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ABSTRACT.—In the context of the biodiversity and
climate crises, reliably documenting past and current species
distributions is of paramount importance for deciphering
the main drivers of species occurrences and range shifts and
forecasting those under various global change scenarios. For
that purpose, species observation records are essential and,
according to the FAIR data principles, should be shared with
a broad community of researchers and other stakeholders.
Various databases have been created to compile and centralize
information about biodiversity in recent years, among
which the Ocean Biodiversity Information System (OBIS),
dedicated to the marine realm, and the Global Biodiversity
Information Facility (GBIF) are the most renowned ones.
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In the face of the current biodiversity and climate crises, identifying species and
areas of higher priority for conservation or restoration is a crucial step for efficient
species or ecosystem management. In this regard, a reliable and comprehensive
documentation of current species distribution is essential. For instance, recent
studies in the Bangladesh Sundarbans pointed out that existing protected areas may
not be able to effectively cover even the current local biodiversity hotspots or the
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core habitats of threatened mangrove species of socioeconomic relevance (Sarker
et al. 2016, 2019b). Further, considering the ongoing global change effects, optimal
management strategies should be adaptive and consider not only current biodiversity
hotspots or core range of target species, but also the locations where these important
habitats or species are predicted to be in the future (Hannah et al. 2007, McLeod et
al. 2009, Helfer and Zimmer 2018). In this context too, the reliable documentation
of past and current species distribution is of paramount importance to decipher the
main drivers of species occurrence and use this information to forecast distribution
range shifts of species or communities under future climate and development
scenarios, using species or community distribution modeling approaches (Rodriguez
et al. 2007, Zellmer et al. 2019). Beyond the prediction of species distribution per se,
species distribution modeling is also increasingly utilized in trait-based approaches
for predicting community structure and ecosystem services under the influence
of climate change (Frenette-Dussault et al. 2013, Moor et al. 2015, Green et al.
2022). In the case of mangrove ecosystems, many recent studies on the drivers of
their distribution, vulnerability and resilience, and how these will be impacted by
anthropogenic pressure and climate change utilized remote sensing data at the
ecosystem level (e.g., coverage, above-ground biomass; Duncan et al. 2018, Gouvéa
et al. 2022, Amaral et al. 2023). While species composition and functional traits
are known to influence ecosystem properties and processes (Symstad et al. 1998,
Baeten et al. 2019, Luo et al. 2019), studies at species or community level still heavily
depend on field-collected data (e.g., Sarker et al. 2019a,b), as long as remote-sensing
techniques cannot unequivocally identify species—this might change in the near
future as the fields of remote sensing and artificial intelligence progress rapidly, and
are thus far mostly restricted to local or regional studies.

True mangroves, a group of vascular plants specialized morphologically and
physiologically to inhabit exclusively the mid and upper intertidal zone of tropical
and subtropical coasts, play a major role in structuring mangrove communities
(Tomlinson 2016). Understanding how true mangrove species respond to climate
change using trait-based approaches (e.g., Li et al. 2022) could help to predict the
properties and processes of mangrove ecosystems under climate change. While a
functional trait dataset of true mangroves is available (Quadros and Zimmer 2017),
the data is not georeferenced and can therefore not be used for distribution modeling.
Concurrently while plant trait databases such as the TRY plant trait database (Kattge
et al. 2020) and the Global Inventory of Floras and Traits database (GIFT; Weigelt et
al. 2020) contain trait measurement of mangrove species, these data are not always
georeferenced. For both distribution modeling and trait-based studies, species
observation records (i.e., occurrence or presence data) are essential, and studying
global issues such as climate change requires a global data input (Turnhout and
Boonman-Berson 2011).

Since the late 1990s various biodiversity databases have been created to compile,
centralize, and make publicly available information about biodiversity. Among them,
The Global Biodiversity Information Facility (GBIF; launched in 2001) is currently the
largest and most comprehensive biodiversity database, and the Ocean Biodiversity
Information System (OBIS; launched in 2000) is the global biodiversity database
dedicated to marine species. Since the publication of the FAIR (Findable, Accessible,
Interoperable, Reusable) Guiding Principle (Wilkinson et al. 2016), enormous efforts
have been made to share and standardize biological observations with a broad
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community of researchers and other stakeholders. In recent years, the potential use
of biodiversity data contributed by citizen science projects such as iNaturalist has
been explored, and these data are being incorporated into biodiversity databases
such as GBIF notably (De Cecco et al. 2021). As a result, the input and use of data in
these databases have rapidly increased over the years, including the use in species
or community distribution modeling and for predicting those under climate change
scenarios (Heberling et al. 2021).

As these species occurrence data are collected across a relatively large time scale
by various contributors using different methodologies, and imported from different
source repositories, quality and completeness of these data may vary even when data
standards (such as Darwin Core; Wieczorek et al. 2012) are followed. While those data
quality issues have been reported in various studies focusing on different taxa, quality
of data is not always properly considered by biodiversity data users (Ball-Damerow et
al. 2019). The most addressed quality issues include incomplete or missing spatial or
temporal information (e.g., Vandepitte et al. 2015, Serra-Diaz et al. 2017, Colli-Silva
et al. 2020), geospatial errors or uncertainties (e.g., Yesson et al. 2007, Maldonado
et al. 2015, Vandepitte et al. 2015, Ribeiro et al. 2022) and taxonomic errors (e.g.,
Gaiji et al. 2013, Freitas et al. 2020, Ribeiro et al. 2022). Further, duplicates were also
found in these biodiversity databases (Mesibov 2013, Moudry and Devillers 2020),
and taxonomic or spatial bias (e.g., Beck et al. 2014, Troudet et al. 2017) and data gaps
(e.g., Feeley 2015, Garcia-Rosello et al. 2023) were also highlighted. While the errors
or uncertainties mentioned above might be of minimal impact for macroscopic
studies (e.g., Queiroz et al. 2021), for other applications, such as abundance-based
distribution models aiming at better linking species effect on ecosystem processes
(Waldock et al. 2022), this would lead to biased habitat suitability maps that will then
lead to wrong assessment of the effect of a species for specific ecosystem processes.

This study assessed the availability and quality of occurrence data of selected true
mangrove species from the Global Biodiversity Information Facility (GBIF) and the
Ocean Biodiversity Information System (OBIS), the two major global biodiversity
databases. Here the following were assessed: (i) availability of occurrence data, (ii)
availability of information for the distinct entries, particularly those related to the
basis of record and georeferencing, and (iii) quality and reliability of the geographical
location of the occurrence data. The results of the current study provides insights on
the suitability of true mangrove occurrence data for species distribution and trait
modeling analyses.

MATERIALS AND METHODS

SELECTION OF THE TARGET SPECIES.—From the 73 plant species or hybrids
reported to occur in mangrove ecosystems (status Spalding et al. 2010; see Appendix
1), we retained only the major true mangroves, i.e., species of true mangroves that
can form pure stands (as opposed to species considered minor components, following
Tomlinson 2016), summing up to 44 species from nine genera.

The species taxonomy was verified in the World Register of Marine Species
(WoRMS, Horton et al. 2021); in case of discrepancy between WoRMS and Spalding
et al. (2010), the taxonomy proposed in WoRMS was retained and used for data
acquisition from the various databases, as it is frequently updated and verified and it is
also used by OBIS and GBIF as a taxonomy backbone (Costello and Appeltans 2008).
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As a result, Rhizophora harrisonii in OBIS was labeled R. x harrisonii in this study,
and WoRMS-accepted Avicennia germinans was retained instead of Hilairanthus
germinans (accepted name of A. germinans on GBIF at the time of data acquisition).
Avicennia rumphiana, listed as a species in Spalding et al. (2010), is recognized as
a subspecies of Avicennia marina (A. marina subsp. rumphiana) in WoRMS and
Lumnitzera x rosea, although accepted at the species rank in WoRMS (but with the
taxonomic remark Lumnitzera littorea x Lumnitzera racemosa), was considered as
a synonym of Lm. racemosa in GBIF; those two taxa were therefore not retained for
data download (but occurrences of A. marina subsp. rumphiana were contained in
the dataset for the parent species; no occurrence of L. x rosea was recovered from
the parent species dataset, although some entries contained “L. rosea” for the GBIF
attribute scientificName). While Ceriops australis was accepted as synonym of
Ceriops tagal in GBIF at the time of data acquisition, it was considered a valid species
elsewhere (in OBIS and in WoRMS) and treated as such within this study. The final
number of species retained for data acquisition after taxonomic verification was 42
(see Appendix 2).

DAaTA AcquisiTioN.—In the initial phase of this study, several databases
were explored to get occurrence data for the target species, including the Global
Biodiversity Information Facility (GBIF), the Ocean Biodiversity Information System
(OBIS), the Mangrove Reference Database and Herbarium (MRDH; Dahdouh-
Guebas 2023), and Tropicos (Missouri Botanical Garden 2023). Only GBIF and OBIS
were retained for this study as the two are the most used biodiversity databases in
the literature (Ball-Damerow et al. 2019) which provide georeferenced occurrence
data for various species, including mangroves. While both MRDH and Tropicos also
contain georeferenced data for the selected mangrove species, direct extraction of
the data was not available for MRDH, and only brief records with coordinates down
to minutes were available on Tropicos, thus these two databases were not further
explored.

GBIF (www.gbif.org) is an international organization network which aims at
providing free and open access biodiversity data, aggregating and making available
information from various sources such as museum specimens, DNA barcodes and
published datasets. GBIF also receives public-contributed data by including user-
verified, “research-grade” occurrence data from the iNaturalist platform. As of
September 2023, GBIF holds over 2.4 billion georeferenced entries. OBIS (www.obis.
org) is a marine biogeographic information system managed by an International
Committee which receives, maintains quality, publishes and provides free and open
access to biogeographic information of marine species, and is one of the earliest
Associate Members and largest publishers of data to GBIF (Costello et al. 2007). As of
September 2023, OBIS provides about 120 million presence records of over 180,000
marine species, of which 54 million records were already provided to GBIF.

Occurrence data was available for 38 of the 42 selected species (see Appendix 1),
and were extracted from the OBIS and GBIF databases in December 2021 (the R
script for the data acquisition and curation processes is available on Github and
Zenodo (https://github.com/Mangroven/Mangroveobs_GBIFOBIS, https://10.5281/
zenodo.15836331). Data from OBIS were downloaded using the occurrence function
of the official robis R package (OBIS 2021, Provoost et al. 2022; see Appendix 3 for
individual dataset citations). For GBIF, occurrence data was downloaded directly
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from their portal, using the “simple” version of occurrence data option (see Appendix
4 for data download DOIs); entries without coordinates, with zero coordinates
(of coordinates of 0°N and O°E, which indicates that errors possibly occurred in
recording geographical coordinates; flagged “ZERO_COORDINATE” by GBIF),
and/or with coordinates mismatch with country information (flagged “COUNTRY_
COORDINATE_MISMATCH”) were excluded using filters available on the GBIF
portal (for occurrence data of A. marina, by mistake, coordinate-related filters
were not applied; the entries without coordinates, with zero coordinates or with
coordinate mismatch were removed manually after data download from GBIF).
Occurrence data for subspecies or varieties of the 38 selected species that were
accepted in WoRMS (A. marina subsp. australasica, A. m. subsp. marina, A. m.
subsp. rumphiana, A. m. var. intermedia; Laguncularia racemosa var. glabriflora, Lg.
racemosa var. racemosa; Lm. racemosa var. racemosa) were included in the species
downloads (this was verified by extracting those data from GBIF independently from
the species data and comparing the results to the species data). The data acquisition
process is summarized in Appendix 5.

After acquisition of occurrence data from the two biodiversity databases, the
dataset was simplified to retain only those attributes that were relevant for subsequent
analysis, particularly those related to taxonomy, geospatial location, collection date,
source of data, and quality remarks/flags were retained for further data curation.
As a result, 25 out of 51 attributes from GBIF data and 32 out of 124 attributes
from OBIS data were retained (see Appendix 6). Some additional attributes (such as
“nameinlist”; for more details, see the data acquisition and curation R script used in
this study) were then added to facilitate subsequent data handling and curation.

DaTA CURATION.—Looking for Duplicates Within and Across Databases.—
Occurrence data acquired from OBIS and GBIF were then combined (an additional
attribute, “database”, indicating the source of the data was added) and checked for
duplicates within and across databases using R version 4.3.1 (R Core Team 2023)
within RStudio v2023.6.2.561 (Posit Team 2023), using the “group_by” and “mutate”
functions of the dplyr package. Because of the absence (at the time of data acquisition
as of now) of any universal unique identifiers for occurrence data across the two
databases, identifying truly shared data in GBIF and OBIS data was impossible (as
discussed in Moudry and Devillers 2020).

Complete duplicates (entries that have appeared more than once with identical
information except for the attributes “ID” and “database” across database
duplicates) were first identified within each database independently, and then across
databases. Complete duplicates across and within databases were deduplicated
using the “distinct” function in R. Potentially duplicated entries within and across
databases were then identified based on the species (“nameinlist”), the location
(“decimalLatitude” and “decimalLongitude” attributes), and the time (“eventDate”,
“day”, “month”, and “year” attributes) the occurrences were recorded. Only potential
duplicates across databases were then further deduplicated after manual inspection,
retaining the entry with more nonempty attributes.

Excluding Unsuitable Occurrence Data.—After deduplication, the occurrence data
were further examined to exclude entries that were unsuitable for the purpose of the
current study (i.e., assessing availability and quality of true mangroves occurrence
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data for species or trait modeling). Entries that were (i) referring to fossil records or
living specimens (a specimen that is alive, e.g., a living plant in a botanical garden) as
specified in the attribute basisOfRecord, (ii) flagged as having potentially unreliable
information on geographical location (i.e., “GEODETIC_DATUM_INVALID” and
“PRESUMED_SWAPPED_COORDINATE” in the attribute “issueFlag”), (iii) located
outside the latitudinal range of mangroves (32°N-39°S; adopted from Saenger et
al. 2019), or (iv) without information on year (i.e., empty “year” and “eventDate”
attributes) were excluded.

Checking the Reliability of the Spatial Location.—The occurrence data were
then imported to QGIS 3.28 (QGIS 2023) for further inspection. The “join by
nearest” function was used with the “global biophysical typology of mangroves”
map (Worthington et al. 2020) to (i) identify occurrences that were outside known
mangrove areas and (ii) calculate distances of these occurrences to the nearest
mangrove patch.

The data curation process is summarized in the Supplementary Appendix S7.

DESCRIPTIVE STATISTICS AND GRAPHICAL VISUALIZATION OF CURATED
DATASET.—The curated dataset was further explored using R to document the
number of (i) entries by species (considering also the biogeographical region or Flora
they belong to Indo-West Pacific or Atlantic-East Pacific); (ii) species by number of
entries (organized by classes: <10, 10—49, 50-99, 100-999, 1000-9999, >10,000); (iii)
entries by countries of record (based on the attributes “country” and “countryCodes”
provided by GBIF and OBIS); (iv) entries by basis of record.

The temporal distribution of the data was examined based on the attribute “year”
and “eventDate”. Besides, the coordinate accuracy and precision of the occurrence data
were also examined. Coordinate accuracy was estimated using the number of decimal
places of the coordinates (i.e., rounding of the coordinates; see Moudry and Devillers
2020); whenever there was a difference in the number of decimal places between
latitude and longitude, the one with the greater number of decimals was considered.
Coordinate precision was assessed based on the “coordinateUncertaintylnMeters”
or “coordinatePrecision” attributes as provided by GBIF and OBIS.

The curated dataset was also explored using QGIS and species distribution range
maps from the IUCN red list assessment to identify (i) entries that were outside
the documented distribution range of species, especially species that have reported
introduced or invasive populations (such as Bruguiera gymnorrhiza, Lg. racemosa,
Sonneratia apetala), and (ii) potential spatial data gaps in mangrove occurrence
data. Besides, we plotted the number of occurrences against national mangrove
area (following Hamilton and Casey 2016) on R to investigate whether there is a
relationship between data availability and mangrove area and detect potential data
deficiency in countries with a large national mangrove area.

Finally, we examined the distribution of environmental data, which would be
essential in distribution and trait modeling, by extracting those on QGIS for (1) the
curated occurrence data using the point sampling tool plugin (extracting values
for each points, thus approaching abundance-based modeling), (2) the curated
occurrence data after conversion to a raster (extracting only one value per cell, that
contained potentially several curated occurrence data, thus approaching occurrence-
based modeling) using the raster calculator and raster pixel to points tools, and (3)
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the known species distribution (IUCN Red List documented distribution) using the
clip raster by mask layer and raster pixel to points tools. We concentrated here only
on the annual mean temperature (BIO1) and the annual precipitation (BIO12) of the
WorldClim bioclimatic data at 30 s resolution (Fick and Hijmans 2017).

RESULTS

Overall, occurrence data were available for all 38 selected species. GBIF contained
data for all 38 species, including three subspecies (A. marina subsp. australasica, A.
marina subsp. marina, A. marina subsp. rumphiana) and four varieties (A. marina
var. intermedia; Lg. racemosa var. glabriflora, Lg. r. var. racemosa; Lm. racemosa var.
racemosa) accepted in WoRMS. From OBIS, occurrence data could be extracted only
for 30 species (with only one subspecies: A. m. subsp. eucalyptifolia but was already
included in the observation data of its parent species A. marina). A total of 84,299
entries were downloaded, with 47,655 and 36,644 entries downloaded from GBIF and
OBIS respectively (Appendix 2).

DATA CURATION.—Looking for Duplicates Within and Across Databases.—We
identified 18,921 entries (of which 95.89%, i.e., 18,130 entries, were from the GBIF
database) as complete duplicates (i.e., entries that have appeared more than once with
identical information, except entry identifier/ID, and the source database for across
database duplicates), which represent 22.45% of the whole dataset. Deduplication of
those entries (i.e., removal of repeated entries) resulted in the exclusion of 16,729
entries and a remaining dataset of 67,570 entries. No complete duplicates were found
across databases.

While further inspecting the dataset for potential duplicates, we identified four
entries as across-database potential duplicates based on species, location and time
of collection. Those across-database duplicates were deduplicated and only the
GBIF entries (n = 2) were retained, as they contained more non-empty attributes
than the corresponding OBIS entries, resulting in a dataset of 67,568 entries. Further
inspection conducted within each database separately detected 1998 entries within
GBIF and 102 within OBIS as potential duplicates based on species, geographical
location and day, month and year of record. As it could not be confirmed whether
these potential duplicates were true duplicates, they were retained for subsequent
analyses.

Excluding Unsuitable Occurrence Data.—The remaining dataset was further
curated, and four and 14 entries (from GBIF) referred to as fossil or living specimens
respectively were removed. Additionally, 27 and 828 entries from the GBIF database
were suspected to have swapped coordinates (flagged “PRESUMED_SWAPPED _
COORDINATE”) or an invalid geodetic datum (flagged “GEODETIC_DATUM _
INVALID”) and were excluded. Another 60 entries (59 from GBIF and one from
OBIS) were located outside the latitudinal range of mangroves (32°N-39°S); they
were referred to as preserved specimen, human observation or “unknown” in the
attribute basisOfRecord; we considered those occurrences as dubious and excluded
them from subsequent analyses. Finally, another 1774 entries were removed as
no information could be retrieved for the year of observation (empty “year” and
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Figure 1. Number of species by number of entries (organized by classes) after data curation (n =
26,805; GBIF and OBIS data combined).

“eventDate” attributes). Removing all unsuitable entries (n = 2707) resulted in 64,861
remaining entries.

Checking the Reliability of the Spatial Location.—The last step of the data curation,
consisting in verifying that the occurrences were located within documented
mangrove stands (following Worthington et al. 2020), resulted in the exclusion of
38,056 entries and a final curated dataset of 26,805 entries (GBIF: 17.74%, n = 4755;
OBIS: 82.26%, n =22,050), documenting the distribution of 37 species (Appendix 2;
Sonneratia griffithii that had initially seven entries in GBIF was not represented in
the curated dataset). Overall, the whole data curation resulted in a loss of 68.20% of
the initial data.

DESCRIPTIVE STATISTICS AND GRAPHICAL VISUALIZATION OF CURATED
DAataseT.—Regarding the taxonomic coverage of the entries retained in our
final dataset, we could observe a strong taxonomic bias, with only three species
(Avicennia marina, C. tagal, and R. stylosa; all from the IWP region) constituting
82.78% (22,188) of all (26,805) retained entries (Appendix 8A), and about half (20 out
of 37) of the species (AEP and IWP combined) were represented in the final dataset
with less than 50 entries (Fig. 1). However, when data from Australia (n = 23,247),
which dominated the curated dataset, were excluded, three AEP species (Rhizophora
mangle, A. germinans, and Lg. racemosa) dominated the remaining data, constituting
72.57% (2582) of all (3558) remaining entries (Appendix 8B).

Looking at the geographical distribution of the data, the retained entries were
recorded from 79 countries / regions (e.g., Hong Kong), with no relevant information
for 13 entries (representing 0.05% of the data). There was a strong spatial bias in
the data provenance, with 86.73% (n = 23,247) of the retained entries coming from
Australia, followed by Mexico (4.2%; n = 1125) and Brazil (2.16%; n = 579); remaining
countries represented only 6.87% (1 = 1841) of the data (Appendix 9).
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Looking at the type of observations (attribute basisOfRecord), a majority of the
retained entries were obtained by direct human observation (92.56%; 2908 from GBIF
and 21,902 from OBIS), followed by preserved specimens (6.76%; 1664 from GBIF
and 148 from OBIS). One entry and 14 entries from GBIF were reported as “machine
observation” (i.e., output of a machine observation process, e.g., photograph, a video,
an audio recording, or a remote sensing image) and “material sample” (i.e., a material
entity, e.g., whole or part of an organism, soil or microbial sample) respectively.
A total of 168 entries (0.63% of retained entries, all from GBIF) from several data
contributors (as indicated in the attribute institutionCode) were provided with the
attribute basisOfRecord as “UNKNOWN” (Appendix 10). A closer inspection of those
entries with an unknown (but non-empty) basis of record, revealed that most of them
were related to herbarium datasets; as no indication that those observations could
be based on fossil or living specimens from artificial environments (e.g., botanical
garden) was found, those entries were retained. A more stringent curation of the data
could consider excluding those entries from the final dataset, as we cannot ascertain
that those observations relate to individuals living in their natural environment.

The temporal distribution of the data, ranging from 1886 to 2021 (year of data
acquisition), showed some anomalies, with a huge data input (66.5%; n = 17,833) in
2001 [Appendix 11A, originating from one country (Australia), and another high
data input in 1996 (13.05%; n = 3497) with 99.17% (n = 3468) originating from
Australia]. Besides these two anomalies, there is an increasing trend in data with a
higher increase since 1990 (Appendix 11B).

Regarding the precision of the coordinates, a majority (98.89%, n = 26,501) of the
retained data had coordinates with four or more decimal places (Fig. 2A), which
corresponds to <11-m accuracy at the equator (Moudry and Devillers 2020). For
coordinate precision, 97.08% of the OBIS data had a precision of 0.1-1 km. However,
coordinate precision information was missing for about 2% of the OBIS data, and
up to 43.53% of the GBIF data did not provide a valid coordinate precision (Fig. 2B).

Examining the retained data, one species was found to have entries located far
from its documented distributed range; R. mangle, an AEP exclusive species, had
an entry from GBIF data obtained from human observation (according to attribute
basisOfRecord) located far from the species’ known distribution range in Bangladesh
(Fig. 3). Further, while its native range is well covered with occurrence data in the
Americas (with some exceptions such as in parts of Venezuela, Guiana and Suriname),
its distribution range in Africa is not well-covered, showing a data deficiency in Gulf
of Guinea (including Nigeria, Cameroon, Gabon, Congo, Ivory Coast, and Liberia)
and Sierra Leone.

Looking at spatial distribution of the data for A. marina, which had the highest
number of retained entries (n = 10,677), most entries (98.28%; n = 10,493) were
originating from Australia (Fig. 4). Despite having a very high number of entries,
occurrence data were absent from many areas across its native range, including
southeast Asia.

Finally, comparing the number of entries recorded from different countries and
the national mangrove area, we can observe two outliers (Fig. 5A): (i) Australia
with the highest number of entries while having only the fifth largest national
mangrove area, constituting 3% of the world’s mangroves (Hamilton and Casey
2016); (ii) Indonesia with a very low number of entries, while it is the country
with the highest national mangrove area, also known to shelter a very high



1458 Bulletin of Marine Science. Vol 101, No 3. 2025

20000 A
19500
18000
18500

18000

4000

3501
73.63%

3000

Number of entries

2000

1000 739

15.54%

147 =

5.32%
29 3.08% 5 . 1 20
0.61% - 1.37% - 0.02% 0.42%

1 2 3 4 5 6 7 8
Coordinate decimal places
22000 B

21500
21000
20500

20000

2070
43.53%
2000

1500
1267
26.65%

Number of entries

1000

506
10.64%
500 318 9

6.69% 217 . 198
4.56% 3.76% 4.16%

0 B =

Not Available  <0.1 km 0.1-1 km 1-5km 510km  10-100km  >100km
Coordinate precision

Figure 2. (A) Number of entries by decimal places of coordinates; (B) number of observations by
coordinate precision. In black, data from GBIF; in grey, data from OBIS.
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Figure 3. Retained occurrence data of Rhizophora mangle (black) and known native range of the
species (dark grey; Ellison et al. 2015). Grey circles indicate data deficient areas. Base map data
from Natural Earth.

biodiversity, with 43 true mangrove species (FAO 2005). After removing those
two outliers, to inspect the data further, we see that Brazil, and to some extent
Malaysia and Papua New Guinea, are presenting a similar pattern as Indonesia
(relatively low number of entries relative to the national mangrove area), while
Mexico and the United States exhibit a similar pattern as Australia (Fig. 5B).
When compared against documented mangroves, distribution of the occurrence
data within countries were not evenly distributed, even in countries with the highest
number of entries in the retained data. For example, for Australia, most of the
occurrence data retained were from the northeastern mangroves; mangroves from
western Australia were underrepresented (Fig. 6A). In the United States, Brazil and

-~ g

Figure 4. Retained occurrence data of Avicennia marina (black) and known native range of the
species (dark grey; Duke et al. 2010). Base map data from Natural Earth.
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Figure 5. Relation between the number of retained occurrence data and the national mangrove
area (following Hamilton and Casey 2016) of (A) all countries with retained occurrence data and
(B) with Australia and Indonesia excluded. Country abbreviations: AU = Australia, BR = Brazil,
ID = Indonesia, MX = Mexico, MY = Malaysia, PG = Papua New Guinea, US = United States.
Base map data from Natural Earth.
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Mexico (Fig. 6B, C, and D, respectively), countries from which a high number of entries
were retrieved, the data coverage was more even, but data gaps could be observed in
some locations. In countries that have a large mangrove national area with a deficient
data coverage, occurrence data were distributed across various locations within the
country in Indonesia and Malaysia (Fig. 6E and F) but was relatively constrained
geographically in several locations in Papua New Guinea (Fig. 6G).

Forboth A. marina and R. mangle, who had a high number of retained entries in the
curated data whose distribution was not evenly distributed across the species range,
the distribution of the climatic data differed when extracted using occurrence data
or the known species distribution as mask for the extraction (Fig. 7). For A. marina,
the distribution of the temperature data (Fig. 7A) was similar for both datasets
(extraction from the occurrence data or from the species known distribution), but
the distribution of the precipitation data was not (Fig. 7B), with the occurrence data
covering areas with low precipitations while the whole species range encompasses
a much wider range or precipitation patterns. For R. mangle, the distribution of the
temperature (Fig. 7C) data was bimodal for the occurrence data, with a mode at ca.
24 °C which is not observed in the distribution over the whole species range (which
shows a higher density at ca. 27 °C). For the precipitations (Fig. 7D), the two datasets
show clearly different patterns, with lower precipitations in the areas covered by the
occurrence dataset, while the dataset extracted from the known species distribution
range show higher densities at higher precipitations (with a mode at ca. 2500 mm).
For both species and climatic variables, a similar distribution of data was observed
for the point-based (curated observation data) and the raster-based (raster cells that
contained at least one curated observation data) extractions.

DiscussioN

DUPLICATES AND SHARED DATA.—About 42% (18,130 out of 47,655 entries) and 2%
(791 out of 36,644 entries) of occurrence data from GBIF and OBIS respectively, for
the 38 selected true mangrove species, were identified as either complete or potential
duplicates in this study, which overall constituted approximately 24% (18,921 out of
84,299 entries) of the occurrence data acquired from the two biodiversity databases.
Slightly lower proportion (37%) of duplicates were reported for marine mammal
occurrence data from the GBIF database by Moudry and Devillers (2020), while
much lower proportions were reported for the overall GBIF database (about 10%;
Gaiji et al. 2013). For OBIS data, the observed proportion of duplicates is lower than
that observed by Moudry and Devillers (2020) for marine mammals (19%). Overall,
the proportions of duplicated data were lower in OBIS than GBIF. Unlike previous
studies where duplicates were identified based on taxonomical (species), temporal
(date of data collection) and geospatial (coordinates) information only (Gaiji et
al. 2013, Moudry and Devillers 2020), duplicates in this study were dominated by
complete duplicates, that were defined as repeated entries with identical information
except of entry identifier/ID and were nonetheless found in high proportions,
predominantly in the GBIF database.

While the likelihood of independent observation of a species at the same location
and time is a priori quite low, such cases can occur especially for the GBIF database
that incorporates citizen science-contributed data (e.g., from iNaturalist; input of
multiple spatially and temporally identical observations of the same species from
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Figure 6. Retained occurrence data (black) and mapped mangrove area (gray; Worthington et
al. 2020) of (A) Australia, (B) the United States, (C) Brazil, (D) Mexico, (E) Indonesia, (F)
Malaysia, and (G) Papua New Guinea. Base map data from Natural Earth.
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Figure 7. Kernel Density Plots of WorldClim bioclimatic variables at 30 s resolution (Fick and
Hijmans 2017) extracted using mangrove curated occurrence data (in black), and species known
distribution in IUCN red list (in gray). For the curated occurrence data, the full and the double-
dash lines represent the data obtained using the point-based (mimicking abundance-based mod-
els) and raster-based (mimicking occurrence-based models) extraction approaches, respectively.
(A) Annual mean temperature for Avicennia marina; (B) Annual precipitation for A. marina; (C)
Annual mean temperature for Rhizophora mangle; (D) Annual precipitation for R. mangle. Plots
were generated in R using the ggplot function.

different observers during citizen science events is indeed possible in these publicly
contributed biodiversity platforms). Nonetheless, among the GBIF complete
duplicates identified within this study, only 0.9% (n = 163) were provided by the
iNaturalist platform (as specified for the attribute institutionCode). Besides citizen
science-contributed data, there are several alternative causes that could lead to
duplicated entries in biodiversity databases. For example, collection of multiple
specimens of the same species at the same date and location (Mesibov 2013) could
be filed as separated entries in herbarium- or museum-contributed datasets, or field
observations of the several individuals of the same species at the same location and
date, especially if the location is determined at a sampling unit scale that could
encompass several individuals of the same species (plots in forest structure survey)
could result in identical data similar to the complete duplicates identified in this
study. This could be the case of the current study as observation entries from human
observation and preserved specimens (likely from herbarium or museum collections)
dominated the dataset (Appendix 10). Duplicates could also be caused by repeated
entry of the same observation into a dataset (by mistake), or aggregation of the same
observation existing in separate datasets (i.e., submission of the same observation
to distinct repositories that are regularly exchanging data). Regarding the latter, we
detected only four entries (<0.05% of the acquired occurrence data) as potentially
duplicated entries between GBIF and OBIS, suggesting that there was some data
sharing between the databases, or that the observer provided their data to the two
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databases independently; due to the very low number of occurrences concerned, the
last option is more plausible. The proportion of possibly shared data detected for
true mangroves was unexpectedly extremely low since the two major biodiversity
databases are in ongoing cooperation and over 50 million occurrence records from
OBIS have been shared to GBIF (Costello et al. 2007). Moudry and Devillers (2020)
reported about 11% of marine mammal occurrence data being shared between OBIS
and GBIF, a proportion that might have been overestimated as they used loser criteria
(latitude and longitude coordinates only) used for identifying potentially shared
data; in the current study, both spatial (decimalLatitude and decimalLongitude) and
temporal (eventDate, day, month, year) attributes were considered. Finally, duplicates
and/or shared data could have been underestimated, in this study and in general, due
to failed detection caused by missing or incomplete values provided in key attributes
related to spatial and/or temporal information, or data heterogeneity (i.e., multiple
variants representing the same attribute values, as a result of a lack of standardized
vocabulary; Chapman et al. 2020). Identifying shared data between biodiversity
databases is challenging, as the exchange of data between these databases is often
not clearly documented and has therefore to be deduced by the data users themselves
(Feng et al. 2022). While the presence of duplicated data would not be problematic in
the case of occurrence-based models, they could provide a biased representation of
a species distribution when applying abundance-based species distribution models,
that are particularly relevant when trying to relate species effect on ecosystem
properties, processes, and services (Waldock et al. 2022).

MISSING AND DUBIOUS INFORMATION RELATED TO GEOGRAPHIC LOCATION.—
The retained entries (from the curated dataset) had coordinates provided with a
high accuracy; coordinates of nearly all the retained entries were provided with four
decimal places or higher, and most (>95%) were at five decimal places or higher (Fig.
2A). This corresponds to an accuracy of one meter or higher at the equator, which
would allow for the distinction of individual trees (Moudry and Devillers, 2020). This
accuracy is more than adequate for geographically extensive studies of sessile species
such as modeling future distribution of widely distributed mangrove species, where
regional or global climatic datasets used as predictors are often of lower resolution.
For example, WorldClim bioclimatic variables are available at highest resolution of
30 seconds (approximately 900 meters at equator; Fick and Hijmans 2017). The high
coordinate accuracy would also make local studies (e.g., within a mangrove reserve)
using those occurrence data possible. Yet, information about coordinate accuracy is
not always available in species occurrence data from GBIF or OBIS (Ball-Damerow
et al. 2019, Moudry and Devillers 2020). In the current study, about ten percent of all
retained entries (n = 2496 out of 26,805 entries) were missing information about the
coordinate precision, especially in the GBIF data (Fig. 2B); in general, data from OBIS
had higher coordinate accuracy and precision than those from GBIF.

Less than half (z = 26,805; 31.80%) of the acquired occurrence data for the selected
true mangrove species were located within mapped mangrove stands. Mangrove
occurrences outside mangrove areas could be because of an incorrect, but accurate
and precise, location being provided. For example, for observations from preserved
specimens, geographic locations of herbariums where the specimens are stored,
instead of locations of specimen collection, were apparently provided for a few of
the entries examined in this study (e.g., an A. marina stored at Fairchild Tropical
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Botanic Garden, United States, with recorded coordinates of the herbarium). For
observations from direct observation, such error can be caused by the observer’s
location instead of the species’ location being recorded (Moudry and Devillers 2020),
albeit in theory this should be relatively uncommon for occurrence data of plants
where observations are less likely to be made at a far distance from the trees than
highly mobile animals. Information such as the basis of record could help identify
the source of this type of dubious observation, but this information is sometimes not
meaningful. While the field BasisOfRecord is required for data submission to both
GBIF and OBIS, it was not clearly specified (was reported with mention “Unknown”)
in about 4% of the retained mangrove occurrences from GBIF (see Appendix 10),
while it was properly reported in OBIS for all entries. This might be explained by the
additional quality checks performed for OBIS data, for important data fields (OBIS
2021); entries containing fields with dubious or missing values could more likely be
identified, thus resulting in observation data with fewer issues related to information
availability than observed for GBIF.

On the other hand, true occurrences of mangroves could have been excluded in the
curation process in this study. Mangrove trees grow within the intertidal zone, at the
intersection of the terrestrial and marine realms, therefore identifying occurrences
outside mangrove habitats is not trivial, as application of location-related filters,
such as excluding entries flagged with “ON_LAND” for marine species, would not be
suitable for mangrove species, especially for those located on the landward edge of
mangrove forests. Mangrove ecosystem distribution maps can serve as a useful tool
for this purpose and was the approach chosen in this study; however, these maps are
often derived using remote sensing approaches of varying resolutions (e.g., Spalding
et al. 2010, Worthington et al. 2020, Bunting et al. 2022), which come with known
limitations (Kuenzer et al. 2011): mapping accuracy decreases at areas where tree
density is low, at narrow or complex landscapes; areas with high disturbances may
not be mapped accurately (Ferreira et al. 2009, Bunting et al. 2018); there are known
identified data gaps in these maps (Bunting et al. 2018). Inaccuracies (including
both under- and overestimation of mangrove coverage) of some of these large-scale
mangrove maps (e.g., Bunting et al. 2018) have been detected on the local scale, using
higher-resolution satellite or drone images (Hsu et al. 2020). Moreover, as these maps
are not in real-time, occurrences from newly established mangrove patches may be
mistaken as observations outside a species’ range. While the use of a combination
of multiple maps from different years could help derive the maximal mangrove
extent, creating buffers around mangrove patches would help tackle map resolution
issues to a certain extent, those procedures can be demanding in terms of time and
computational effort and could result in overlooking erroneous entries. Therefore,
the recommendation would be, in case of data usage for species or trait distribution
modeling purposes, to define different sets of data, of high versus moderate reliability,
based on the distance to the nearest mangrove patch and build models based on the
distinct datasets separately to evaluate potential bias.

Occurrence data may also include observations within suitable habitats, but
outside the species’ known distribution range, especially in the context of climate
change leading to species range shifts. In the current study, some observations
located within known mangrove stands were found outside the species’ documented
natural distribution (using e.g., the distribution range provided by the IUCN red list
assessments). On the other hand, R. mangle, a species from the Atlantic-East Pacific
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(AEP), was observed in the Indo-West Pacific (IWP) with one isolated observation
recorded in the Indian ocean (Fig. 3). Besides erroneous input of coordinates, these
occurrences could also be due to incorrect species identification, or observations
related to introduced individuals or newly colonizing (potentially invasive, but
not necessarily) species with recently settled populations outside documented
natural ranges. Identifying and correcting taxonomic errors would be possible for
occurrences derived from preserved materials where specimens can be re-examined
but is challenging for human-observed occurrences unless evidence (such as
photos) is provided with the occurrence data. In either way, expertise and extensive
knowledge of individual mangrove species are required, and such work would be time
intensive. Introduced or naturally newly established (invasive or not) populations
have been reported for several mangrove species (Lg racemosa, Cheng et al. 2023; B.
gymnorrhiza, Fourqurean et al. 2010; S. apetala, Zhang et al. 2022). For biodiversity
data available on databases such as GBIF and OBIS, several Darwin Core standard
attributes (such as “degreeOfEstablishment” and “establishmentMeans”) allow data
providers to provide information on whether the observations were obtained from
native or nonnative individuals. We did not quantitatively assess this in the current
study, since information is not always provided for these attributes. Thus, it would
currently be challenging to identify occurrences with observations from individuals
in non-native locations, unless using external reference maps and/or with careful
manual inspection of the data by the data users. Dropping these entries with locations
far outside known distribution ranges would be a more conservative approach in
curating occurrence data by data users.

UNBALANCED TAXONOMIC AND GEOGRAPHICAL COVERAGE.—About one-
fifth (nine species; 24.32%) of the 37 selected species with occurrence data were
represented by only ten entries or less (Fig. 1). Deficiencies of occurrence data in
biodiversity databases were previously highlighted by Yesson et al. (2007) and Enquist
et al. (2019), showing that a lot of terrestrial plant species were only represented by
ten observations or less. Further, suspected data deficient areas were also noticed for
true mangrove species represented by high numbers of observations. For instance,
A. marina, the species with the highest number of entries in the retained occurrence
data (with a majority of data coming from Australia), was underrepresented in large
parts of its native range in southeast Asia (Fig. 4), where one of the major biodiversity
hotspots is located (Myers et al. 2000). Poor data coverage was also found in several
countries with the world’s largest national mangrove areas, particularly in Indonesia
(Figs. 5, 6E). Geographic bias within GBIF data has also been reported for occurrence
data of legumes (Yesson et al. 2007) where known hotspots of biodiversity in Africa
and Asia were found to be data deficient. This uneven contribution of occurrence
data, even when a high number of occurrences is available, should be taken with
caution when using these data for distribution modeling. Using the curated
occurrence data (both for the point- or raster-based extraction) and known species
distribution (IUCN Red List documented distribution) to extract climatic data for
A. marina and R. mangle resulted in distinct distributions of the species along those
climatic variables, suggesting that some portions of the climatic niche of the species
could be over- or underrepresented in the biodiversity databases (Fig. 7). Spatially
biased data due to uneven sampling or data contribution efforts, or to duplicated
data, could result in deriving erroneous species-environment relationships as
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environmental predictors that are representative to only the areas of higher density
of observations instead of the species’ observed distribution range, could be
selected during the modeling process (Kramer-Schadt et al. 2013). For example, the
climatic characteristics of northeastern Australia could be overrepresented when
using uncorrected observation data from GBIF and OBIS when building a species
distribution model for A. marina. We observed a spatial bias, for both the point-
and raster-based extraction approaches, suggesting that both occurrence-based or
abundance-based models would be affected by this uneven data contribution effort
(Fig. 7). These derived erroneous species-environment relationships will lead to biased
assessment of the climatic niche of species and potential erroneous predictions of
their future distribution under climate change scenarios, or of the current habitat
suitability for mangrove forest (re-)establishment.

The current data also failed to cover known exotic populations of some of the true
mangroves that have been introduced outside their native range. For example Lg.
racemosa was introduced in China in 1999 for mangrove afforestation (Gu et al.
2019), where it is suggested to be potentially highly invasive (Cheng et al. 2023). Yet,
no occurrences within the known species’ introduced range in China were found
in this study, even considering the data that were excluded during the curation
process. This suggests that occurrence data of known nonnative populations of
true mangroves is not well-documented currently in the two biodiversity databases
investigated in this study. Poor data coverage could be an indicator of insufficient
research resources and efforts. Alternatively, such data exists but is not yet digitized,
published, or contributed into biodiversity databases. It is estimated that only one-
tenth of biocollections are available in digital form (Ball-Damerow et al. 2019), and
only a limited number of herbaria have provided data to GBIF (Yesson et al. 2007).

OTHER IssUES AND LIMITATIONS.—Missing values in one or more key attributes
(e.g date, basis of record, country) and heterogeneity in attribute values reduce the
findability, interoperability and ultimately reusability of data (i.e., are not following
the FAIR data principles; Wilkinson et al. 2016, Chapman et al 2020). Erroneous
occurrence data could impact spatial analyses of species or traits distribution. While
duplicated entries may not be related to data quality, duplicates could influence
assessment on completeness and data coverage of global databases (Moudry and
Devillers 2020). Erroneous georeference and taxonomic identification can lead to an
inaccurate estimation of species richness, which could not be relieved by increasing
spatial scales (Maldonado et al. 2015).

In addition, species occurrences from biodiversity databases are often used, and are
essential, to derive models for the current distribution of species or species habitat
suitability maps that can be used for management plans [e.g., (re-)establishment],
or to infer future distributions under climatic (or other) scenarios (e.g., Fazlioglu et
al. 2020, Samal et al. 2023). Species observation data from these databases are often
used for extracting environmental variable values, which is essential for modeling
species-environment relationships (Coro et al. 2024).

Many species distribution models (SDMs) are sensitive to sample size (Wang and
Jackson 2023), spatial sampling biases (Kramer-Schadt et al. 2013) and locational
errors (Graham et al. 2008). Geospatially and taxonomically erroneous occurrence
data, together with duplicated data, uneven sampling or data contribution effort,
could lead to the incorrect delineation of the ecological niche of a species. As
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a result, these issues could lead to inaccurate models of current distribution and
predicted future range shift of species, which could further mislead conservation
and management decisions.

OUTLOOK AND RECOMMENDATIONS.—GBIF and OBIF, two of the largest
biodiversity databases, provide a great amount of occurrence data of various species,
including true mangroves, available for public use. While the two are extremely
valuable observation databases and constant efforts have been put into improving
data availability and quality, they still contain data that are (1) possible duplicates, (2)
lacking information for important attributes (e.g., basisOfRecord, year, country or
countryCode), (3) erroneous in respect of their geographic location, and suffer from
(4) deficient data coverage.

Hence, data users should take great caution when attempting to use mangrove
occurrence data from biodiversity databases. Cleansing will be essential to exclude
problematic occurrences, and there are several tools (e.g., BioGeo, Robertson et al.
2016; CoordinateCleaner, Zizka et al. 2019) and workflows (BDcleaner, Jin and Yang
2020) developed for this purpose. However, these data cleansing and correcting
procedures should be further customized according to the group and geographic
area under focus (Zizka et al. 2020), and to sample sizes (Kramer-Schadt et al 2013).

To bring biodiversity data more in line with the FAIR principles, additional input
and effort from different stakeholders will be needed. For database managers, in order
to improve data interoperability and reusability, especially between collaborating
databases which practice data sharing, across-database globally unique identifiers
could be implemented to make identification of shared data less complicated, as
suggested by Guralnick et al. (2015). Enhancing the enforcement of mandatory or
key attributes could help identify entries with other missing information during the
data quality assessment process. To reduce data heterogeneity and in turn increase
data interoperability, a universal and mandatory standardized list of attribute values
(ontologies or “vocabularies of values”; Chapman et al. 2020) could be maintained. For
some Darwin Core terms (e.g., degreeOfEstablishment), suggested or mandated lists of
controlledvocabularyare currentlyavailable, but thisisnotthe caseforsomeattributes.
Database managers should also maintain a closer communication with scientific
experts (such as the IUCN mangrove specialist group in this specific case) to improve
the data curation and data quality assurance processes for biodiversity monitoring
and biodiversity research, as the experts could provide valuable, up-to-date
knowledge on validity of species observations regarding taxonomy- and location-
related issues. This might in turn also be beneficial for the researchers in case of
occurrences found outside the known documented species range, which if proven
valid, would be important to update the distribution range in a timely manner. With
the rapid expansion of these biodiversity databases and the enormous amount of
data of varying quality they hold, further automation of data validation using current
distribution maps (e.g., datasets from United Nations Environment Programme
World Conservation Monitoring Centre and [UCN Red List assessment distribution
information as used in this case study on true mangroves) would help quickly
identify observations that are potentially unreliable spatially or taxonomically, or
those from nonnative populations, based on current knowledge. Such automated
validation processes will be even more relevant when occurrence data derived from
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eDNA biomonitoring will be integrated in the global biodiversity databases such as
GBIF (Berry et al. 2021), a process currently in implementation.

Finally, while FAIR data principles should be common practice nowadays, there
are still too many valuable observations, some of decent quality, that are deposited
in private or national repositories and not shared with the global community.
Notably, there are still areas where data is deficient, including many of the world’s
biodiversity hotspots. In the context of global challenges (biodiversity, climate, and
pollution crises) efforts to document biodiversity information should be global.
Database managers have a crucial role to play, notably by increasing the network
of collaborating databases for data sharing, including various regional or local
databases, thereby ensuring that biodiversity information will have better coverage
and greater accessibility at the global scale. Development of application programming
interface (API) services for biodiversity database networks (Sterner et al. 2020) is
one possible solution to facilitate sharing and synchronization of biodiversity data.
Standardization of data format, such as the implementation of the DwC standard,
will be pivotal for efficient data synchronization. Increased resources will be needed
to collect, digitalize, and publish data, which will require collective efforts from
researchers across different fields of research. We encourage the mangrove research
community to be proactive in this domain.
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