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ABSTRACT.—In the context of the biodiversity and 
climate crises, reliably documenting past and current species 
distributions is of paramount importance for deciphering 
the main drivers of species occurrences and range shifts and 
forecasting those under various global change scenarios. For 
that purpose, species observation records are essential and, 
according to the FAIR data principles, should be shared with 
a broad community of researchers and other stakeholders. 
Various databases have been created to compile and centralize 
information about biodiversity in recent years, among 
which the Ocean Biodiversity Information System (OBIS), 
dedicated to the marine realm, and the Global Biodiversity 
Information Facility (GBIF) are the most renowned ones. 
Here we evaluated how 38 selected “true mangrove” species 
are represented in those databases and assessed the quality 
and reliability of the information on geographical location 
of those observations. While OBIS and GBIF are extremely 
valuable databases, they still contain erroneous information, 
highlighting the need for closer communication among 
scientific experts and database managers together with the 
implementation of automated validation processes (e.g., using 
ecosystem distribution maps) to improve the data curation 
and data quality assurance processes. Further, we showed 
clear data deficiencies in many regions, including biodiversity 
hotspots. Many valuable observations are either hidden in 
publications or in private repositories but not shared with 
the global community, a practice that should change for 
the benefit of mangrove conservation and management. We 
encourage mangrove researchers to be proactive in correcting 
those data deficiencies by systematically submitting their 
observations, following the FAIR data principles.

In the face of the current biodiversity and climate crises, identifying species and 
areas of higher priority for conservation or restoration is a crucial step for efficient 
species or ecosystem management. In this regard, a reliable and comprehensive 
documentation of current species distribution is essential. For instance, recent 
studies in the Bangladesh Sundarbans pointed out that existing protected areas may 
not be able to effectively cover even the current local biodiversity hotspots or the 
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core habitats of threatened mangrove species of socioeconomic relevance (Sarker 
et al. 2016, 2019b). Further, considering the ongoing global change effects, optimal 
management strategies should be adaptive and consider not only current biodiversity 
hotspots or core range of target species, but also the locations where these important 
habitats or species are predicted to be in the future (Hannah et al. 2007, McLeod et 
al. 2009, Helfer and Zimmer 2018). In this context too, the reliable documentation 
of past and current species distribution is of paramount importance to decipher the 
main drivers of species occurrence and use this information to forecast distribution 
range shifts of species or communities under future climate and development 
scenarios, using species or community distribution modeling approaches (Rodríguez 
et al. 2007, Zellmer et al. 2019). Beyond the prediction of species distribution per se, 
species distribution modeling is also increasingly utilized in trait-based approaches 
for predicting community structure and ecosystem services under the influence 
of climate change (Frenette-Dussault et al. 2013, Moor et al. 2015, Green et al. 
2022). In the case of mangrove ecosystems, many recent studies on the drivers of 
their distribution, vulnerability and resilience, and how these will be impacted by 
anthropogenic pressure and climate change utilized remote sensing data at the 
ecosystem level (e.g., coverage, above-ground biomass; Duncan et al. 2018, Gouvêa 
et al. 2022, Amaral et al. 2023). While species composition and functional traits 
are known to influence ecosystem properties and processes (Symstad et al. 1998, 
Baeten et al. 2019, Luo et al. 2019), studies at species or community level still heavily 
depend on field-collected data (e.g., Sarker et al. 2019a,b), as long as remote-sensing 
techniques cannot unequivocally identify species—this might change in the near 
future as the fields of remote sensing and artificial intelligence progress rapidly, and 
are thus far mostly restricted to local or regional studies.

True mangroves, a group of vascular plants specialized morphologically and 
physiologically to inhabit exclusively the mid and upper intertidal zone of tropical 
and subtropical coasts, play a major role in structuring mangrove communities 
(Tomlinson 2016). Understanding how true mangrove species respond to climate 
change using trait-based approaches (e.g., Li et al. 2022) could help to predict the 
properties and processes of mangrove ecosystems under climate change. While a 
functional trait dataset of true mangroves is available (Quadros and Zimmer 2017), 
the data is not georeferenced and can therefore not be used for distribution modeling. 
Concurrently while plant trait databases such as the TRY plant trait database (Kattge 
et al. 2020) and the Global Inventory of Floras and Traits database (GIFT; Weigelt et 
al. 2020) contain trait measurement of mangrove species, these data are not always 
georeferenced. For both distribution modeling and trait-based studies, species 
observation records (i.e., occurrence or presence data) are essential, and studying 
global issues such as climate change requires a global data input (Turnhout and 
Boonman-Berson 2011).

Since the late 1990s various biodiversity databases have been created to compile, 
centralize, and make publicly available information about biodiversity. Among them, 
The Global Biodiversity Information Facility (GBIF; launched in 2001) is currently the 
largest and most comprehensive biodiversity database, and the Ocean Biodiversity 
Information System (OBIS; launched in 2000) is the global biodiversity database 
dedicated to marine species. Since the publication of the FAIR (Findable, Accessible, 
Interoperable, Reusable) Guiding Principle (Wilkinson et al. 2016), enormous efforts 
have been made to share and standardize biological observations with a broad 
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community of researchers and other stakeholders. In recent years, the potential use 
of biodiversity data contributed by citizen science projects such as iNaturalist has 
been explored, and these data are being incorporated into biodiversity databases 
such as GBIF notably (De Cecco et al. 2021). As a result, the input and use of data in 
these databases have rapidly increased over the years, including the use in species 
or community distribution modeling and for predicting those under climate change 
scenarios (Heberling et al. 2021).

As these species occurrence data are collected across a relatively large time scale 
by various contributors using different methodologies, and imported from different 
source repositories, quality and completeness of these data may vary even when data 
standards (such as Darwin Core; Wieczorek et al. 2012) are followed. While those data 
quality issues have been reported in various studies focusing on different taxa, quality 
of data is not always properly considered by biodiversity data users (Ball-Damerow et 
al. 2019). The most addressed quality issues include incomplete or missing spatial or 
temporal information (e.g., Vandepitte et al. 2015, Serra-Diaz et al. 2017, Colli-Silva 
et al. 2020), geospatial errors or uncertainties (e.g., Yesson et al. 2007, Maldonado 
et al. 2015, Vandepitte et al. 2015, Ribeiro et al. 2022) and taxonomic errors (e.g., 
Gaiji et al. 2013, Freitas et al. 2020, Ribeiro et al. 2022). Further, duplicates were also 
found in these biodiversity databases (Mesibov 2013, Moudrý and Devillers 2020), 
and taxonomic or spatial bias (e.g., Beck et al. 2014, Troudet et al. 2017) and data gaps 
(e.g., Feeley 2015, Garcia-Rosello et al. 2023) were also highlighted. While the errors 
or uncertainties mentioned above might be of minimal impact for macroscopic 
studies (e.g., Queiroz et al. 2021), for other applications, such as abundance-based 
distribution models aiming at better linking species effect on ecosystem processes 
(Waldock et al. 2022), this would lead to biased habitat suitability maps that will then 
lead to wrong assessment of the effect of a species for specific ecosystem processes.

This study assessed the availability and quality of occurrence data of selected true 
mangrove species from the Global Biodiversity Information Facility (GBIF) and the 
Ocean Biodiversity Information System (OBIS), the two major global biodiversity 
databases. Here the following were assessed: (i) availability of occurrence data, (ii) 
availability of information for the distinct entries, particularly those related to the 
basis of record and georeferencing, and (iii) quality and reliability of the geographical 
location of the occurrence data. The results of the current study provides insights on 
the suitability of true mangrove occurrence data for species distribution and trait 
modeling analyses.

Materials and Methods

Selection of the Target Species.—From the 73 plant species or hybrids 
reported to occur in mangrove ecosystems (status Spalding et al. 2010; see Appendix 
1), we retained only the major true mangroves, i.e., species of true mangroves that 
can form pure stands (as opposed to species considered minor components, following 
Tomlinson 2016), summing up to 44 species from nine genera.

The species taxonomy was verified in the World Register of Marine Species 
(WoRMS, Horton et al. 2021); in case of discrepancy between WoRMS and Spalding 
et al. (2010), the taxonomy proposed in WoRMS was retained and used for data 
acquisition from the various databases, as it is frequently updated and verified and it is 
also used by OBIS and GBIF as a taxonomy backbone (Costello and Appeltans 2008). 
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As a result, Rhizophora harrisonii in OBIS was labeled R. × harrisonii in this study, 
and WoRMS-accepted Avicennia germinans was retained instead of Hilairanthus 
germinans (accepted name of A. germinans on GBIF at the time of data acquisition). 
Avicennia rumphiana, listed as a species in Spalding et al. (2010), is recognized as 
a subspecies of Avicennia marina (A. marina subsp. rumphiana) in WoRMS and 
Lumnitzera × rosea, although accepted at the species rank in WoRMS (but with the 
taxonomic remark Lumnitzera littorea × Lumnitzera racemosa), was considered as 
a synonym of Lm. racemosa in GBIF; those two taxa were therefore not retained for 
data download (but occurrences of A. marina subsp. rumphiana were contained in 
the dataset for the parent species; no occurrence of L. × rosea was recovered from 
the parent species dataset, although some entries contained “L. rosea” for the GBIF 
attribute scientificName). While Ceriops australis was accepted as synonym of 
Ceriops tagal in GBIF at the time of data acquisition, it was considered a valid species 
elsewhere (in OBIS and in WoRMS) and treated as such within this study. The final 
number of species retained for data acquisition after taxonomic verification was 42 
(see Appendix 2).

Data Acquisition.—In the initial phase of this study, several databases 
were explored to get occurrence data for the target species, including the Global 
Biodiversity Information Facility (GBIF), the Ocean Biodiversity Information System 
(OBIS), the Mangrove Reference Database and Herbarium (MRDH; Dahdouh-
Guebas 2023), and Tropicos (Missouri Botanical Garden 2023). Only GBIF and OBIS 
were retained for this study as the two are the most used biodiversity databases in 
the literature (Ball-Damerow et al. 2019) which provide georeferenced occurrence 
data for various species, including mangroves. While both MRDH and Tropicos also 
contain georeferenced data for the selected mangrove species, direct extraction of 
the data was not available for MRDH, and only brief records with coordinates down 
to minutes were available on Tropicos, thus these two databases were not further 
explored.

GBIF (www.gbif.org) is an international organization network which aims at 
providing free and open access biodiversity data, aggregating and making available 
information from various sources such as museum specimens, DNA barcodes and 
published datasets. GBIF also receives public-contributed data by including user-
verified, “research-grade” occurrence data from the iNaturalist platform. As of 
September 2023, GBIF holds over 2.4 billion georeferenced entries. OBIS (www.obis.
org) is a marine biogeographic information system managed by an International 
Committee which receives, maintains quality, publishes and provides free and open 
access to biogeographic information of marine species, and is one of the earliest 
Associate Members and largest publishers of data to GBIF (Costello et al. 2007). As of 
September 2023, OBIS provides about 120 million presence records of over 180,000 
marine species, of which 54 million records were already provided to GBIF.

Occurrence data was available for 38 of the 42 selected species (see Appendix 1), 
and were extracted from the OBIS and GBIF databases in December 2021 (the R 
script for the data acquisition and curation processes is available on Github and 
Zenodo (https://github.com/Mangroven/Mangroveobs_GBIFOBIS, https://10.5281/
zenodo.15836331). Data from OBIS were downloaded using the occurrence function 
of the official robis R package (OBIS 2021, Provoost et al. 2022; see Appendix 3 for 
individual dataset citations). For GBIF, occurrence data was downloaded directly 
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from their portal, using the “simple” version of occurrence data option (see Appendix 
4 for data download DOIs); entries without coordinates, with zero coordinates 
(of coordinates of 0°N and 0°E, which indicates that errors possibly occurred in 
recording geographical coordinates; flagged “ZERO_COORDINATE” by GBIF), 
and/or with coordinates mismatch with country information (flagged “COUNTRY_
COORDINATE_MISMATCH”) were excluded using filters available on the GBIF 
portal (for occurrence data of A. marina, by mistake, coordinate-related filters 
were not applied; the entries without coordinates, with zero coordinates or with 
coordinate mismatch were removed manually after data download from GBIF). 
Occurrence data for subspecies or varieties of the 38 selected species that were 
accepted in WoRMS (A. marina subsp. australasica, A. m. subsp. marina, A. m. 
subsp. rumphiana, A. m. var. intermedia; Laguncularia racemosa var. glabriflora, Lg. 
racemosa var. racemosa; Lm. racemosa var. racemosa) were included in the species 
downloads (this was verified by extracting those data from GBIF independently from 
the species data and comparing the results to the species data). The data acquisition 
process is summarized in Appendix 5.

After acquisition of occurrence data from the two biodiversity databases, the 
dataset was simplified to retain only those attributes that were relevant for subsequent 
analysis, particularly those related to taxonomy, geospatial location, collection date, 
source of data, and quality remarks/flags were retained for further data curation. 
As a result, 25 out of 51 attributes from GBIF data and 32 out of 124 attributes 
from OBIS data were retained (see Appendix 6). Some additional attributes (such as 
“nameinlist”; for more details, see the data acquisition and curation R script used in 
this study) were then added to facilitate subsequent data handling and curation.

Data Curation.—Looking for Duplicates Within and Across Databases.—
Occurrence data acquired from OBIS and GBIF were then combined (an additional 
attribute, “database”, indicating the source of the data was added) and checked for 
duplicates within and across databases using R version 4.3.1 (R Core Team 2023) 
within RStudio v2023.6.2.561 (Posit Team 2023), using the “group_by” and “mutate” 
functions of the dplyr package. Because of the absence (at the time of data acquisition 
as of now) of any universal unique identifiers for occurrence data across the two 
databases, identifying truly shared data in GBIF and OBIS data was impossible (as 
discussed in Moudrý and Devillers 2020).

Complete duplicates (entries that have appeared more than once with identical 
information except for the attributes “ID” and “database” across database 
duplicates) were first identified within each database independently, and then across 
databases. Complete duplicates across and within databases were deduplicated 
using the “distinct” function in R. Potentially duplicated entries within and across 
databases were then identified based on the species (“nameinlist”), the location 
(“decimalLatitude” and “decimalLongitude” attributes), and the time (“eventDate”, 
“day”, “month”, and “year” attributes) the occurrences were recorded. Only potential 
duplicates across databases were then further deduplicated after manual inspection, 
retaining the entry with more nonempty attributes.

Excluding Unsuitable Occurrence Data.—After deduplication, the occurrence data 
were further examined to exclude entries that were unsuitable for the purpose of the 
current study (i.e., assessing availability and quality of true mangroves occurrence 
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data for species or trait modeling). Entries that were (i) referring to fossil records or 
living specimens (a specimen that is alive, e.g., a living plant in a botanical garden) as 
specified in the attribute basisOfRecord, (ii) flagged as having potentially unreliable 
information on geographical location (i.e., “GEODETIC_DATUM_INVALID” and 
“PRESUMED_SWAPPED_COORDINATE” in the attribute “issueFlag”), (iii) located 
outside the latitudinal range of mangroves (32°N–39°S; adopted from Saenger et 
al. 2019), or (iv) without information on year (i.e., empty “year” and “eventDate” 
attributes) were excluded.

Checking the Reliability of the Spatial Location.—The occurrence data were 
then imported to QGIS 3.28 (QGIS 2023) for further inspection. The “join by 
nearest” function was used with the “global biophysical typology of mangroves” 
map (Worthington et al. 2020) to (i) identify occurrences that were outside known 
mangrove areas and (ii) calculate distances of these occurrences to the nearest 
mangrove patch. 

The data curation process is summarized in the Supplementary Appendix S7.

Descriptive Statistics and Graphical Visualization of Curated 
Dataset.—The curated dataset was further explored using R to document the 
number of (i) entries by species (considering also the biogeographical region or Flora 
they belong to Indo-West Pacific or Atlantic-East Pacific); (ii) species by number of 
entries (organized by classes: <10, 10–49, 50–99, 100–999, 1000–9999, >10,000); (iii) 
entries by countries of record (based on the attributes “country” and “countryCodes” 
provided by GBIF and OBIS); (iv) entries by basis of record.

The temporal distribution of the data was examined based on the attribute “year” 
and “eventDate”. Besides, the coordinate accuracy and precision of the occurrence data 
were also examined. Coordinate accuracy was estimated using the number of decimal 
places of the coordinates (i.e., rounding of the coordinates; see Moudrý and Devillers 
2020); whenever there was a difference in the number of decimal places between 
latitude and longitude, the one with the greater number of decimals was considered. 
Coordinate precision was assessed based on the “coordinateUncertaintyInMeters” 
or “coordinatePrecision” attributes as provided by GBIF and OBIS.

The curated dataset was also explored using QGIS and species distribution range 
maps from the IUCN red list assessment to identify (i) entries that were outside 
the documented distribution range of species, especially species that have reported 
introduced or invasive populations (such as Bruguiera gymnorrhiza, Lg. racemosa, 
Sonneratia apetala), and (ii) potential spatial data gaps in mangrove occurrence 
data. Besides, we plotted the number of occurrences against national mangrove 
area (following Hamilton and Casey 2016) on R to investigate whether there is a 
relationship between data availability and mangrove area and detect potential data 
deficiency in countries with a large national mangrove area.

Finally, we examined the distribution of environmental data, which would be 
essential in distribution and trait modeling, by extracting those on QGIS for (1) the 
curated occurrence data using the point sampling tool plugin (extracting values 
for each points, thus approaching abundance-based modeling), (2) the curated 
occurrence data after conversion to a raster (extracting only one value per cell, that 
contained potentially several curated occurrence data, thus approaching occurrence-
based modeling) using the raster calculator and raster pixel to points tools, and (3) 
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the known species distribution (IUCN Red List documented distribution) using the 
clip raster by mask layer and raster pixel to points tools. We concentrated here only 
on the annual mean temperature (BIO1) and the annual precipitation (BIO12) of the 
WorldClim bioclimatic data at 30 s resolution (Fick and Hijmans 2017).

Results

Overall, occurrence data were available for all 38 selected species. GBIF contained 
data for all 38 species, including three subspecies (A. marina subsp. australasica, A. 
marina subsp. marina, A. marina subsp. rumphiana) and four varieties (A. marina 
var. intermedia; Lg. racemosa var. glabriflora, Lg. r. var. racemosa; Lm. racemosa var. 
racemosa) accepted in WoRMS. From OBIS, occurrence data could be extracted only 
for 30 species (with only one subspecies: A. m. subsp. eucalyptifolia but was already 
included in the observation data of its parent species A. marina). A total of 84,299 
entries were downloaded, with 47,655 and 36,644 entries downloaded from GBIF and 
OBIS respectively (Appendix 2).

Data Curation.—Looking for Duplicates Within and Across Databases.—We 
identified 18,921 entries (of which 95.89%, i.e., 18,130 entries, were from the GBIF 
database) as complete duplicates (i.e., entries that have appeared more than once with 
identical information, except entry identifier/ID, and the source database for across 
database duplicates), which represent 22.45% of the whole dataset. Deduplication of 
those entries (i.e., removal of repeated entries) resulted in the exclusion of 16,729 
entries and a remaining dataset of 67,570 entries. No complete duplicates were found 
across databases.

While further inspecting the dataset for potential duplicates, we identified four 
entries as across-database potential duplicates based on species, location and time 
of collection. Those across-database duplicates were deduplicated and only the 
GBIF entries (n = 2) were retained, as they contained more non-empty attributes 
than the corresponding OBIS entries, resulting in a dataset of 67,568 entries. Further 
inspection conducted within each database separately detected 1998 entries within 
GBIF and 102 within OBIS as potential duplicates based on species, geographical 
location and day, month and year of record. As it could not be confirmed whether 
these potential duplicates were true duplicates, they were retained for subsequent 
analyses.

Excluding Unsuitable Occurrence Data.—The remaining dataset was further 
curated, and four and 14 entries (from GBIF) referred to as fossil or living specimens 
respectively were removed. Additionally, 27 and 828 entries from the GBIF database 
were suspected to have swapped coordinates (flagged “PRESUMED_SWAPPED_
COORDINATE”) or an invalid geodetic datum (flagged “GEODETIC_DATUM_
INVALID”) and were excluded. Another 60 entries (59 from GBIF and one from 
OBIS) were located outside the latitudinal range of mangroves (32°N–39°S); they 
were referred to as preserved specimen, human observation or “unknown” in the 
attribute basisOfRecord; we considered those occurrences as dubious and excluded 
them from subsequent analyses. Finally, another 1774 entries were removed as 
no information could be retrieved for the year of observation (empty “year” and 
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“eventDate” attributes). Removing all unsuitable entries (n = 2707) resulted in 64,861 
remaining entries.

Checking the Reliability of the Spatial Location.—The last step of the data curation, 
consisting in verifying that the occurrences were located within documented 
mangrove stands (following Worthington et al. 2020), resulted in the exclusion of 
38,056 entries and a final curated dataset of 26,805 entries (GBIF: 17.74%, n = 4755; 
OBIS: 82.26%, n =22,050), documenting the distribution of 37 species (Appendix 2; 
Sonneratia griffithii that had initially seven entries in GBIF was not represented in 
the curated dataset). Overall, the whole data curation resulted in a loss of 68.20% of 
the initial data.

Descriptive Statistics and Graphical Visualization of Curated 
Dataset.—Regarding the taxonomic coverage of the entries retained in our 
final dataset, we could observe a strong taxonomic bias, with only three species 
(Avicennia marina, C. tagal, and R. stylosa; all from the IWP region) constituting 
82.78% (22,188) of all (26,805) retained entries (Appendix 8A), and about half (20 out 
of 37) of the species (AEP and IWP combined) were represented in the final dataset 
with less than 50 entries (Fig. 1). However, when data from Australia (n = 23,247), 
which dominated the curated dataset, were excluded, three AEP species (Rhizophora 
mangle, A. germinans, and Lg. racemosa) dominated the remaining data, constituting 
72.57% (2582) of all (3558) remaining entries (Appendix 8B).

Looking at the geographical distribution of the data, the retained entries were 
recorded from 79 countries / regions (e.g., Hong Kong), with no relevant information 
for 13 entries (representing 0.05% of the data). There was a strong spatial bias in 
the data provenance, with 86.73% (n = 23,247) of the retained entries coming from 
Australia, followed by Mexico (4.2%; n = 1125) and Brazil (2.16%; n = 579); remaining 
countries represented only 6.87% (n = 1841) of the data (Appendix 9).

Figure 1. Number of species by number of entries (organized by classes) after data curation (n = 
26,805; GBIF and OBIS data combined).
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Looking at the type of observations (attribute basisOfRecord), a majority of the 
retained entries were obtained by direct human observation (92.56%; 2908 from GBIF 
and 21,902 from OBIS), followed by preserved specimens (6.76%; 1664 from GBIF 
and 148 from OBIS). One entry and 14 entries from GBIF were reported as “machine 
observation” (i.e., output of a machine observation process, e.g., photograph, a video, 
an audio recording, or a remote sensing image) and “material sample” (i.e., a material 
entity, e.g., whole or part of an organism, soil or microbial sample) respectively. 
A total of 168 entries (0.63% of retained entries, all from GBIF) from several data 
contributors (as indicated in the attribute institutionCode) were provided with the 
attribute basisOfRecord as “UNKNOWN” (Appendix 10). A closer inspection of those 
entries with an unknown (but non-empty) basis of record, revealed that most of them 
were related to herbarium datasets; as no indication that those observations could 
be based on fossil or living specimens from artificial environments (e.g., botanical 
garden) was found, those entries were retained. A more stringent curation of the data 
could consider excluding those entries from the final dataset, as we cannot ascertain 
that those observations relate to individuals living in their natural environment.

The temporal distribution of the data, ranging from 1886 to 2021 (year of data 
acquisition), showed some anomalies, with a huge data input (66.5%; n = 17,833) in 
2001 [Appendix 11A, originating from one country (Australia), and another high 
data input in 1996 (13.05%; n = 3497) with 99.17% (n = 3468) originating from 
Australia]. Besides these two anomalies, there is an increasing trend in data with a 
higher increase since 1990 (Appendix 11B).

Regarding the precision of the coordinates, a majority (98.89%, n = 26,501) of the 
retained data had coordinates with four or more decimal places (Fig. 2A), which 
corresponds to ≤11-m accuracy at the equator (Moudrý and Devillers 2020). For 
coordinate precision, 97.08% of the OBIS data had a precision of 0.1–1 km. However, 
coordinate precision information was missing for about 2% of the OBIS data, and 
up to 43.53% of the GBIF data did not provide a valid coordinate precision (Fig. 2B).

Examining the retained data, one species was found to have entries located far 
from its documented distributed range; R. mangle, an AEP exclusive species, had 
an entry from GBIF data obtained from human observation (according to attribute 
basisOfRecord) located far from the species’ known distribution range in Bangladesh 
(Fig. 3). Further, while its native range is well covered with occurrence data in the 
Americas (with some exceptions such as in parts of Venezuela, Guiana and Suriname), 
its distribution range in Africa is not well-covered, showing a data deficiency in Gulf 
of Guinea (including Nigeria, Cameroon, Gabon, Congo, Ivory Coast, and Liberia) 
and Sierra Leone.

Looking at spatial distribution of the data for A. marina, which had the highest 
number of retained entries (n = 10,677), most entries (98.28%; n = 10,493) were 
originating from Australia (Fig. 4). Despite having a very high number of entries, 
occurrence data were absent from many areas across its native range, including 
southeast Asia.

Finally, comparing the number of entries recorded from different countries and 
the national mangrove area, we can observe two outliers (Fig. 5A): (i) Australia 
with the highest number of entries while having only the fifth largest national 
mangrove area, constituting 3% of the world’s mangroves (Hamilton and Casey 
2016); (ii) Indonesia with a very low number of entries, while it is the country 
with the highest national mangrove area, also known to shelter a very high 
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Figure 2. (A) Number of entries by decimal places of coordinates; (B) number of observations by 
coordinate precision. In black, data from GBIF; in grey, data from OBIS.

A

B
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biodiversity, with 43 true mangrove species (FAO 2005). After removing those 
two outliers, to inspect the data further, we see that Brazil, and to some extent 
Malaysia and Papua New Guinea, are presenting a similar pattern as Indonesia 
(relatively low number of entries relative to the national mangrove area), while 
Mexico and the United States exhibit a similar pattern as Australia (Fig. 5B).  
When compared against documented mangroves, distribution of the occurrence 
data within countries were not evenly distributed, even in countries with the highest 
number of entries in the retained data. For example, for Australia, most of the 
occurrence data retained were from the northeastern mangroves; mangroves from 
western Australia were underrepresented (Fig. 6A). In the United States, Brazil and 

Figure 3. Retained occurrence data of Rhizophora mangle (black) and known native range of the 
species (dark grey; Ellison et al. 2015). Grey circles indicate data deficient areas. Base map data 
from Natural Earth.

Figure 4. Retained occurrence data of Avicennia marina (black) and known native range of the 
species (dark grey; Duke et al. 2010). Base map data from Natural Earth.
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A

B

Figure 5. Relation between the number of retained occurrence data and the national mangrove 
area (following Hamilton and Casey 2016) of (A) all countries with retained occurrence data and 
(B) with Australia and Indonesia excluded. Country abbreviations: AU = Australia, BR = Brazil, 
ID = Indonesia, MX = Mexico, MY = Malaysia, PG = Papua New Guinea, US = United States. 
Base map data from Natural Earth.
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Mexico (Fig. 6B, C, and D, respectively), countries from which a high number of entries 
were retrieved, the data coverage was more even, but data gaps could be observed in 
some locations. In countries that have a large mangrove national area with a deficient 
data coverage, occurrence data were distributed across various locations within the 
country in Indonesia and Malaysia (Fig. 6E and F) but was relatively constrained 
geographically in several locations in Papua New Guinea (Fig. 6G).

For both A. marina and R. mangle, who had a high number of retained entries in the 
curated data whose distribution was not evenly distributed across the species range, 
the distribution of the climatic data differed when extracted using occurrence data 
or the known species distribution as mask for the extraction (Fig. 7). For A. marina, 
the distribution of the temperature data (Fig. 7A) was similar for both datasets 
(extraction from the occurrence data or from the species known distribution), but 
the distribution of the precipitation data was not (Fig. 7B), with the occurrence data 
covering areas with low precipitations while the whole species range encompasses 
a much wider range or precipitation patterns. For R. mangle, the distribution of the 
temperature (Fig. 7C) data was bimodal for the occurrence data, with a mode at ca. 
24 °C which is not observed in the distribution over the whole species range (which 
shows a higher density at ca. 27 °C). For the precipitations (Fig. 7D), the two datasets 
show clearly different patterns, with lower precipitations in the areas covered by the 
occurrence dataset, while the dataset extracted from the known species distribution 
range show higher densities at higher precipitations (with a mode at ca. 2500 mm). 
For both species and climatic variables, a similar distribution of data was observed 
for the point-based (curated observation data) and the raster-based (raster cells that 
contained at least one curated observation data) extractions.

Discussion

Duplicates and Shared Data.—About 42% (18,130 out of 47,655 entries) and 2% 
(791 out of 36,644 entries) of occurrence data from GBIF and OBIS respectively, for 
the 38 selected true mangrove species, were identified as either complete or potential 
duplicates in this study, which overall constituted approximately 24% (18,921 out of 
84,299 entries) of the occurrence data acquired from the two biodiversity databases. 
Slightly lower proportion (37%) of duplicates were reported for marine mammal 
occurrence data from the GBIF database by Moudrý and Devillers (2020), while 
much lower proportions were reported for the overall GBIF database (about 10%; 
Gaiji et al. 2013). For OBIS data, the observed proportion of duplicates is lower than 
that observed by Moudrý and Devillers (2020) for marine mammals (19%). Overall, 
the proportions of duplicated data were lower in OBIS than GBIF. Unlike previous 
studies where duplicates were identified based on taxonomical (species), temporal 
(date of data collection) and geospatial (coordinates) information only (Gaiji et 
al. 2013, Moudrý and Devillers 2020), duplicates in this study were dominated by 
complete duplicates, that were defined as repeated entries with identical information 
except of entry identifier/ID and were nonetheless found in high proportions, 
predominantly in the GBIF database.

While the likelihood of independent observation of a species at the same location 
and time is a priori quite low, such cases can occur especially for the GBIF database 
that incorporates citizen science-contributed data (e.g., from iNaturalist; input of 
multiple spatially and temporally identical observations of the same species from 
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Figure 6. Retained occurrence data (black) and mapped mangrove area (gray; Worthington et 
al. 2020) of (A) Australia, (B) the United States, (C) Brazil, (D) Mexico, (E) Indonesia, (F) 
Malaysia, and (G) Papua New Guinea. Base map data from Natural Earth.
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different observers during citizen science events is indeed possible in these publicly 
contributed biodiversity platforms). Nonetheless, among the GBIF complete 
duplicates identified within this study, only 0.9% (n = 163) were provided by the 
iNaturalist platform (as specified for the attribute institutionCode). Besides citizen 
science-contributed data, there are several alternative causes that could lead to 
duplicated entries in biodiversity databases. For example, collection of multiple 
specimens of the same species at the same date and location (Mesibov 2013) could 
be filed as separated entries in herbarium- or museum-contributed datasets, or field 
observations of the several individuals of the same species at the same location and 
date, especially if the location is determined at a sampling unit scale that could 
encompass several individuals of the same species (plots in forest structure survey) 
could result in identical data similar to the complete duplicates identified in this 
study. This could be the case of the current study as observation entries from human 
observation and preserved specimens (likely from herbarium or museum collections) 
dominated the dataset (Appendix 10). Duplicates could also be caused by repeated 
entry of the same observation into a dataset (by mistake), or aggregation of the same 
observation existing in separate datasets (i.e., submission of the same observation 
to distinct repositories that are regularly exchanging data). Regarding the latter, we 
detected only four entries (<0.05% of the acquired occurrence data) as potentially 
duplicated entries between GBIF and OBIS, suggesting that there was some data 
sharing between the databases, or that the observer provided their data to the two 

Figure 7. Kernel Density Plots of WorldClim bioclimatic variables at 30 s resolution (Fick and 
Hijmans 2017) extracted using mangrove curated occurrence data (in black), and species known 
distribution in IUCN red list (in gray). For the curated occurrence data, the full and the double-
dash lines represent the data obtained using the point-based (mimicking abundance-based mod-
els) and raster-based (mimicking occurrence-based models) extraction approaches, respectively. 
(A) Annual mean temperature for Avicennia marina; (B) Annual precipitation for A. marina; (C) 
Annual mean temperature for Rhizophora mangle; (D) Annual precipitation for R. mangle. Plots 
were generated in R using the ggplot function.
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databases independently; due to the very low number of occurrences concerned, the 
last option is more plausible. The proportion of possibly shared data detected for 
true mangroves was unexpectedly extremely low since the two major biodiversity 
databases are in ongoing cooperation and over 50 million occurrence records from 
OBIS have been shared to GBIF (Costello et al. 2007). Moudrý and Devillers (2020) 
reported about 11% of marine mammal occurrence data being shared between OBIS 
and GBIF, a proportion that might have been overestimated as they used loser criteria 
(latitude and longitude coordinates only) used for identifying potentially shared 
data; in the current study, both spatial (decimalLatitude and decimalLongitude) and 
temporal (eventDate, day, month, year) attributes were considered. Finally, duplicates 
and/or shared data could have been underestimated, in this study and in general, due 
to failed detection caused by missing or incomplete values provided in key attributes 
related to spatial and/or temporal information, or data heterogeneity (i.e., multiple 
variants representing the same attribute values, as a result of a lack of standardized 
vocabulary; Chapman et al. 2020). Identifying shared data between biodiversity 
databases is challenging, as the exchange of data between these databases is often 
not clearly documented and has therefore to be deduced by the data users themselves 
(Feng et al. 2022). While the presence of duplicated data would not be problematic in 
the case of occurrence-based models, they could provide a biased representation of 
a species distribution when applying abundance-based species distribution models, 
that are particularly relevant when trying to relate species effect on ecosystem 
properties, processes, and services (Waldock et al. 2022).

Missing and Dubious Information Related to Geographic Location.—
The retained entries (from the curated dataset) had coordinates provided with a 
high accuracy; coordinates of nearly all the retained entries were provided with four 
decimal places or higher, and most (>95%) were at five decimal places or higher (Fig. 
2A). This corresponds to an accuracy of one meter or higher at the equator, which 
would allow for the distinction of individual trees (Moudrý and Devillers, 2020). This 
accuracy is more than adequate for geographically extensive studies of sessile species 
such as modeling future distribution of widely distributed mangrove species, where 
regional or global climatic datasets used as predictors are often of lower resolution. 
For example, WorldClim bioclimatic variables are available at highest resolution of 
30 seconds (approximately 900 meters at equator; Fick and Hijmans 2017). The high 
coordinate accuracy would also make local studies (e.g., within a mangrove reserve) 
using those occurrence data possible. Yet, information about coordinate accuracy is 
not always available in species occurrence data from GBIF or OBIS (Ball-Damerow 
et al. 2019, Moudrý and Devillers 2020). In the current study, about ten percent of all 
retained entries (n = 2496 out of 26,805 entries) were missing information about the 
coordinate precision, especially in the GBIF data (Fig. 2B); in general, data from OBIS 
had higher coordinate accuracy and precision than those from GBIF.

Less than half (n = 26,805; 31.80%) of the acquired occurrence data for the selected 
true mangrove species were located within mapped mangrove stands. Mangrove 
occurrences outside mangrove areas could be because of an incorrect, but accurate 
and precise, location being provided. For example, for observations from preserved 
specimens, geographic locations of herbariums where the specimens are stored, 
instead of locations of specimen collection, were apparently provided for a few of 
the entries examined in this study (e.g., an A. marina stored at Fairchild Tropical 
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Botanic Garden, United States, with recorded coordinates of the herbarium). For 
observations from direct observation, such error can be caused by the observer’s 
location instead of the species’ location being recorded (Moudrý and Devillers 2020), 
albeit in theory this should be relatively uncommon for occurrence data of plants 
where observations are less likely to be made at a far distance from the trees than 
highly mobile animals. Information such as the basis of record could help identify 
the source of this type of dubious observation, but this information is sometimes not 
meaningful. While the field BasisOfRecord is required for data submission to both 
GBIF and OBIS, it was not clearly specified (was reported with mention “Unknown”) 
in about 4% of the retained mangrove occurrences from GBIF (see Appendix 10), 
while it was properly reported in OBIS for all entries. This might be explained by the 
additional quality checks performed for OBIS data, for important data fields (OBIS 
2021); entries containing fields with dubious or missing values could more likely be 
identified, thus resulting in observation data with fewer issues related to information 
availability than observed for GBIF.

On the other hand, true occurrences of mangroves could have been excluded in the 
curation process in this study. Mangrove trees grow within the intertidal zone, at the 
intersection of the terrestrial and marine realms, therefore identifying occurrences 
outside mangrove habitats is not trivial, as application of location-related filters, 
such as excluding entries flagged with “ON_LAND” for marine species, would not be 
suitable for mangrove species, especially for those located on the landward edge of 
mangrove forests. Mangrove ecosystem distribution maps can serve as a useful tool 
for this purpose and was the approach chosen in this study; however, these maps are 
often derived using remote sensing approaches of varying resolutions (e.g., Spalding 
et al. 2010, Worthington et al. 2020, Bunting et al. 2022), which come with known 
limitations (Kuenzer et al. 2011): mapping accuracy decreases at areas where tree 
density is low, at narrow or complex landscapes; areas with high disturbances may 
not be mapped accurately (Ferreira et al. 2009, Bunting et al. 2018); there are known 
identified data gaps in these maps (Bunting et al. 2018). Inaccuracies (including 
both under- and overestimation of mangrove coverage) of some of these large-scale 
mangrove maps (e.g., Bunting et al. 2018) have been detected on the local scale, using 
higher-resolution satellite or drone images (Hsu et al. 2020). Moreover, as these maps 
are not in real-time, occurrences from newly established mangrove patches may be 
mistaken as observations outside a species’ range. While the use of a combination 
of multiple maps from different years could help derive the maximal mangrove 
extent, creating buffers around mangrove patches would help tackle map resolution 
issues to a certain extent, those procedures can be demanding in terms of time and 
computational effort and could result in overlooking erroneous entries. Therefore, 
the recommendation would be, in case of data usage for species or trait distribution 
modeling purposes, to define different sets of data, of high versus moderate reliability, 
based on the distance to the nearest mangrove patch and build models based on the 
distinct datasets separately to evaluate potential bias.

Occurrence data may also include observations within suitable habitats, but 
outside the species’ known distribution range, especially in the context of climate 
change leading to species range shifts. In the current study, some observations 
located within known mangrove stands were found outside the species’ documented 
natural distribution (using e.g., the distribution range provided by the IUCN red list 
assessments). On the other hand, R. mangle, a species from the Atlantic-East Pacific 
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(AEP), was observed in the Indo-West Pacific (IWP) with one isolated observation 
recorded in the Indian ocean (Fig. 3). Besides erroneous input of coordinates, these 
occurrences could also be due to incorrect species identification, or observations 
related to introduced individuals or newly colonizing (potentially invasive, but 
not necessarily) species with recently settled populations outside documented 
natural ranges. Identifying and correcting taxonomic errors would be possible for 
occurrences derived from preserved materials where specimens can be re-examined 
but is challenging for human-observed occurrences unless evidence (such as 
photos) is provided with the occurrence data. In either way, expertise and extensive 
knowledge of individual mangrove species are required, and such work would be time 
intensive. Introduced or naturally newly established (invasive or not) populations 
have been reported for several mangrove species (Lg. racemosa, Cheng et al. 2023; B. 
gymnorrhiza, Fourqurean et al. 2010; S. apetala, Zhang et al. 2022). For biodiversity 
data available on databases such as GBIF and OBIS, several Darwin Core standard 
attributes (such as “degreeOfEstablishment” and “establishmentMeans”) allow data 
providers to provide information on whether the observations were obtained from 
native or nonnative individuals. We did not quantitatively assess this in the current 
study, since information is not always provided for these attributes. Thus, it would 
currently be challenging to identify occurrences with observations from individuals 
in non-native locations, unless using external reference maps and/or with careful 
manual inspection of the data by the data users. Dropping these entries with locations 
far outside known distribution ranges would be a more conservative approach in 
curating occurrence data by data users.

Unbalanced Taxonomic and Geographical Coverage.—About one-
fifth (nine species; 24.32%) of the 37 selected species with occurrence data were 
represented by only ten entries or less (Fig. 1). Deficiencies of occurrence data in 
biodiversity databases were previously highlighted by Yesson et al. (2007) and Enquist 
et al. (2019), showing that a lot of terrestrial plant species were only represented by 
ten observations or less. Further, suspected data deficient areas were also noticed for 
true mangrove species represented by high numbers of observations. For instance, 
A. marina, the species with the highest number of entries in the retained occurrence 
data (with a majority of data coming from Australia), was underrepresented in large 
parts of its native range in southeast Asia (Fig. 4), where one of the major biodiversity 
hotspots is located (Myers et al. 2000). Poor data coverage was also found in several 
countries with the world’s largest national mangrove areas, particularly in Indonesia 
(Figs. 5, 6E). Geographic bias within GBIF data has also been reported for occurrence 
data of legumes (Yesson et al. 2007) where known hotspots of biodiversity in Africa 
and Asia were found to be data deficient. This uneven contribution of occurrence 
data, even when a high number of occurrences is available, should be taken with 
caution when using these data for distribution modeling. Using the curated 
occurrence data (both for the point- or raster-based extraction) and known species 
distribution (IUCN Red List documented distribution) to extract climatic data for 
A. marina and R. mangle resulted in distinct distributions of the species along those 
climatic variables, suggesting that some portions of the climatic niche of the species 
could be over- or underrepresented in the biodiversity databases (Fig. 7). Spatially 
biased data due to uneven sampling or data contribution efforts, or to duplicated 
data, could result in deriving erroneous species-environment relationships as 
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environmental predictors that are representative to only the areas of higher density 
of observations instead of the species’ observed distribution range, could be 
selected during the modeling process (Kramer-Schadt et al. 2013). For example, the 
climatic characteristics of northeastern Australia could be overrepresented when 
using uncorrected observation data from GBIF and OBIS when building a species 
distribution model for A. marina. We observed a spatial bias, for both the point- 
and raster-based extraction approaches, suggesting that both occurrence-based or 
abundance-based models would be affected by this uneven data contribution effort 
(Fig. 7). These derived erroneous species-environment relationships will lead to biased 
assessment of the climatic niche of species and potential erroneous predictions of 
their future distribution under climate change scenarios, or of the current habitat 
suitability for mangrove forest (re-)establishment.

The current data also failed to cover known exotic populations of some of the true 
mangroves that have been introduced outside their native range. For example Lg. 
racemosa was introduced in China in 1999 for mangrove afforestation (Gu et al. 
2019), where it is suggested to be potentially highly invasive (Cheng et al. 2023). Yet, 
no occurrences within the known species’ introduced range in China were found 
in this study, even considering the data that were excluded during the curation 
process. This suggests that occurrence data of known nonnative populations of 
true mangroves is not well-documented currently in the two biodiversity databases 
investigated in this study. Poor data coverage could be an indicator of insufficient 
research resources and efforts. Alternatively, such data exists but is not yet digitized, 
published, or contributed into biodiversity databases. It is estimated that only one-
tenth of biocollections are available in digital form (Ball-Damerow et al. 2019), and 
only a limited number of herbaria have provided data to GBIF (Yesson et al. 2007).

Other Issues and Limitations.—Missing values in one or more key attributes 
(e.g date, basis of record, country) and heterogeneity in attribute values reduce the 
findability, interoperability and ultimately reusability of data (i.e., are not following 
the FAIR data principles; Wilkinson et al. 2016, Chapman et al 2020). Erroneous 
occurrence data could impact spatial analyses of species or traits distribution. While 
duplicated entries may not be related to data quality, duplicates could influence 
assessment on completeness and data coverage of global databases (Moudrý and 
Devillers 2020). Erroneous georeference and taxonomic identification can lead to an 
inaccurate estimation of species richness, which could not be relieved by increasing 
spatial scales (Maldonado et al. 2015).

In addition, species occurrences from biodiversity databases are often used, and are 
essential, to derive models for the current distribution of species or species habitat 
suitability maps that can be used for management plans [e.g., (re-)establishment], 
or to infer future distributions under climatic (or other) scenarios (e.g., Fazlioglu et 
al. 2020, Samal et al. 2023). Species observation data from these databases are often 
used for extracting environmental variable values, which is essential for modeling 
species-environment relationships (Coro et al. 2024).

Many species distribution models (SDMs) are sensitive to sample size (Wang and 
Jackson 2023), spatial sampling biases (Kramer-Schadt et al. 2013) and locational 
errors (Graham et al. 2008). Geospatially and taxonomically erroneous occurrence 
data, together with duplicated data, uneven sampling or data contribution effort, 
could lead to the incorrect delineation of the ecological niche of a species. As 
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a result, these issues could lead to inaccurate models of current distribution and 
predicted future range shift of species, which could further mislead conservation 
and management decisions.

Outlook and Recommendations.—GBIF and OBIF, two of the largest 
biodiversity databases, provide a great amount of occurrence data of various species, 
including true mangroves, available for public use. While the two are extremely 
valuable observation databases and constant efforts have been put into improving 
data availability and quality, they still contain data that are (1) possible duplicates, (2) 
lacking information for important attributes (e.g., basisOfRecord, year, country or 
countryCode), (3) erroneous in respect of their geographic location, and suffer from 
(4) deficient data coverage.

Hence, data users should take great caution when attempting to use mangrove 
occurrence data from biodiversity databases. Cleansing will be essential to exclude 
problematic occurrences, and there are several tools (e.g., BioGeo, Robertson et al. 
2016; CoordinateCleaner, Zizka et al. 2019) and workflows (BDcleaner, Jin and Yang 
2020) developed for this purpose. However, these data cleansing and correcting 
procedures should be further customized according to the group and geographic 
area under focus (Zizka et al. 2020), and to sample sizes (Kramer-Schadt et al 2013).

To bring biodiversity data more in line with the FAIR principles, additional input 
and effort from different stakeholders will be needed. For database managers, in order 
to improve data interoperability and reusability, especially between collaborating 
databases which practice data sharing, across-database globally unique identifiers 
could be implemented to make identification of shared data less complicated, as 
suggested by Guralnick et al. (2015). Enhancing the enforcement of mandatory or 
key attributes could help identify entries with other missing information during the 
data quality assessment process. To reduce data heterogeneity and in turn increase 
data interoperability, a universal and mandatory standardized list of attribute values 
(ontologies or “vocabularies of values”; Chapman et al. 2020) could be maintained. For 
some Darwin Core terms (e.g., degreeOfEstablishment), suggested or mandated lists of 
controlled vocabulary are currently available, but this is not the case for some attributes. 
Database managers should also maintain a closer communication with scientific 
experts (such as the IUCN mangrove specialist group in this specific case) to improve 
the data curation and data quality assurance processes for biodiversity monitoring 
and biodiversity research, as the experts could provide valuable, up-to-date 
knowledge on validity of species observations regarding taxonomy- and location-
related issues. This might in turn also be beneficial for the researchers in case of 
occurrences found outside the known documented species range, which if proven 
valid, would be important to update the distribution range in a timely manner. With 
the rapid expansion of these biodiversity databases and the enormous amount of 
data of varying quality they hold, further automation of data validation using current 
distribution maps (e.g., datasets from United Nations Environment Programme 
World Conservation Monitoring Centre and IUCN Red List assessment distribution 
information as used in this case study on true mangroves) would help quickly 
identify observations that are potentially unreliable spatially or taxonomically, or 
those from nonnative populations, based on current knowledge. Such automated 
validation processes will be even more relevant when occurrence data derived from 
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eDNA biomonitoring will be integrated in the global biodiversity databases such as 
GBIF (Berry et al. 2021), a process currently in implementation.

Finally, while FAIR data principles should be common practice nowadays, there 
are still too many valuable observations, some of decent quality, that are deposited 
in private or national repositories and not shared with the global community. 
Notably, there are still areas where data is deficient, including many of the world’s 
biodiversity hotspots. In the context of global challenges (biodiversity, climate, and 
pollution crises) efforts to document biodiversity information should be global. 
Database managers have a crucial role to play, notably by increasing the network 
of collaborating databases for data sharing, including various regional or local 
databases, thereby ensuring that biodiversity information will have better coverage 
and greater accessibility at the global scale. Development of application programming 
interface (API) services for biodiversity database networks (Sterner et al. 2020) is 
one possible solution to facilitate sharing and synchronization of biodiversity data. 
Standardization of data format, such as the implementation of the DwC standard, 
will be pivotal for efficient data synchronization. Increased resources will be needed 
to collect, digitalize, and publish data, which will require collective efforts from 
researchers across different fields of research. We encourage the mangrove research 
community to be proactive in this domain.
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