con-
ditions during the Mid- to Late Miocene lead to the deposi-
tion of an evaporite sequence with a total thickness of up 
to 2–4 km (Hughes and Johnson 2005). The plastic basin-
ward withdrawal of Miocene salt layers (Heaton et al. 1995; 
Orszag-Sperber et al. 1998; Rowan 2014) shapes the modern 
morphology of the Red Sea through collapsing and fragmen-
tation of carbonate platforms, and rafting of the fragments 
(Petrovic et al. 2023a; Smith and Santamarina 2022). The 
study area is located south of the land-attached coral reef-
rimmed Al Wajh carbonate platform in the Saudi Arabian 
northern Red Sea (Fig. 1). The western, ocean-facing rim of 
the Al Wajh platform with a length of around 55 km is likely 
controlled by its position on the edge of a tilted rift block 
(Dullo and Montaggioni 1998), while the northern margin 
is shaped by the Zabargad Fracture Zone (Petrovic et al. 
2023b). The southern margin is fragmented as a response to 
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basinward salt-withdrawal with the fragments rafting toward 
the Red Sea axis and being subject to differential subsidence 
rates (Petrovic et al. 2023a). The study site is one of those 
isolated carbonate platform fragments (Fig. 1). The frag-
ment has dimensions of 10 km by 4 km in lateral extension 
(Petrovic et al. 2023a), with its top in water depths ranging 
from 20 to 130 m.

The prevailing wind direction in the northern Red Sea is 
northwest, with occasional storms affecting the study area 
from the south. Intensive jets blowing from the east car-
rying dust also occur (Petrovic et al. 2023c). In summer, 
the average water surface temperature ranges from 26˚C in 

the north to 30˚C in the south. The average water surface 
winter temperature is around 23 ± 3˚C. Low precipitation 
(Ø 1–20 cm y − 1) and high evaporation (ca. 2 m y − 1; 
Maillard and Soliman 1986; Siddall et al. 2004) result in 
sea surface salinities ranging from 36.5 ‰ (S) to 41 ‰ 
(N). The Red Sea is characterized by an anti-estuarine-
like circulation (Sofianos and Johns 2015). During the 
summer, the water body is subdivided into the Red Sea 
Surface Water (RSSW: 0–150 m) and the Red Sea Deep 
Water (RSDW: > 150 m), while during the winter, a third 
water mass appears, namely the Red Sea Intermediate 
Water (RSIW: 50–200 m; e.g., Yao et al. 2014). Both, the 

Fig. 1   Location of study area 
in the Northern Red Sea and 
close-up of location of studied 
platform fragment; multibeam 
bathymetry recorded during 
RV Thuwal cruise KA-JA-001 
cruise, and location of the ROV 
dives, CTD, and Van Veen grab 
stations. Also, NW–SE section 
shown in Fig. 2 is indicated. 
Basemap from ArcGIS Ocean. 
Sources: Esri, GEBCO, NOAA, 
National Geographic, DeLorme, 
HERE, Geonames.org, and 
other contributors
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RSDW and the RSIW are related to two thermohaline cells 
(Sofianos and Johns 2015).

Material and methods

The objective of the RV Thuwal cruise KA-JA-001 in Feb-
ruary 2022 was to investigate the mesophotic zone south of 
the Al Wajh carbonate platform from a sedimentological, 
biological, and oceanographic perspective (Station list see 
Supplementary Materials S1). Based on an earlier bathy-
metric data set collected in 2019 (Petrovic et al. 2023a), 
additional detailed acoustic seafloor data were collected with 
a Kongsberg EM710-MK2 (40–100 kHz) multibeam echo-
sounder system (MBES), hull-mounted on the RV Thuwal. 
The bathymetry was used as orientation for the deployment 
of the instruments and sampling devices during the cruise. 
The water column was studied with an Idronaut Ocean 
Seven 310 multiparameter conductivity, temperature, and 
depth (CTD). Conductivity (salinity calculated), pH, and 
temperature depth profiles were measured with a sample rate 
of 200 ms and winch speed of around 0.5 m/s.

Acoustic data have been processed using QPS Qimera 
software v.2.4.1, sound velocity speed was calculated from 
the CTD casts at Station 1 and Station 26, and two final grid-
ded bathymetric model were produced: a 20 m grid model of 
the entire survey area and a fine scale 5 m grid for the shal-
low platform (25—130 m depth). Geomorphometric analysis 
and spatial analysis were performed using SAGA GIS v 9.0 
(Conrad et al. 2015) and ArcGIS® PRO v 3.1.2. In order 
to characterize the morphologies of the platform, we used 
the Geomorphons tool (Jasiewicz et al., 2013) that provided 
a panoramic view of terrain morphology and highlighted 
the tridimensional complexity of the area. The complex 
morphologies of the platform make manual identification 
and characterization of depressions impractical without 
extremely time-consuming manual mapping, which can also 
be subject to operator bias. To identify and characterize the 
depressions on the platform with a quantitative approach, we 
used the Geomorphons tool (Jasiewicz et al., 2013) and we 
follow the nested surface depressions procedure from Wu 
et al. 2019 using Lidar package for ArcGIS PRO (Wu, 2021). 
This method combines a boundary-tracking algorithm with 
graph theory to precisely identify and measure depressions 
in digital elevation models, categorizing them hierarchically. 
Once the depressions were identified, we calculate the Shape 
Index (SI) (McGarical and Marks 1995) values. The SI is 
a metric used to quantify the complexity of patch shapes, 
frequently applied in habitat mapping studies to characterize 
seafloor morphologies (Kendall et al., 2008; Bracchi et al., 
2017, Marchese et al. 2020). In the present study, SI was 
used for polygons representing depressions. It is calculated 
by comparing the perimeter of each polygon to the perimeter 

of a perfectly compact, standard shape (e.g., a circle) with 
the same area, thereby providing insight into the degree of 
irregularity in the geometry of the depressions.

A visual survey was conducted with the remotely oper-
ated vehicle (ROV) of KAUST (SAAB Seaeye Falcon), 
equipped with an HD 1Cam SubC camera integrated with 
62 mm parallel lasers, a Teledyne M series Forward Look-
ing Sonar (FLS) to enhance navigation, obstacle avoidance 
capabilities, and a Tritech PA500 altimeter. Three ROV 
mesophotic dives (Fig. 2) were carried out at three different 
mesophotic depths: 38 m (Station 23, upper mesophotic), 
70 m (Station 24, lower mesophotic), and 130 m (Station 
25, lower mesophotic). Video footages of each dive were 
analyzed using VLC Media Player (Videolan 2006). A 
representative frame grab of each dive was taken in order 
to describe the benthic assemblages referring to a specific 
taxon and its distribution. All the data were integrated and 
analyzed using ArcGIS® PRO v 3.1.2 software by Esri.

A total of 16 seafloor samples were collected (Fig. 1) with 
a Van Veen grab sampler (1000 cm2) to characterize the 
benthic community in the laboratory (biogenic grain iden-
tification under the binoculars and by thin section analysis). 
Grain size analyses were not undertaken, because the poten-
tial loss of finer fractions during the process of Van Veen 
grab sampling could have induced some bias. Foraminifers 
were identified to species level based on the literature (Hot-
tinger et al. 1993; Loeblich and Tappan, 1994; Al-Dubai 
et al. 2017), and nomenclature was updated according to 
WoRMS (2024). Coral identification and nomenclature fol-
lowed Brook (1889) and Opresko (2001, 2002, 2004) for 
the order Anthipataria, Gray (1857), Kükenthal (1908) for 
octocorals, and Veron (2000), Al Tawaha et al. (2019), and 
Benzoni (2022) for scleractinians.

For six coral and three biogenic carbonate crust sam-
ples, 14C AMS ages were determined with accelerator mass 
spectrometer radiocarbon at the MICADAS AMS facility of 
Alfred Wegner Institute in Bremerhaven, Germany, follow-
ing the method described by Mollenhauer et al. (2021). The 
dates were calibrated with CALIB version 8.2 (Stuiver and 
Reimer 1993), using the calibration data set Marine20.14c; 
weighted mean delta R: 15 and uncertainty: 52; based on a 
coral data set from Ras Umm Sidd (Felis et al. 2004).

Results

Bathymetry and geomorphometric analysis

In total, the bathymetric survey covered an area of 80.5 
km2 (Fig. 1). The resulting bathymetric map includes the 
isolated carbonate platform that has a serrated shape and 
reaches maximal dimensions of 10 × 4 km. Water depths 
on the platform range from 25 to 130  m water depth 



Coral Reefs	

(mwd). The top of the platform fragment shows a rough 
morphology including multiple depressions and pinnacles 
(Fig. 3). It is bordered by steep slopes, up to 83° inclined 
in the upper parts, toward sediment basins (400–750 
mwd). The lower part of the slope facing the basin to the 
West is characterized by a gradient greater than 30°, while 
the slope facing the 400 m deep basin to East is mainly 
defined by a slope gradient exceeding 45°. The fine scale 
resolution bathymetric grid of the platform was used to 
perform the geomorphometric analysis to characterize the 
direction of the depressions and the complex morphology. 
The result of the geomorphon tool (Jasiewicz et al., 2013) 
on the platform fragment revealed a rough morphology 
including multiple depressions and pinnacles (Fig. 3). The 
nested surface depressions analysis after Wu et al., (2019) 
identified in 317 depressions, with a depth range from 1 
to 56 mwd. For these depressions, for further analysis we 
selected only those with an SI greater than 1.5, indicating 
reduced sphericity and a tendency toward elongation. On 
the resulting pool of 146 depressions (S2), we calculated 
the maximum diameter bearing and grouped them in four 
direction classes (S3).

Water profiles

CTD casts were performed at two sites to the NW and SE 
of the isolated carbonate platform fragment (Stations 1, 26; 
Fig. 4). At both stations, the sea surface temperature was 
around 23 °C, while salinity was at the Station 1 (wind-
ward) 39.8 PSU and at Station 26 (leeward) 40.05 PSU. 
Downward depths, salinity rapidly increased to 40.25 PSU 
until 50 m water depths and further downward gradually 
increasing until 245 m water depths, identified as the base 
of the RSSW. Temperature decreased at Station 26 from 
23 °C at the surface to 22.2 °C at 245 m, while it stayed 
constant at Station 1. Between 245 and 250 m water depth 
(thermocline), the temperature significantly decreased to 
26.6 °C at both stations, while salinity increased to 40.6 
PSU. Below 250 m water depths showed only minor vari-
ations in temperature and salinity in a water body inter-
preted as the RSDW. The CTD cast clearly showed that the 
studied area is located within the reach of the RSSW and 
features an upper mixing zone (0–50 m).

Fig. 2   Location of ROV dives and examples of video frames. The distance of the laser pointers is 6.2 cm.
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Benthic assemblages

For the three stations where ROV footages were recorded 
(transition from deep euphotic to shallow mesophotic: 
25–38 m, Station 23; deep mesophotic: 74 m, Station 24; 
transition from deep mesophotic to aphotic: 130 m, Station 
25), the benthic assemblages were characterized visually. 
On those ROV-obtained frame grabs (Fig. 2), the following 
organism groups were identified: crustose coralline algae 
(CCA), encrusting foraminifera, sponges, bryozoans, black 
corals in the Order Antipatharia Milne Edwards, 1857, 
octocorals, and four scleractinian families, namely Agaricii-
dae Gray, 1847, Poritidae Gray, 1840, Merulinidae Milne 

Edwards and Haime, 1857, and Dendrophylliidae Gray, 1847 
(Table 1).

At Station 23 (25–38  m water depth), ROV footage 
revealed abundant Poritidae as well as abundant encrustation 
by CCA and foraminifera on a morphology with decimeter 
to meter scale bulbs. Other live organisms included sponges, 
octocorals, soft corals, Agariciidae and Merulinidae, and 
rare Antipatharia. At Station 24 (74 m water depth), encrus-
tations prevailed; however, less CCA were identified. Gen-
erally, there was abundant fine-grained sediment covering 
part of the seafloor. Agariciidae were present as the most 
abundant corals, while Poritidae and Merulinidae were not 
identified. Antipatharians were more abundant than in the 

Fig. 3   Geomorphological 
classification of the survey 
area using the Geomorphon 
tool. Color code represents the 
geomorphic classes calculated 
by the algorithm: Depressions 
(Dark Blue), Valleys (Blue), 
Footslopes (Light Blue-Green), 
Hollows (Green), Slopes (Yel-
low), Spurs (Orange), Shoulders 
(Light Red), Ridges (Red), 
Summits (Dark Red). The high 
resolution of the model com-
bined with the result of the tool 
reveal abundant small pinnacles 
(A) and reticular structures (B) 
that are interpreted as expres-
sion of biological activities 
(buildups)
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shallower station. The seafloor morphology was flatter than 
in the shallower setting; however, it was still dominated by 
biological buildups. At Station 25 (130 m water depth), CCA 
were rare, and more common Antipatharia and Dendrophyl-
liidae corals represented the coral diversity. A cover of abun-
dant fine-grained sediment pointed to low water energy.

Sediment composition of lithified and encrusted 
samples

A total of 16 Van Veen grab samples were taken from water 
depths between 27 and 120 m. Recovery was very variable 
depending on the seafloor conditions, where medium to 
fine-grained sediment allowed for very good recovery, while 
hardgrounds (biogenically encrusted seafloor) and bulbous 
morphology led to variable and partly very poor recovery. 
Two stations had to be discarded because of low recovery.

The samples featuring encrustations and bioherms 
showed the following characteristics: At the shallowest 
site, Station 18 (25 m), a dead coral colony was sampled, 

consisting of coral skeleton colonized by other biota, 
including CCA. At 47 m (Station 7), CCA crusts and fine-
grained sediment were accompanied by fleshy green algae, 
indicating (deep) euphotic conditions. At 57 m water depth 
(Station 17), CCA-covered rubble-sized grains and fine-
grained sediment were recovered. Sediment from Stations 
5 (27 m), 13 (46 m), and 21 (60 m) showed CCA crusts 
without any accompanying fine-grained sediment. Stations 
16 (42 m), 14 (74 m), and 22 (77 m) feature CCA crusts 
and some fine-grained sediment. At 82 m (Station 19), 
the recovered sediment consisted of CCA-covered rubble-
sized grains.

Thin sections were prepared from seven samples col-
lected at stations where the grab recovered solid biogenic 
substrates (Fig. 5; Table 2). The most common components 
identified were encrusting foraminifers and scleractinian cor-
als. Encrusting foraminifers were present in samples from 
Stations 14 (74 m) and 19 (82 m), dominated by Acervulini-
dae Schultze, 1854, but also including Homotrema rubrum 
(Lamarck, 1816). Corals occurred as rubble (Station 17, 
57 m), solitary corals, and colony fragments (Stations 5, 
14, 16, 18, and 19, between 25 and 82 m) (Table 2). While 
Poritidae were identified in samples from 27–57 m water 
depth (Stations 5, 16 and 17), Agaricidae, with a typical 
platy arrangement, occurred in the entire depth range from 
25 to 82 m (Stations 5, 14, 18, 19, and 21) (Table 2). Fur-
thermore, thin CCA crusts were observed in thin sections 
from Stations 5 and 18, which correspond to the shallow-
est stations. No diagnostic features that would have allowed 
for taxonomic determination were identified in the CCA. 
Rare bryozoans also occur (Station 17, 57 m and Station 
21, 60 m). The samples from 57 m water depth (Station 17) 
included abundant benthic foraminifers, entrapped within 
the skeletal layers.

Fig. 4   NW–SE topographical cross section, including water masses 
and CTD temperature and salinity profiles. Station 1 is located at the 
windward margin, while Station 26 is located at the leeward margin 
(see Fig.  1). Temperature and salinity profile define the water mass 

boundary on the windward and leeward side of the platform in the 
same water depths. RSSW: Red Sea Surface Water, RSDW: Red Sea 
Deep Water. Vertical exaggeration is × 1.2

Table 1   Benthic taxa recorded on ROV footage. x = rare, xx = com-
mon, xxx = abundant

Station 23 24 25

Water depth 38 m 70 m 130 m
CCA​ xxx xxx x
Antipatharia Milne Edwards, 1857 x xx xxx
Octocorals xx xx xxx
Agariciidae Gray, 1847 xx xxx
Poritidae Gray, 1840 xxx
Merulinidae Milne Edwards, 1857 xx
Dendrophylliidae Gray, 1847 x xx xxx
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As the samples were taken with a grab, they were not 
oriented with respect to the vertical sedimentary col-
umn. However, for some of the thin sections, it is pos-
sible to determine an orientation and order of succession 
of encrusting organisms. For example, the thin section 
from Station 5 comprised a fragment of a Poritidae at the 
base, overgrown by a thin CCA crust, followed by a thick 

layer of encrusting foraminifers, with an Agariciidae layer 
within. A thin section from Station 17 showed two solitary 
corals, with the calyx filled by biogenic mud, and with a 
thick concentric envelop made by encrusting foraminifers. 
Thin sections from Station 17 (57 m) included a coral rub-
ble enveloped by a thick layer of encrusting foraminifers.

Fig. 5   Thin sections of lithified 
and encrusted samples (A–C) 
interlayered encrusting foramin-
ifers and corals (A, B: Station 5, 
C. Station 19), (D) interlayered 
crusts of encrusting foraminifers 
and crustose coralline algae 
(Station 19), (E) interlayered 
crusts of encrusting foraminifers 
and bryozoans (Bryo) (Station 
21), (F–H) encrusting with 
entrapped benthic foraminifers 
(F: Station 17, G,H: Station 5). 
All samples are embedded in 
blue resin glue; red color in (G, 
H) is Alizarin-Red stain. (E, F): 
crossed nicols



Coral Reefs	

Fine-grained unconsolidated sediments recovered showed 
the following characteristics: At 65 m water depth, a station 
featuring a fine sediment cover (Station 15), the sediment 
is moderately sorted and fine-grained; at 69 m (Station 12) 
and at 73 m (Station 8), sediments are moderately to well-
sorted fine-grained sands with abundant small foraminifers. 
The sediment recovered at 82 m (Station 6) is similar but 
with less foraminifers. At 87 m (Station 9), moderately to 
well-sorted fine-sandy sediment was encountered, contain-
ing larger benthic foraminifers. At 120 m (Station 4), the 
recovered fine-grained sandy sediment was well sorted.

Benthic foraminifers from lose sediment samples

A total of eleven sediment samples were analyzed for their 
benthic foraminifer assemblages (Fig. 6, Fig. 7). At least 250 
tests were picked from the > 125 μm fraction. Taxonomic 
identification was performed at family level, and only groups 
with a relative abundance above 4% in at least one sample 
were considered (Table 3). The most abundant families in all 
samples were Hauerinidae Schwager, 1876 (relative abun-
dance up to 29%), Amphisteginidae Cushman, 1927 (rela-
tive abundance up to 44%), and Nummulitidae Blainville, 
1827 (relative abundance up to 25.7%). The only exception 
occurred in a sample from Station 4 (130 m), in which the 
most abundant families were Bolivinitidae Cushman, 1927 
(18.0%), and Cibicididae Cushman, 1927 (28.7%), whereas 
the three aforementioned families displayed a low relative 
abundance. Hauerinidae, also referred to as miliolids, have a 
high abundance (between 15.7 and 29.0%) in samples from 

Stations 7 (46 m), 8 (73 m), 14 (74 m), 15 (65 m), and 17 
(57 m). Two other miliolid families were found to be rel-
evant contributors to the assemblages, namely Alveolini-
dae Ehrenberg, 1839, and Soritidae Ehrenberg, 1839. With 
10.4%, these two families displayed the highest relative 
abundance in Station 17 (57 m), while both sum up to 7.9% 
to the total assemblage at Station 7 (46 m) and 9.2% at Sta-
tion 14 (74 m). With 9.2%, the Alveolinidae family displayed 
the highest relative abundance in Station 17 (57 m;), while 
the Soritidae significantly contributes to the assemblages at 
Stations 7 (46 m) and 14 (74 m), with values, respectively, 
of 3.1% and 4.4%. Notably these two families are extremely 
rare or absent at all deeper stations (Stations 4 [130 m], 6 
[83 m], 8 [73 m], 9 [86 m], 12 [93 m], 19 [82 m], and 22 
[77 m]). Nummulitidae, represented mainly by the species 
Operculina ammonoides (Gronovius, 1781), displayed high 
percentages (between 17.2 and 25.7%) in samples from Sta-
tions 8 (73 m), 9 (86 m), 17 (57 m), 19 (82 m), and 22 
(77 m). The family Amphisteginidae, represented by the 
Genus Amphistegina d’Orbigny, 1826, displayed high abun-
dance (between 16.5 and 44.3%) in most of the samples, 
namely Stations 6 (83 m), 7 (46 m), 9 (86 m), 12 (93 m), 
14 (74 m), 17 (57 m), 19 (82 m). Moreover, three fami-
lies of typically epiphytic foraminifers were found in most 
samples with variable relative abundances, i.e., Discorbinel-
lidae Sigal, 1952 (maximum relative abundance of 6.6% 
at Station 4), Rosalinidae Reiss, 1963 (maximum relative 
abundance of 4.5 at Station 22), and Reussellidae Cushman, 
1933 (maximum relative abundance of 5.1% at Station 22). 
Lastly, the only family of the agglutinated foraminifer group 

Table 2   Thin sections. Note: Station 14 corresponds to Dive Station 24; and Station 18 to Dive Station 23

Station Water depth Description

5 27 m Encrusting foraminifers (Acervulina spp. Schultze, 1854, Planorbulina spp. d’Orbigny, 1826, Miniacina spp. Galloway, 
1933, Discanomalina spp. Asano, 1951), epiphytic foraminifers (Sorites spp. Ehrenberg, 1839/Amphisorus spp. Ehren-
berg, 1839, Quinqueloculina spp. d’Orbigny, 1826, Spiroloculina spp. d’Orbigny, 1826, Cibicides spp. Montfort, 1808), 
planktic foraminifers (Globigerinidae Carpenter et al., 1862), coral (Poritidae Gray, 1840)

14 74 m Encrusting foraminifers (Homotrema spp. Hickson, 1911, Acervulina spp. Schultze, 1854, Victoriellidae Chapman and 
Crespin, 1930), Large benthic foraminifers (Amphistegina spp. d’Orbigny, 1826, Heterostegina spp. d’Orbigny, 1826), 
agglutinated foraminifers (Trochammina spp. Parker and Jones, 1859), coral (Agariciidae Gray, 1847), crustose coralline 
algae (CCA)

16 42 m Encrusting foraminifers (Haddonia spp. Chapman, 1898), planktic foraminifers (Globigerinoides ruber [d’Orbigny, 
1839]), epiphytic foraminifers (Peneroplis spp. Montfort, 1808), coral (Poritidae Gray, 1840)

17 57 m Encrusting foraminifers (Acervulina spp. Schultze, 1854, Acervulina mabahethi (Said, 1949), Homotrematidae Cushman, 
1927, Haddonia spp. Chapman, 1898), small benthic foramnifers (Buliminidae Jones, 1875), coral rubble, solitary cor-
als, serpulids, biogenic mud

18 25 m Coral (Agariciidae Gray, 1847), encrusting foraminifers (Homotrematidae [Cushman, 1927], Acervulina spp. [Schultze, 
1854], Haddonia spp. [Chapman, 1898])

19 82 m Encrusting foraminifers (Acervulina spp. Schultze, 1854), large benthic foraminifers (Amphistegina spp. d’Orbigny, 
1826), small benthic foraminifers (Hauerinidae Schwager, 1876, Buliminidae Jones, 1875/ Bolivinitidae Cushman, 
1927, Nodosariidae Ehrenberg, 1838, Nonion spp. Montfort, 1808), planktic foraminifers (Globigerinidae Carpenter 
et al., 1862), corals (Agariciidae Gray, 1847)

21 60 m Encrusting foraminifers (Acervulina spp. Schultze, 1854, Planorbulina spp. d’Orbigny, 1826), corals (Agariciidae Gray, 
1847), coral rubble
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present was Textulariidae Ehrenberg, 1839, which displayed 
the highest relative abundances at Stations 8 (73 m) and 15 
(65 m), respectively, 9.4 and 7.3%.

Age dating

The results of the radiocarbon dating point to a recent origin 
of the surface samples (biogenic carbonate crusts and cor-
als, < 700 cal a BP) indicating a formation under very similar 
conditions as today (Table 4).

Discussion

The geomorphometric analysis undertaken here revealed 
that the fragment has shallow margins with deeper basins in 

the northeast. The direction of the main axes of the depres-
sions is mainly E-W and NW–SE, which aligns with the 
listric faults described by Petrovic et al. (2023a) in the same 
area. The morphology of the platform (Fig. 3) displays a dis-
tinct and complex three-dimensional pattern, characterized 
by crests, pinnacles, and depressions. The geomorphomet-
ric features indicate an environment dominated by positive 
structures (such as summits, ridges, and shoulders) that not 
only occur on the top of the platform, but also contribute 
to the creation of complex morphologies within negative 
structures (e.g., depressions and valleys) (marked with A in 
Fig. 3) and along the rims of larger depressions. The south-
ern sector is particularly notable for its reticulated structures 
(marked with B in Fig. 3) that occur within a depth range of 
40 to 55 mwd. Similar reticulated structures have previously 
been interpreted as biological self-organization (Schlager 

Fig. 6   Location of samples 
where benthic foraminifer 
assemblages were determined. 
The relative abundances of the 
foraminifer groups are shown 
in pie charts represent the 
percentage of different benthic 
foraminifera families
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and Purkis 2015; Xi et al. 2024). These high topographic 
complexity is in accordance with a constructive role of a liv-
ing biotic community capable of forming buildup structures 
as ecosystem engineers.

The present study on the isolated platform fragment off 
Al Wajh is a first description of a euphotic–mesophotic trend 
in a coral ecosystem in the Red Sea proper. The shallow part 
in the South of the platform fragment is characterized by a 

thriving deep-euphotic coral bioherm characterized by the 
presence of Poritidae and Merulinidae. The basins in the 
northern part are submerged in the mesophotic zone, reach-
ing down to 80 m water depth, with deeper depressions of 
130 m water depth, featuring abundant Antipatharia, octo-
corals, and Dendrophyliidae. The benthic community and 
sediment composition (taxonomic spectrum of corals, ben-
thic foraminifers) represent a succession consistent with a 

Fig. 7   SEM images of selected Benthic foraminifera species. A. 
Sahulia kerimbaensis (Said, 1949), family Textulariidae; B. Pseu-
doschlumbergerina ovata (Sidebottom, 1904), family Hauerinidae; C. 
Borelis schlumbergeri (Reichel, 1937), family Alveolinidae; D. Sori-
tes orbiculus (Forsskål in Niebuhr, 1775), family Soritidae; E. Boliv-
ina persiensis Lutze, 1974, family Bolivinitidae; F. Reussella spinu-
losa (Reuss, 1850), family Reussellidae; G. Neoconorbina terquemi 
(Rzehak, 1888), family Rosalinidae, spiral side; H. N. terquemi, 
umbilical side; I. Hanzawaia boueana, (d’Orbigny, 1846), family 
Discorbinellidae, spiral side; J. H. boueana, umbilical side; K. Het-

erolepa dutemplei, (d’Orbigny, 1846), family Cibicididae, spiral side; 
L. H. dutemplei, umbilical side; M. Amphistegina bicirculata Larsen, 
1976, family Amphisteginidae, spiral side; N. A. bicirculata, umbili-
cal side; O. Amphistegina radiata (Fichtel and Moll, 1798), family 
Amphisteginidae, spiral side; P. A. radiata, umbilical side; Q. Oper-
culina ammonoides (Gronovius, 1781), family Nummulitidae, evolute 
morphotype; R. O. ammonoides, involute morphotype; S. Tretompha-
lus bulloides (d’Orbigny, 1839), family Rosalinidae; T. Nonion sub-
turgidum (Cushman, 1924), family Nonionidae. Scale bars = 100 μm
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gradient from deep euphotic to deep mesophotic conditions. 
The photic trend is clearly reflected in the changes in the 
benthic taxa, in particular in the benthic foraminifer asso-
ciation. The most indicative group in this study is the large 
rotaliids, which host diatom symbionts, is represented by the 
families Amphisteginidae and Nummulitidae. They are very 
abundant throughout the entire analyzed bathymetric gradi-
ent, being very common down to 90 mwd and extremely rare 
at 130 mwd. The taxa that make up this group may live in 
euphotic conditions, but their morphological plasticity and 
the light range that their diatom symbionts can utilize allow 
their habitats to extend into mesophotic and even oligophotic 
conditions, particularly in the case of Nummulitidae (Pomar 
et al. 2017).

Notably, large symbiont-bearing miliolids (Soritidae and 
Alveolinidae), which are thriving in euphotic environments 
such as seagrass meadows (Pomar et al. 2017), have been 
commonly observed in the shallower samples, and become 
increasingly scarce with increasing depth, eventually disap-
pearing entirely around 85 mwd. The bathymetric range in 
which they appear, down to 83 mwd, does not correspond to 
the depth of the habitats they occupy. Therefore, it is highly 
likely that these large miliolids have been transported from 
adjacent shallow areas. Among the small benthic foraminif-
era, the presence of Cibicididae, Discorbinellidae, Rosa-
linidae, and Hauerinidae, although not exclusive to these 
habitats, is consistent with the presence of seagrass mead-
ows mentioned earlier, due to the frequently epiphytic nature 
of many species belonging to these families (Langer, 1993; 
Mateu-Vicens et al. 2014; Mariani et al., 2022).

Encrustations, dominated by encrusting foraminifers 
which were the most abundant group in all thin sections, 
with sporadic CCA and bryozoans, do not show a clear depth 
trend. This observation of abundant encrusting foraminifers, 
in particular acervulinids, acting as bioengineers in the mes-
ophotic zone is in line with previous descriptions from the 
Gulf of Aqaba and the northern Red Sea (Hottinger 1983; 
Dullo et al. 1990; Bracchi et al. 2023). However, encrusta-
tions by corals seem to be restricted to the euphotic zone.

The coral succession observed in the deeper-water 
depressions of the platform is similar to the mesophotic coral 
reefs of in the Gulf of Aqaba off Eilat with an upper meso-
photic zone (30–80 m) characterized by a high diversity of 
depth-generalist coral species and a lower mesophotic zone 
(80–160 m) dominated by the depth-specialist coral Leptos-
eris cf. striatus Saville Kent, 1871 (previously referred to 
as Leptoseris fragilis Milne Edwards and Haime, 1849, but 
also see Benzoni 2022, Vimercati et al. 2024a). The presence 
of fine-grained poorly sorted sediment covering the deeper 
parts of the platform fragment conforms with the notion of 
a near-absence of deep currents along the Red Sea margins 
(Petrovic et al. 2023b), while deeper-water currents might be 
present in the central basin of the Red Sea (Zhai et al. 2015).Ta
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In the present study, sampling was restricted to seafloor 
surfaces; thus, determination of biotic trends over time as 
well as a of ages below the upper crusts were not possible, 
limiting the study to a description of the status quo rather 
than allowing for a study of the development through time. 
The observations do not unequivocally substantiate whether 
the morphology and depth zones observed on this carbon-
ate platform fragment represent an event of drowning in the 
act caused by extensional faulting or by salt tectonically 
triggered sliding of the platform fragments (Petrovic et al. 
2023a), or whether stable photic conditions were sustained 
along on the isolated platform fragment for substantial 
time. The morphology of the platform surface reminds of 
a palimpsest (i.e., superimposed) morphology resembling 
a shallow-water reef surface (Fig. 3), which could indicate 
that the current mesophotic conditions represent a drowning 
sequence. However, this remains speculation on the basis of 
the available data.

In many respects, including organism groups and mor-
phological characteristics, the modern mesophotic coral eco-
system described here shows remarkable similarities with 
fossil assemblages from coral-dominated carbonate factories 
during the Cenozoic (i.e., during the last 66 million years) 
(see extensive review by Pomar et al. 2017). This is particu-
larly the case for those coral ecosystems thriving prior to 
the Upper Miocene (prior to the late Tortonian, i.e., 8.5 mil-
lion years ago [Ma]) (Pomar and Hallock 2007; Pomar et al. 
2017). Prelate-Tortonian bioconstructions in the mesophotic 
zone were primarily formed by corals, calcareous red algae, 
and occasionally encrusting foraminifers (i.e., Acervulini-
dae) (see Pomar et al. 2017; Gumati 1992; Plaziat and Perrin 
1992; Eichenseer 2003; Spring and Hansen 1998; Baceta 
et al. 2005, 2011; Aguirre et al. 2007; Mateu-Vicens et al. 
2012; Morsilli et al. 2012). During this time, shallow-water 
settings did not feature coral reefs but were dominated by 
seagrass meadows, an observation that has been connected 

to fact that the endosymbiotic algae genus Symbiodinium 
LaJeunesse, 2017 only afterward evolved to be able to cope 
with such high light intensities as they do today (Pomar and 
Hallock 2008; Pomar et al. 2017).

Cenozoic coral bioconstructions in the well-studied 
Central Tethys (roughly corresponding geographically to 
the modern Mediterranean) thrived under low-temperature 
conditions, particularly during distinct periods of the Ter-
tiary such as the early Paleocene (Danian, 66–61.6 Ma), in 
the Eocene (Bartonian-Priabonian, 41.2–33.9 Ma), and the 
early Oligocene (early Chattian, 27.8 Ma). These periods 
correspond to the first two diversification events of the coral 
endosymbiotic algae genus Symbiodinium, underlining the 
ecological importance of the evolution of this symbiont 
group for coral ecology. During the Early to Middle Mio-
cene (23–8.5 Ma), corals formed small buildups and scat-
tered colonies in the mesophotic zone (Pomar and Hallock 
2007). These authors propose that the main diversification of 
Symbiodinium and the changes in the structural patterns of 
coral bioherms coincide with significant temperature drops 
within a progressive cooling trend throughout the Cenozoic. 
This temperature decrease induced the formation of strong 
thermal gradients from shallow to deep-water settings, lead-
ing to the establishment of thermoclines. Below the thermo-
cline, water temperatures became too low for these corals 
to thrive, causing them to migrate upward from mesophotic 
to euphotic, warmer settings. Since the late Tortonian, the 
higher temperatures and increased light availability encoun-
tered in the surface waters, enhanced photosynthesis and its 
associated hypercalcification. This intense carbonate produc-
tion gave rise to “modern” reefs, forming high and wave-
resistant edifices. However, on the other hand, this upward 
movement exerted environmental pressure on the holobiont 
that required adaptation by the symbiotic zooxanthellae. 
The temperatures encountered in the water column of the 
Red Sea today, which are much higher than elsewhere in the 

Table 4   AMS radiocarbon dates and calibrated ages of corals and biogenic crusts

Radiocarbon laboratory code: AWI: Alfred Wegener Institute (Germany)

Station Lab code [AWI] Material 14C age (a BP) 1σ range (cal a BP) 2σ range (cal a BP) Median prob-
ability (cal a 
BP)

10 12,547.1.1 A (coral) − 194 ± 22 x X Recent
14 12,548.1.1 A (coral) 446 ± 22 x X Recent
14 12,548.2.2 B (crust) 616 ± 22 X x 603
17 12,549.1.1 A (coral) 1.311 ± 23 770–617 856–538 690
17 12,549.2.1 B (crust) 3 ± 22 x X Recent
17 12,550.1.1 A (coral) 687 ± 22 218–41 274–0 134
19 12,551.1.1 A (coral) 577 ± 22 X x Recent
21 12,552.1.1 A (coral) − 459 ± 22 X X Recent
21 12,552.2.1 B (crust) − 367 ± 22 x X Recent
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modern oceans and potentially comparable to the Cenozoic 
water column, might have a positive effect on calcification 
and reef accretion, turning them into closes modern analogs 
to Cenozoic mesophotic coral bioherms than mesophotic 
occurrences elsewhere. However, there are no studies avail-
able yet providing an assessment of calcification and accre-
tion rates of the mesophotic bioherms in the Red Sea, thus 
leaving this question open for future research.

To allow for comparison of the modern example pre-
sented here with Cenozoic coral bioherms consistently 
thriving below the wavebase, some representative exam-
ples are briefly revisited here. In the Eocene (56–33.9 Ma), 
coral bioherms in the pre-Pyrenees and Pyrenees in Spain 
(Plaziat and Perrin 1992; Eichenseer 2003; Mateu-Vicens 
et al. 2012) predominantly consisted of platy-domal to mas-
sive coral colonies, encrusted by the acervulid foraminifer 
Solenomeris Douvillé, 1924 and CCA, of form low-relief 
coral bioconstructions (2–10 m) of low coral diversity, with 
red-algal nodules and Solenomeris in a fine-grained bioclas-
tic matrix, indicating low-light and low-energy conditions. 
Locally, the coral bioherms are interbedded with sediments 
consisting largely of mesophotic foraminifers (Nummu-
litidae), with some allochthonous foraminifer taxa derived 
from seagrass meadows, and fragments of larger benthic 
foraminifers (LBF) such as Operculina d’Orbigny, 1826, 
and Discocyclina Gümbel, 1870. Similar to the succession 
described here, these coral colonies are encrusted by scarce 
calcareous red algae and encrusting foraminifers, including 
victoriellids, Fabiania Silvestri, 1924, Acervulina Schultze, 
1854, Solenomeris, and Haddonia Chapman, 1898. Some 
coral colonies are embedded in a fine-grained (wackestone 
to packstone) matrix with abundant red algae and flat LBF 
(Heterostegina d’Orbigny, 1826, Operculina, and discoidal 
Nummulites Lamarck, 1801), similar to those found here. In 
the same succession, the overlying Oligocene features coral 
colonies along the ramp profile, while no coral colonies, 
but seagrass meadows, were reported in shallower settings.

More recent coral bioherms from the Chattian of Apulia, 
Italy, also feature coral colonies forming mounds below the 
wave base, at the distal talus of the escarpment, and in mid-
dle ramp settings (Pomar et al. 2014). Coeval examples from 
the Zagros, Iran, are characterized by large coral buildups 
situated below the wave base, encrusted by calcareous red 
algae, and infilled with a fine-grained muddy matrix. This 
is typical for coral bioconstructions older than the Late 
Tortonian that are usually found in settings below the wave 
base in mesophotic middle ramp settings. Nevertheless, 
some examples also appeared on shallower platform tops 
above the wave base. This may have been due to low water 
transparency caused by terrigenous input, as observed in 
the Lower Miocene of Sardinia and South-Central Turkey 
(Bassant et al. 2004, 2005; Janson et al. 2007, 2010; Beni-
son et al., 2009, 2010; Pomar et al., 2012). In these areas, 

coral bioherms extended from the base of the slope up to the 
platform tops, flourishing above the wave base. Yet, instead 
of forming continuous reefs, these coral structures appeared 
as isolated buildups, with high-relief edifices only becoming 
common after the diversification of zooxanthellae in the Late 
Miocene (Pomar and Hallock 2007). In the Red Sea (e.g., 
Gebel Abu Shaar platform, Umluj outcrops) small build-
ups, biostromes, and coral carpets of poritid and faviid taxa 
occur along the rifted margins during Burdigalian/Langhian 
to Early Serravallian times (Perrin et al., 1989, Perrin 2000; 
Pisapia et al. 2024). These coral buildups developed on the 
footwall edges of basement rotated blocks, laterally associ-
ated with fan delta siliciclastic and/or bioclastic deposits 
containing rhodoliths, mollusks, and oolites. The corals did 
not form frameworks but rather cluster-segment reefs with 
a very fine-grained skeletal matrix.

Generally, under mesophotic to oligophotic conditions, 
reduced irradiance lowers photosynthesis and carbon assimi-
lation rates, although these remain sufficient to support algal 
growth despite limited nutrient availability (Pomar and Hal-
lock 2008; Pomar et al. 2017). In such environments, the 
advantages of algal symbiosis are subtle and episodic, pri-
marily enhancing nutrient recycling efficiency rather than 
producing large amounts of photosynthates, as seen in mod-
ern euphotic coral reefs (Pomar et al. 2017). Consequently, 
accretion rates of meso-oligophotic constructions are lower 
compared to those of euphotic coral systems (Pomar et al. 
2017). Nevertheless, at the scale of the bathymetric model, 
the geomorphometric analysis performed in this study indi-
cates that, although direct comparisons with fossil meso-
photic reefs are challenging due to differences in obtaining 
3D complexity data on a comparable scale, the morphology 
of the present mesophotic coral ecosystem suggests that 
sharp, complex features, frequently associated with modern 
active reefs, can also characterize an active mesophotic com-
munity. In fact, similar geomorphic features observed in this 
study have also been reported in euphotic reefs just north of 
the survey area (Purkis et al. 2010; Chalastani et al. 2020; 
Petrovic et al. 2022).

Modern mesophotic buildups thus are typically found 
in extremely clear, oligotrophic waters at depths greater 
than 30–50 m. The increased topographic complexity of 
the seafloor enhances the feeding competence of suspen-
sion feeders by inducing turbulence, thereby increasing the 
efficiency of currents carrying plankton, which serves as the 
primary food source for corals. In the view of interpreting 
fossil coral bioherms, it is important to note that the geom-
etry of bioconstructions not necessarily allows to distinguish 
between euphotic and mesophotic ones because mounds and 
carpets that are typical for the mesophotic can also occur in 
euphotic lagoons. The same concepts can also be applied 
to a remote sensing scale in modern environments, where 
similar complex geomorphic features typical from euphotic 
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areas can also occur in the mesophotic depths. However, 
when there is no ecological zonation, i.e., no difference 
in growth form, the possibility has to be considered that a 
fossil coral bioherm represents a mesophotic environment. 
However, as demonstrated in the present study, the skeletal 
assemblage, namely the taxonomy of corals, the high abun-
dance of encrusting foraminifers, and coralline algae typi-
cal for mesophotic conditions, plus the benthic foraminifer 
assemblages, allows to distinguish a mesophotic origin from 
a euphotic one.

Conclusions

The isolated carbonate platform fragment of the Al Wajh 
platform represents a depth trend from euphotic to upper 
mesophotic conditions, through shallow to deep mesophotic 
conditions and transition to the aphotic realm. The organ-
ismic communities reflect the photic gradient, in particular 
the foraminiferal assemblages, and indicate low hydrody-
namic energy in the mesophotic realm. The assemblages 
resemble the coral bioherms described from the pre-Upper 
Miocene Cenozoic when corals flourished in the mesophotic 
rather than the euphotic zone, as the light-resistant Symbiod-
inium strains had not evolved yet. The mesophotic example 
described here thus is an analog for pre-Tortonian, meso-
photic coral bioherms, and helps to interpret their ecology.
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