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A B S T R A C T

Large coastal boulders are ubiquitous geomorphological features that are emplaced along coasts by extreme
marine events such as storms, hurricanes, and tsunamis. Many large coastal boulders have been identified on
emergent fossil coral reefs on the windward sides of the Aruba, Bonaire, and Curaçao (ABC) islands in the
Leeward Antilles of the Caribbean. Here, structure-from-motion/multi-view stereo techniques were used to map
boulder sizes at several coastal sites in the ABC Islands as well as construct digital terrain models of the sur-
rounding areas. Chronological constraints on boulder transport were established through the radiocarbon dating
of the vermetids and coral colonies that comprised boulders located along a ridge on Aruba Island. A suite of
hydrodynamic models was used to empirically derive the required flow thresholds for boulder displacement to
determine whether tsunamis or hurricanes were responsible for detaching and transporting these boulders. Our
results suggest that multiple tsunamis, most likely triggered by the El Pilar fault, located near the Venezuelan
coast, were the cause of boulder detachment and transport in this region during the Holocene, between 4000 and
500 years BP.

1. Introduction

The impacts of extreme wave events are preserved in the geological
record in several forms along the world’s coastlines. In general, high-
energy waves caused by extreme storms and tsunamis lead to the for-
mation of out-of-size landforms as well as the deposition of out-of-place
sediments (Nott, 2003a,b; Cox et al., 2020; Scardino et al., 2020 and
references therein). These may occur as large coastal boulders (Nott,
2003a, 2003b; Nandasena et al., 2011b) or wide washover fans in
backshore areas (Gianfreda et al., 2001; Vött et al., 2009; May et al.,
2012). Several studies have investigated the scenarios that were most
likely to be responsible for coastal boulder displacement in different

regions around the globe (Mastronuzzi and Sansò, 2000; Nott, 2003a;
Goto et al., 2010, 2011; Evelpidou et al., 2020; Pedoja et al., 2023). In
general, the literature suggests that more cases of boulder mobilization
can be attributed to large storms, such as (extra-)tropical cyclones (Cox
et al., 2018; Hall, 2011; Hall et al., 2006; Scicchitano et al., 2020; Terry
et al., 2016) , storm-induced energetic infragravity waves (Watanabe
et al., 2023), or waterspouts (de Lange et al., 2006) than to tsunamis
(Paris et al., 2010; Pignatelli et al., 2009; Scicchitano et al., 2007, 2012).
.

Differentiating between tsunami- and storm-generated coastal
landforms is challenging and, in the case of coastal boulders, is
commonly resolved by applying empirical equations to determine the
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minimum flow speed required to move the boulders observed at a given
location (Nott, 2003a; Goto et al., 2009; Nandasena et al., 2011a, 2022;
Weiss and Diplas, 2015; Roig-Munar et al., 2023). Despite the wide-
spread application of this approach, distinguishing between the
different types of extreme events responsible for boulder emplacement
remains contentious(Weiss and Diplas, 2015; Cox et al., 2020; Roig--
Munar et al., 2023; Dunán-Avila et al., 2024). Instrument records and
eyewitness accounts of large boulder displacements provide a reliable
basis for modeling extreme wave events (Scicchitano et al., 2020;
Nandasena et al., 2022; Delle Rose, 2024). In addition, the reliability of
the geological evidence can be improved by correlating it to historical
sources (of known ages), which can provide additional details on the
events and their effects (Delle Rose et al., 2020; Lario et al., 2020; Dewey
et al., 2021). Furthermore, the integration of age constraints, such as
radiocarbon dates, with numerical modeling can provide important in-
sights into the extreme events that drive coastal boulder emplacement.

Here, we reviewed geological evidence of past extreme wave events
recorded by coastal boulders on the Aruba, Curaçao, and Bonaire (ABC)
islands of the Lesser Antilles (Caribbean). These boulders were likely
emplaced by Holocene paleo-tsunamis and hurricanes (Scheffers, 2002;
Scheffers and Kelletat, 2006); however, a consensus has yet to be
reached on the origin and timing of these tsunamigenic events (Morton
et al., 2008; Pignatelli et al., 2010; Watt et al., 2010; Engel and May
2012; Oetjen et al., 2015, 2020). To identify the most reliable source for
these boulder displacements, we followed a forward modeling approach
based on the dimensional features of the coastal boulders. We report
new data on the geomorphological characteristics of the boulders and
the surrounding rocky coasts, as well as new radiocarbon ages that
provide constraints on the timing of boulder motion related to extreme
wave events within the Holocene. We then compare the flow velocities
obtained from our numerical models to the flow velocities calculated
from empirical equations of incipient motion (Nandasena et al., 2022).

In this way, we identify the most reliable sources of boulder displace-
ment from both chronological data and the dynamics of extreme wave
events.

2. Study area

The ABC islands are located on the Leeward Antilles ridge (Fig. 1),
which was formed by Cretaceous–Cenozoic tectonic interactions be-
tween the Caribbean and South American plates (Avé Lallemant, 1997;
Beardsley and Avé Lallemant, 2007). The ABC islands are characterized
by stepped Quaternary coral reef terraces that flank older Cretaceous
volcanic cores (e.g., Alexander, 1961; Fouke et al., 1996; Muhs et al.,
2012). The lowest of these terraces contain well-preserved fossil corals
dated to marine isotope stage (MIS) 5e (~122 ka ago, Fig. 2a) (Obert
et al., 2016; Lorscheid et al., 2017). The MIS 5e terrace (which is, at
places, incised by fluvial erosional channels known locally as bokas;
Fig. 2b) terminates in sea cliffs that are fronted by a recent subtidal reef
platform, which has been colonized by the vermetid Petaloconchus sp.
(Hoeksema et al., 2022). Typical geomorphological imprints that can be
observed on the rocky coasts of ABC Island include boulder ridges and
ramparts (Scheffers, 2002; Scheffers et al., 2014).

Imbricated boulder ridge deposits and isolated coastal boulders
frequently occur on the windward side of the ABC islands atop the MIS
5e terrace (Scheffers, 2002, 2004). These deposits are parallel to the
coastline 20–250 m from the cliff front and primarily consist of
well-rounded coral fragments from the recent subtidal reef (Scheffers,
2002; Radtke et al., 2003; Spiske et al., 2008; Engel and May 2012) or
parts of theMIS 5e reef. In the Caribbean, similar ridges generally extend
approximately 15 km alongshore, with crest heights ranging from 3 to 8
m above mean sea level (Morton et al., 2008). In many cases, the ridges
are either not or only slightly asymmetric (Scheffers, 2002; Scheffers and
Kelletat, 2006; Scheffers et al., 2014), with a steep seaward slope and a

Fig. 1. The main study area in the context of the Lesser Antilles, including the main structural elements. The plate boundaries and fault structures follow French and
Schenk (2004), and the locations of historical tsunami sources are obtained from Lander et al. (2002). The Aruba, Curaçao, and Bonaire (ABC) islands are highlighted
in the white inset. Background map from Natural Earth Data (https://www.naturalearthdata.com/, accessed June 21, 2024).
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gentle landward slope (Scheffers, 2005; Robinson et al., 2006; Morton
et al., 2008). These ridges are irregularly punctuated by outsized coastal
boulders that mostly occur at locations where the cliff front is
near-vertical and the recent reef platform is relatively narrow (Focke,
1978; Scheffers, 2002; Pignatelli et al., 2010).

The ramparts consist of scattered, small-to medium-sized debris de-
posits with thicknesses ranging from decimeters to meters; these are
generally located several meters from present-day coastlines or active
cliff fronts and overlie a mildly sloping coast (Scheffers, 2002, 2004).
Ramparts occur on both the leeward and windward sides of ABC Islands,
with the most developed landforms observed in northeastern Curaçao
and along the east-facing coastal stretch on Bonaire (Scheffers, 2002).
They consist of debris and cobbles ranging from decimeters to around 1
m with a gently landward-sloping planar profile. These deposits are
located up to 100 m inland from the coastline, at an elevation usually
ranging from 6 to 10 m above sea level (asl), and become more scattered
and thinner further inland (Scheffers, 2002; Scheffers et al., 2014).

2.1. Evidence of extreme waves on the ABC islands

The geomorphological records of the ABC Islands show that they
have experienced various extreme storms and paleo-tsunamis (Table 1);
these are particularly evidence in bokas and lagoonal areas (Engel et al.,
2012a) as well as on the rocky coasts (Scheffers, 2002; Scheffers and
Kelletat, 2006). Stratigraphic and geochemical data reported by Engel
et al. (2012a), obtained through cores sampled from bokas and lagoons,
revealed the occurrence of three main tsunami events that impacted the
shores of these islands 3300, 2000, and 500 years before present (BP).
Analyses of the boulders and some of the ridges atop the lower terrace of
Bonaire revealed a sequence of extreme wave events that occurred be-
tween 4300 and 500 years BP (Scheffers, 2002, 2004, 2005; Scheffers
et al., 2014). This broad sequence was identified through radiocarbon
dating of vermetid reef and coral samples from the boulders (Scheffers,
2002). This sequence of events has been revised by other authors to

Fig. 2. Main geomorphological features found on the ABC islands: a) Contact
between blocks of volcanic basement and fossil coral reef dated to the Late
Pleistocene (MIS 5e), located in Aruba. b) Fossil coral reef terrace on the
windward side of Aruba, incised locally by a fluvial erosional channel locally
known as a boka.

Table 1
Landforms that are evidence of extreme storms and paleo-tsunamis in the ABC islands. CE= Common Era, BP= Before Present, BCE= Before Common Era. References:
1—Scheffers, 2002; 2—Scheffers et al., 2009; 3 – Scheffers (2005); 4—Engel et al., 2012a; 5—Baptista et al., 1998; 6—Engel and May, 2012; 7—Harbitz et al., 2012; 8
– Engel et al., 2010; 9- Radtke et al. (2003); 10—Engel et al., 2012b; 11 - Rixhon et al., 2018; 12- Klosowska (2003).

Event (References) Date Dating method Analyzed samples Landforms and deposits Location

Hurricane Lenny
1999 CE (1)

November 13,
1999 CE

– Acropora cerviconis Coral rubble spit Washikemba NP, northwest Bonaire

Hurricane Tecla
1877 CE (2,3)

1877 CE Radiocarbon, Electron-
Spin- Resonance (ESR)

 Ridge deposits Salina Tarn, Bonaire

Tsunami 1755 CE
(5,6)

November 1,
1755 CE

   Great Antilles, Leeward Antilles

Tsunami 1530 CE
(4,7,8)

1 September
1530 CE

Historical sources (4,7);
Radiocarbon (8)

Vermetids High-energy deposits Lagun, Bonaire, ABC islands

Tsunami 500 BP
(1,9)

1500 CE; Radiocarbon Vermetids, corals,
gastropods

Rampart, ridges, boulders ABC islands

Tropical cyclone
1000 BP (10)

950 CE Radiocarbon Gastropods Normally graded strata
separated by thin mud laminae

Salina Tarn, Bonaire

Tsunami 1500 BP
(1)

400 CE Radiocarbon Vermetids, corals,
gastropods

Rampart, ridges, boulders ABC islands

Tsunami 1600 BP
(8,11)

350 CE Radiocarbon (8);230Th/U
(10),

Plant remains (8);
Flowstone layer(10)

High-energy deposits (8);
Boulders (10)

Lagun, Bonaire(8);
Spelonk, Bonaire (10)

Tsunami 2000 BP
(8)

50 BCE Radiocarbon Plant remains (8) Sublittoral sediments
interrupting onshore
sedimentary sequences

Lagun, Boka Washikemba, Bonaire

Tsunami 3100 BP
(8)

1850 BCE Radiocarbon Plants remain High-energy deposits Playa Grandi, Bonaire

Tsunami 3300 BP
(4, 9, 12)

1350 BCE Radiocarbon Plant fragment, C.
cancellate, Corbula sp.

High-energy deposits with peat
clasts

Klein Bonaire, Salina Tarn, Boka Bartol,
Bonaire(4); Druif, Aruba (9); St. Michiel
lagoon, Curaçao (12)

Tsunami 3500 BP
(1)

1550 BCE Radiocarbon Vermetids, corals,
gastropods

Rampart, ridges, boulders ABC islands

Tsunami 3600 BP
(8)

1650 BCE Radiocarbon Gastropods Two thin graded beds of 2 and 1
cm thickness

Klein Bonaire
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account for the effects of long-term coastal processes and hurricanes that
may have moved the coastal boulders following their initial emplace-
ment (Morton et al., 2006, 2008; Spiske et al., 2008).

The Caribbean region has been impacted by multiple tsunamis, as
evidenced by historical accounts dating back to the 16th century
(Lander et al., 2002). These tsunamis were caused by either earthquakes
or non-seismic geologic events (e.g., volcanic eruptions, flank collapses,
and submarine landslides). The largest recorded earthquake in the
Caribbean was a magnitude 7.5–8 event between Guadeloupe and
Antigua in 1843 (Bernard and Lambert, 1988). Only two trans-oceanic
tsunami events have been reported in the Caribbean: the 1755 Lisbon
earthquake (November 1st, 1755; Baptista et al., 1998; O’Loughlin and
Lander, 2003) and the 1761 Lisbon earthquake (March 31st, 1761;
O’Loughlin and Lander, 2003). A total of 65 earthquake-generated
tsunamis have been reported by the National Geophysical Data Center
(NGDC, 2021), the largest of which occurred on November 18th, 1867
after a strong MS 7.5 earthquake in the Virgin Islands (Zahibo and
Pelinovsky, 2001).

An important tsunamigenic source close to the ABC islands is the El
Pilar fault zone, a right-lateral strike-slip fault located offshore
Venezuela, which accommodates most of the relative motion between
the Caribbean and South American plates (Perez et al., 2018). The El
Pilar fault structure has been responsible for several tsunamis, including
events in 1530 and 1853, which were likely associated with offshore
ruptures of this fault (Audemard, 2007). The kinematics of the El Pilar
fault zone have been inferred from geodetic measurements published by
Jouanne et al. (2011). Following the Haiti earthquake on January 12th,
2010 (Calais et al., 1998), the area was impacted by two tsunamis, one
caused by the combinedmovement of a submarine landslide in the north
of Haiti (Fritz et al., 2013) and the other generated by the displacement
of the North Hispaniola and Enriquillo faults that cross-cut the island of
Haiti (Pararas-Carayannis, 2010; Poupardin et al., 2020).

There are currently 12 active volcanoes located across 10 major
islands throughout the Lesser Antilles. Volcanic flank collapses in this
area have triggered several tsunamis (Boudon et al., 2007). In 1939, the
Kick’em Jenny volcanic eruption caused a series of tsunami-like waves

with amplitudes of around 2 m in the Grenadines and Grenada Islands
(Smith and Shepherd, 1993a, 1993b). It should be noted that tsunamis
generated by a submarine landslide generally propagate radially away
from the slide, while tsunamis generated by fault displacement typically
propagate with crests parallel to the fault rupture (Harbitz et al., 2006,
2014). The largest submarine landslide that occurred near the ABC
Islands was associated with the active margin of northern Colombia,
another potential tsunamigenic source for the central Caribbean basin
(Leslie and Mann, 2016).

In contrast to the relative rarity of tsunamis in the Caribbean,
approximately 1000 tropical storms and around 200 hurricanes
impacted this region in the past century (Scheffers et al., 2009;
NHC-NOAA, 2024). Hurricane genesis generally begins above the
Atlantic Ocean waters; the hurricanes then move westward across the
Windward Islands, over the Caribbean Sea, and finally turn northwest.
Hurricane Lenny in 1999 remains the only hurricane to date that formed
within the Caribbean Sea and tracked east–northeast (Bries et al., 2004).
In the Lesser Antilles, Curaçao was hit by a minor hurricane on
September 23rd, 1877, which damaged infrastructure and deposited
coral rubble (Spiske et al., 2008). More recently, Hurricane Ivan
(September 7th, 2004) hit the ABC Islands causing significant structural
damage to houses and other infrastructure; the greatest damage and
heaviest rainfall was reported on Aruba (Scheffers and Scheffers, 2006).

3. Materials and methods

This study adopts a workflow consisting of three main steps: i)
geomorphological mapping of areas characterized by coastal boulders,
including three-dimensional (3D) mapping of the largest boulders; ii)
collecting samples of smaller boulders composed entirely of vermetids
and corals emplaced along the ridges for radiocarbon dating (Fig. 3); and
iii) running a suite of hydrodynamic models (Delft3D-Celeris-XBeach
models) to compare the flow velocities required to displace the
boulders—as calculated from empirical equations—with those gener-
ated by historical extreme wave events that have impacted the ABC
Islands.

Fig. 3. Boulders surveyed on the ABC Islands: a) boulder composed of vermetids in Aruba; b) sampling of a boulder composed of Diploria sp. that was transported
from a recent reef platform to the top of the MIS 5e terrace in Aruba; c) sampling of a boulder composed of vermetids along the ridge in northwest Aruba.
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Geomorphological mapping was conducted using land-based struc-
ture-from-motion (SfM)/multi-view-stereo (MVS) methods to recon-
struct the 3D features of boulders on the ABC Islands (Fig. 4). Morpho-
topographic surveys were also performed at two sites in Aruba, hence-
forth referred to as “Tierra del Sol”, and “South Ranchero Curason”
(Fig. 5a). These two sites are characterized by large coastal boulders
associated with ridge deposits. The date of the events related to boulder
displacements was constrained by the radiocarbon dating of the bio-
logical materials that comprise the coastal boulders, which were
composed of either vermetids or corals. To account for sea level changes
at the time of boulder transport, we used local relative sea levels
reconstructed from glacial isostatic adjustment models (ICE-7G) (Roy
and Peltier, 2015, 2017, 2018). Empirical equations describing the
incipient motion of these boulders were then applied to determine the
minimum flow velocity required to displace these boulders based on
their size and mass (Nandasena et al., 2022). Finally, hydrodynamic
models of different tsunamis and hurricanes were used to reproduce the
wave propagation, flow depth, and cross-shore velocity associated with
these events. These results were compared with incipient modes to
determine the most likely series of extreme wave events responsible for
the boulder displacements.

3.1. Boulder surveys on the ABC islands

Land-based SfM/MVS methods were used to calculate the di-
mensions of the coastal boulders. Photos of each boulder were acquired
at a distance of less than 10 m using a Sony DSC-RX100M3 camera (8.8
mm focal length; 5472 × 3648 resolution). Coded ground control points
(GCPs) were measured using an EMLID RS2+ differential GNSS receiver.
GCP measurements were corrected in post-processing. Scale bars were
used during the SfM/MVS process to scale and optimize the model. Two
kinds of base stations were used during post-processing: i) GNSS stations
from NOAA Continuously Operating Reference Stations (CORS) located
at Aruba and Curaçao (IDs CN19 and CN40); ii) an EMLID RS2+ base

Fig. 4. a) Map showing the areas of the ABC islands that are characterized by boulder ridges or isolated boulders as reported in the literature (blue lines, Scheffers,
2002; Engel et al., 2012a). Boulders surveyed through close-range SfM/MVS in this study are represented using white diamonds; b) an example of a displaced boulder
sitting on top of ridge deposits at South Ranchero Curason (Aruba); c) land-based SfM/MVS performed on a boulder in Boka Onima on Bonaire.

Fig. 5. Rocky coastlines surveyed by unmanned aerial systems (UAS) for the
reconstruction of digital elevation models. a) Map showing locations of the
areas surveyed using UAS. b) Boulder ridge deposits in Tierra del Sol. c) Boulder
ridge deposits in South Ranchero Curason.
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station that was installed in Bonaire during previous surveys. The
collected ellipsoid elevations were converted into geodetic elevations
referenced to Earth Gravitational Model 2008; Pavlis et al. (2012).

The photos and GCPs were processed in the Agisoft Metashape Pro-
fessional (v.2.0.2) software to reconstruct 3D polygonal models for each
boulder. Point clouds were extracted for each boulder and imported into
the CloudCompare software (v.2.13.1). We then extrapolated the “ab”
and “ac” surfaces following the approach described by Nandasena et al.
(2022). The surfaces were converted to meshes and translated to planar
projections to determine their areas and axial lengths (a > b > c).
Finally, the true volumes of each boulder were calculated in Cloud-
Compare. Bulk densities were calculated by correlating the lithotype and
coral species comprising each boulder and the associated density values
reported in Spiske et al. (2008) for the same lithotype. Boulder weights
were then calculated by multiplying each boulder’s volume by its bulk
density.

Additionally, the largest boulders in Aruba were associated with an
extended ridge deposit. Analogous ridge deposits have also been
observed in Curaçao and Bonaire. Here, the boulders with a-axes greater
than 0.5 mwere mapped using a GoPro HERO Black11 camera (24.4 mm
focal length and 5599 × 4927 resolution) and the same dGNSS posi-
tioning described above.

3.2. Radiocarbon dating

To provide chronological constraints on the timing of the formation
of the boulder ridges, we collected 10 samples (weighing 100 g each)
from the boulders composed of vermetids and two additional boulder
samples. These samples were then analyzed using a single-stage accel-
erator mass spectrometer (SSAMS, NEC, USA) and AGE-3 Automated
Graphitization Equipment (Ionplus AG, Zürich). The analysis was per-
formed by the Vilnius Radiocarbon Lab (Center for Physical Sciences and
Technology, Vilnius, Lithuania). Conventional 14C ages were calibrated
in the Calib software (v8.20, Stuiver and Reimer, 1993; Stuiver et al.,
2021) using the Marine20 curve and a ΔR value of − 308 ± 29 yr, as
reported by DiNapoli et al. (2021) for Aruba.

3.3. Morpho-topographic surveys and bathymetric data

To model extreme wave events on the ABC islands, we combined the
digital elevation model (DEM) obtained from the Tandem-Xmission (12-
m resolution and vertical accuracy of 1 m; Uuemaa et al., 2020) with
multibeam echo sounder (MBES) bathymetry data collected by the
Dutch Ministry of Defense around the ABC islands (Dutch Caribbean,
2019). We then downsampled the data to match the GEBCO dataset
(10-m resolution) and combined the two datasets. This allowed us to
extend the DEM further offshore, allowing for the effective simulation of
wave propagation for each modeled scenario. Aerial SfM/MVS methods
were performed using a DJI Mini unmanned aerial system (UAS; 24 mm
focal length and 8064× 6048 resolution) at two locations: Tierra del Sol
and South Ranchero Curason (Fig. 5). The UAS was flown at a height of
30 m above ground level and flight speed of ~2 m/s. Targets that were
clearly visible in the UAS images and located along the cliff top were
measured using GPS. The photos acquired by the UAS were processed
following the same SfM/MVS workflow detailed in Section 3.1 to pro-
duce orthomosaics and georeferenced DEMs of the two areas with a cell
resolution of 0.3 × 0.3 m.

To reconstruct the paleo-sea-level scenarios for extreme wave events,
we utilized the ICE 7G glacio-isostatic model and compared it with field-
based curves for Curaçao (Khan et al., 2017) and Bonaire (Engel et al.,
2014).

The reconstructed cliffs in the two areas were modified based on the
relative sea-level scenarios obtained from the ICE 7G curve, which as-
sumes a radially symmetric viscosity profile for the Earth’s mantle
referred to as VM6 (Roy and Peltier, 2017). Specifically, it assumes that
the viscosity of the upper mantle—located between the base of the

lithosphere and the base of the transition zone at 660 km depth—is
equal to 0.45 × 1021 Pa s. The chronological constraints obtained from
radiocarbon dating were used to obtain the relative sea-level positions
from the ICE 7G curve at different times. Isolines corresponding to the
past sea-level positions were reported on the DEMs of Tierra del Sol to
identify the position of the cliff base, assuming that a coral reef
paleo-landscape also existed in the past. The DEMs were then modified
in Surfer (v. 11.0), with the cliff slope extended seaward toward the past
sea-level position to reconstruct the paleo-topography at the time of the
extreme wave events corresponding to the annexed ridge deposits on the
cliff top.

3.4. Water level and wave modeling

Three potential sources of the extreme waves that impacted the
coasts of the ABC islands were considered: i) earthquake-generated
tsunamis, ii) landslide-generated tsunamis, and iii) tropical cyclones.
Wave propagation modeling of the tsunami and storm events was per-
formed at two different spatial scales (Fig. 6), with coarse grids used
offshore (500 × 500 m) and a finer grid used in the study area, closer to
the ABC Islands (80 × 80 m).

The boundary conditions of offshore wave propagation for
earthquake-generated tsunamis were set using the Delft Dashboard
toolbox, which was then passed into a Delft3DFlow and Delft3DWave

Fig. 6. Modeling grid for the Caribbean region built in Delft Dashboard. a)
Coarse grid used for the El Pilar earthquake-generated tsunami; b) coarse grid
used for the South Caribbean Deformed Belt (SCDB) earthquake-generated
tsunami; c) coarse grid used for the Muertos Thrust Belt (MTB) earthquake-
generated tsunami; d) coarse grid used for the Enriquillo earthquake-
generated tsunami; e) finer grid used to extract water levels from time series
data at the given locations.
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models (Le Quéré et al., 2020). Delft3D is a 3D coupled hydrodynamic
numerical model that solves nonlinear shallow water equations on a
staggered 3D grid using a finite difference scheme. The fault parameters
and magnitude of the seismic event must be defined in the Delft Dash-
board tsunami toolbox to generate the initial wave conditions. The fault
parameters used in this study were derived from two main
earthquake-generating seismic structures in Haiti and Venezuela that
had previously impacted the Lesser Antilles in the last century (Table 2).
The tsunamis were modeled using fault parameters obtained from ma-
rine geophysical campaigns reported by Brink et al. (2020).

Three significant landslide bodies were considered for landslide-
generated tsunami wave propagation, which was conducted using a
Boussinesq-type Geowave model (Watts and Tappin, 2012). The first
landslide-generated tsunami model was based on the chaotic mass flow
deposit associated with a horseshoe-shaped structure near offshore St.
Lucia (Mattioli, 1995). A second landslide-generated tsunami was
associated with the magmatic eruption of the Soufriere Hills that
occurred at 3.1 ka BP (Boudon et al., 1984; Le Friant et al., 2003).
Finally, the main volcanogenic tsunami threat is represented by the
active submarine Kick’em Jenny volcano (northwest of Grenada), which
is particularly prone to future collapse based on monitoring measure-
ments (Smith and Shepherd, 1993b; Lindsay et al., 2005; Dondin et al.,
2012).

The impact of storm waves on the ABC island was modeled in
Delft3D by hindcasting the four main hurricanes that impacted the
Lesser Antilles in the past 30 years. Simulations were performed in
Delft3D Flow coupled with Delft3D Wave. Among the studied events,
Hurricane Ivan (September 2004) had the strongest effect on the ABC
Islands; its track passed 130 km north of the study area and affected the
windward sides of the islands, with the strongest effects felt northwest of
Aruba (Engel and May 2012). This event featured a peak flow depth of
1.5 m at the cliff’s edge, with a flow velocity ranging from 5 to 7 m/s
(Scheffers, 2005; Scheffers and Scheffers, 2006).

Wave propagation in the nearshore areas was performed on a finer
grid using the Boussinesq model within the Celeris software (grid size 5
× 5 m) to assess coastal inundation (Tavakkol and Lynett, 2017, 2020).
For each event, waves were resolved using the JONSWAP spectrum and
characterized by the root-mean-square wave height and common peak
period. These parameters were defined from the Delft 3D outputs at the
coarse-grid boundaries. The relative sea level was also included in the
model based on the outputs of the ICE-7G model (Roy and Peltier, 2015,
2017, 2018) after comparison with field-based sea-level curves (Engel
et al., 2014; Khan et al., 2017).

To model the non-linear evolution of the wave field, we performed

1D simulations using the non-hydrostatic XBeach module. These simu-
lations use a bed profile, tide conditions, and wave spectra as input
parameters. The bed profiles were extracted from the bathymetric and
morpho-topographic data for each island, using the coastal stretch in
which the largest boulders were identified. These areas were chosen to
simulate the cross-shore velocity in areas impacted by the highest
waves. The tide conditions were assumed to be constant for the entirety
of the simulation and were referenced from their respective paleo-
relative sea-level datum. The same wave spectrum used for the Boussi-
nesq model was also used in the XBeach-1D simulation.

3.5. Threshold flow for boulder transport

The boulder displacement caused by a wave’s impact is determined
by a matrix of forces and moments applied to the boulder when the
water hits its surface. As the wave impacts the boulder, drag and lift
forces act to move the boulder, while reduced-gravity forces (i.e.,
boulder mass minus buoyant force) and frictional forces resist motion.
To assess the minimum flow velocity required to move each of the
surveyed boulders in the study area, we applied the incipient-motion
formula developed by Nandasena et al. (2022). Three different initial
conditions (i.e., pre-transport boulder positions) were considered
following the approach reported in Nandasena et al. (2011a, 2011b): i)
subaerial/submerged, ii) joint-bounded, and iii) cliff-edge. For sub-
aerial/submerged boulders, the three types of incipient transport modes
are i) sliding, ii) rolling/overturning, and iii) saltation/lifting. Boulders
starting from initial cliff-edge conditions may be transported by roll-
ing/overturning and saltation/lifting, while joint-bounded boulders can
only be lifted from their socket before the wave impact (Nandasena
et al., 2013). Previously published coefficients were used for all
incipient-motion calculations (Table 3). The static friction was deter-
mined by applying the approach described by Pollyea and Fairley (2012)

Table 2
Tsunamigenic sources and hurricane events considered for wave propagation modeling in the Lesser Antilles. References: 1—Brink et al. (2020); 2—Schubert, 1994;
3—Colón et al., 2015; 4—Pousse Beltran et al., 2016; 5- (Brink et al., 2008); 6—Boudon et al., 2007; 7—Lindsay et al., 2005; 8—Boudon et al., 1984; 9—Le Friant et al.,
2003; 10—Dondin et al., 2012; 11—Joint Typhoon Warning Center (JTWC); National Hurricane Center (NHC); Unisys Weather.

Earthquake-generated tsunami
Name of structure (references) Length (km) Strike Dip Width (km) Focal depth (km) Slip Mw
Enriquillo faults, Haiti (1) 60 132◦ 84◦ 20 15.5 − 2.6 m left-lateral 1.8 m reverse 7.1
EI Pilar fault zone, Venezuela (2,3,4) 270 88◦ 87◦ 20 15 1.6 m 7.7
South Caribbean Deformed Belt (SCDB) (5) 550 74.5◦ 17◦ 100 10 7.8 m 8.5
Muertos Thrust Belt (MTB) (5) 188 92.1◦ 10◦ 61 24 km 3 m 7.8

Subaerial landslide-generated tsunamis
Name of landslide (references) Length (km) Thickness (m) Density (kg/m3) Width (km) Volume (km3) Age

Debris avalanche, Santa Lucia (6,7) 6 100 3100 5 39 ky BCE, 1760 CE
Soufriere (8,9) 1.5 200 3100 4 2 3100 BCE
Kick’em, Jenny (7,10) 6 20 2000 3.5 4.4 From 1939 to 2001 CE

Tropical cyclones
Name of hurricane Date Mean sea-level pressure (hPa) Wind speed (km/h)

Hurricane Cesar (11) 24 July—06 August 1996 945 215
Hurricane Ivan (11) 2–24 September 2004 910 210
Hurricane Felix (11) 31 August—5 September 2007 929 280
Hurricane Matthew (11) 28 September—9 October 2016 934 270

Table 3
Coefficients used to calculate the minimum flow velocity required to transport
boulders.

Coefficient Value Reference

Drag 1.5 Nandasena et al.
(2022)

Lift—submerged/sub-aerial boulders and joint-
bounded blocks

0.7 Nandasena et al.
(2022)

Lift—cliff-edge blocks 2.0–2.7 Rovere et al., 2017
Static friction 0.177 Field data
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Table 4
Dimensional features of the studied boulders as obtained from close-range SfM/MVS analyses; densities were obtained through the correlation between lithotype/coral species and Archimedean buoyancy measurements
reported in Spiske et al. (2008).

Boulder
ID

Location Lat. (N) Lon. (E) Elevation
(m asl)

a-axis
(m)

b-axis
(m)

c-axis
(m)

Projected ab
(m2)

Projected ac
(m2)

Volume
(m3)

Lithotype/corals species Bulk
density
(kg/m3)

Mass
(tons)

Distance from
the surf zone
(m)

Ar1 Aruba (South
Ranchero Curason

12.5615 − 69.9895 4.60 3.26 2.28 1.75 6.24 5.03 12.186 Acropora sp. and rudstone matrix 2290 29 32
Ar2 12.5616 − 69.9898 5.80 2.17 1.82 1.56 2.59 2.70 3.507 Acropora sp. and rudstone matrix 2290 8.35 55
Ar3 12.5615 − 69.9898 5.80 2.68 1.98 1.62 3.31 2.78 5.198 Acropora sp. 2290 12.37 55
Ar4 12.5787 − 70.0062 4.50 4.56 2.59 2.12 8.12 6.28 12.845 Acropora sp. 2290 30.57 41
Ar5 12.5784 − 70.0059 4.90 2.00 1.82 0.58 3.47 0.87 1.262 Serpulid reef rock 1770 1.77 38
Ar6 Aruba (Tierra del

Sol)
12.6102 − 70.0363 4.26 2.67 1.811 1.6 4.26 1.56 2.216 Acropora sp. and Orbicella sp. 2290 5.27 28

Ar7 12.6103 − 70.0364 3.80 2.57 1.56 0.98 3.8 2.22 2.620 Acropora sp. and rudstone matrix 2290 6.24 25
Ar8 12.6099 − 70.0357 4.46 3.07 2.3 1.16 4.46 3.11 2.990 Acropora sp. and rudstone matrix 2290 7.39 30
Ar9 12.6101 − 70.0366 4.15 2.01 0.95 0.72 1.84 1.2 0.416 Biocalcarenite 2720 0.99 51
Ar10 12.6099 − 70.0360 4.15 1.51 0.66 0.62 0.67 0.74 0.220 Biocalcarenite 2720 0.53 52
Ar11 12.6114 − 70.0391 3.80 2.21 1.69 1.15 2.52 1.77 1.416 Acropora sp. 2290 3.37 16
Ar12 12.6114 − 70.0391 3.80 2.07 1.2 1.15 1.99 1.81 1.145 Acropora sp. 2290 2.73 16
Ar13  12.6114 − 70.0394 3.20 2.52 1.28 0.38 3.20 0.92 0.640 Serpulid reef rock 1770 1.02 48
Cu1 Curaçao 12.1737 − 68.8530 4.8 7.73 2.65 1.77 16.05 10.86 18.09 Biocalcarenite 2720 43.24 47
Bo1 Bonaire (Boka

Onima)
12.2529 − 68.3106 4.70 6.76 4.48 4.47 13.91 19.43 50.753 Acropora sp. 2290 120.79 150

Bo2 12.2533 − 68.3089 5.00 6.41 4.10 3.75 15.37 16.39 52.611 Acropora sp. 2290 125.21 52
Bo3 12.2531 − 68.3094 5.40 4.59 4.47 3.03 14.60 9.46 40.247 Acropora sp. 2290 95.79 96
Bo4 Bonaire (Arawak/

Boka Oliva)
12.2374 − 68.2825 7.10 7.94 5.15 5.14 33.12 20.28 79.943 Acropora sp. and rudstone matrix

+10% A. cervicornis and rudstone
matrix

2290 175.08 50

Bo5 Bonaire
(Lighthouse)

12.2109 − 68.1972 6.50 3.35 1.78 1.00 4.13 2.63 3.476 Acropora sp. and rudstone matrix 2290 8.59 24
Bo6 12.2100 − 68.1977 6.80 4.16 4.02 1.77 13.63 6.04 15.054 Diploria sp. and rudstone matrix 1040 37.18 51
Bo7 Bonaire

(Washikemba)
12.1732 − 68.2086 6.00 4.36 3.46 2.36 7.65 5.52 16.993 Biocalcarenite 2720 45.97 85
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on the point clouds obtained from SfM/MVS techniques.

4. Results

4.1. Size and minimum flow thresholds for coastal boulders

A total of 21 boulders were mapped using SfM/MVS (13 in Aruba,
seven in Bonaire, and one in Curaçao). The surveyed boulders were
composed of Pleistocene reef calcarenite and biocalcarenites and varied
between 0.5 and 175 tons. The boulders were located at variable dis-
tances from the coast, ranging between 16 and 250m from the shoreline,
and at elevations between ~3 and ~7 m above present sea level

(Table 4). In general, the boulders in Bonaire were larger, heavier, and
were located farther from the coast than those observed in Curaçao and
Aruba (Fig. 7). This observation provides some initial evidence that the
boulders in Bonaire would have required more energy to transport
compared to those in Curaçao and Aruba, irrespective of the mode of
transport under consideration (Fig. 8). In Bonaire, the flow required to
initiate boulder movement—regardless of the mode of transport—was
5.72 ± 3.46 m/s on average (1-sigma). The equivalent value for Aruba
was 3.47 ± 1.8 m/s (1-sigma), while the only boulder we measured in
Curaçao would have required an average flow velocity of 5.02 ± 1.09
m/s (1-sigma). Higher minimum flow velocities are required for the
saltation/lifting mode in subaerial and submerged conditions, for lifting
in joint-bounded conditions, and for rolling in cliff-edge conditions (see
Fig. 9).

4.2. Chronological constraints on boulder motion

The boulders surveyed using SfM/MVS were composed of Pleisto-
cene reef limestone; no biological remains could be attributed to or-
ganisms that died during transportation, which would potentially
provide a hard constraint on the timing of the displacement event.
Consequently, the next best proxy was the age of the boulder ridge,
which comprises smaller boulders of Holocene corals (Diploria sp. and
Orbicella sp.) and vermetids (Petaloconchus sp.). These were likely
transported from subtidal environments (for corals) or the intertidal
area (for vermetids) to the top of the MIS 5e reef terrace. Sampling was
performed in the two areas surveyed by UAS: eight samples were
collected in Tierra del Sol, while two samples were collected from South
Ranchero Curason. The dates obtained from these samples were corre-
lated with the eight large boulders that were sampled from Tierra del Sol
and used in the flow velocity assessment.

The age distribution of the boulders within the ridge at Tierra del Sol
and South Ranchero Curason shows that the ridges are polycyclic, with
the boulders being emplaced within the last 4000 years (Table 5) by
different extreme events during relative sea-level rise driven by glacial
isostatic adjustment processes (Fig. 10). Only one boulder dates back to
~7 ka BP; this boulder was emplaced with a relative sea level several

Fig. 7. Plot showing the relationship between distance from the surf zone (x-
axis) and mass of the surveyed boulders on the three islands (y-axis).

Fig. 8. Minimum flow velocity required to initiate boulder displacement for different pre-transport scenarios as calculated following the empirical equations re-
ported in Nandasena et al. (2022). More details can be found in the Supplementary Information.
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meters lower than the present day.
As the relative sea-level position at the time of boulder transport

influences onshore wave propagation, we used two different paleo
relative sea-level scenarios during the modeling; these were derived
from the glacial isostatic adjustment models shown in Fig. 10, which
show a gradual increase in the relative sea level starting from − 2.35 m
(4500 years BP) to − 0.26 m (500 years BP) (Fig. 11a). This shift in
Holocene sea-level would have significantly changed the position of the
cliff and reef platform (Fig. 11 b–c), with a coastline located farther out

to sea than its present-day position. Assuming the same relative sea-level
scenario for the fringing reef during the Holocene, the DEM obtained
from the aerial SfM/MVS method on Aruba was merged with bathy-
metric data and corrected using the two different cliff positions that
corresponded to the 500 years BP and 4000 years BP scenarios,
respectively (Fig. 11):

- cliff base located at − 0.26 m, with a coastline displacement toward
the sea of 25 ± 5 m (scenario for 500 years BP)

Fig. 9. DEMs obtained from SfM-MVS in Tierra del Sol and South Ranchero Curason. The locations of the boulder samples are presented as black dots, while the
boulders processed for flow assessment are shown as white diamonds. The profiles show the cliff elevations and storm ridge locations.

Table 5
Location and radiocarbon ages obtained from the vermetid and coral boulders that comprise the boulder ridge at Tierra del Sol and South Ranchero Curason. CE =

Common Era; BCE = Before Common Era.

ID LAB CODES Latitude Longitude Dated material Age (years
BP)

pMC Calibrated age
95.4%

Calibrated age
99.4%

Age (cal years BP, 2-
sigma)

S1 FTMC-HW32-
1

12.611456 − 70.039446 Petaloconchus
sp.

2161 ± 27 76.42 ±

0.26
84 BCE–83 CE 167 BCE–163 CE 1948 ± 165

S2 FTMC-HW32-
2

12.611391 − 70.039586 Petaloconchus
sp.

1995 ± 27 78.01 ±

0.26
124 CE–286 CE 50 CE–373 CE 1742 ± 81

S3 FTMC-HW32-
3

12.611283 − 70.039606 Petaloconchus
sp.

3623 ± 29 63.70 ±

0.23
1876 BCE–1703
BCE

1959 BCE– 1612
BCE

3741 ± 173

S4 FTMC-HW32-
4

12.610480 − 70.037820 Petaloconchus
sp.

1522 ± 27 82.74 ±

0.28
658 CE–785 CE 602 CE–871 CE 1226 ± 135

S5 FTMC-HW32-
5

12.610201 − 70.037460 Petaloconchus
sp.

3875 ± 28 61.73 ±

0.22
2206 BCE–2023
BCE

2304 BCE–1937
BCE

4072 ± 184

S6 FTMC-HW32-
6

12.609726 − 70.036168 Diploria sp. 3004 ± 28 68.80 ±

0.24
1108 BCE–931 BCE 1201 BCE–854 BCE 2975 ± 174

S7 FTMC-HW32-
7

12.607833 − 70.033370 Petaloconchus
sp.

937 ± 28 88.99 ±

0.31
1257 CE–1382 CE 1187 CE–1429 CE 641 ± 121

S8 FTMC-HW32-
8

12.607601 − 70.033775 Orbicella sp. 4192 ± 30 59.34 ±

0.22
2630 BCE–2451
BCE

2745 BCE–2356
BCE

4493 ± 195

S9 FTMC-HW32-
9

12.583610 − 70.010970 Petaloconchus
sp.

4521 ± 29 56.96 ±

0.21
3035 BCE–2870
BCE

3162 BCE–2780
BCE

4909 ± 191

S10 FTMC-HW32-
10

12.583648 − 70.011266 Petaloconchus
sp.

6730 ± 31 43.27 ±

0.17
5468 BCE–5331
BCE

5541 BCE–5252
BCE

7350 ± 145
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Fig. 10. Relative sea level resulting from glacial isostatic adjustment processes
in the ABC islands. Intervals with tsunami events are reported in gray boxes.
The lower part of the graph shows the average ages of boulders dated in this
work (blue lines; Table 5) and the occurrence of tsunamis that impacted the
ABC islands as reported in other studies (gray lines; Table 1).

Fig. 11. Reconstruction of topography from the DEMs obtained from UAS surveying at Tierra del Sol (Aruba island): a) DEM of the current sea-level position, b) DEM
with the coastline at − 0.26 m (500 years BP), and c) DEM with the coastline at − 1.65 m relative to the DEM in 11b (4000 years BP).

Fig. 12. Water levels for different extreme wave events modeled in the
Caribbean region: a) El Pilar fault-generated tsunami, b) Enriquillo fault-
generated tsunami, c) tsunami generated by the flank collapse of the Santa
Lucia volcano, and d) storm surge modeled in response to Hurricane Ivan
(September 2004).
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- cliff base located at − 1.65 m, with a coastline displacement toward
the sea of 62 ± 5 m (scenario for 4000 years BP)

4.3. Modeling of extreme wave events

Mesoscale wave propagation modeling provides insights into the
nature of the waves that could have emplaced the surveyed boulders in
the ABC islands. While the models for landslide-generated tsunamis
caused by volcanic flank collapses indicated that these waves would
have completely dissipation over the Aves ridge (eastern Caribbean), the
modeled earthquake-triggered tsunamis produced high water levels on
the windward side of the ABC islands, where the boulders were
emplaced. Of the two fault systems modeled in this study, the Haiti-
sourced seismogenic tsunami produced very low water levels, while
the seismogenic tsunami driven by slip along the El Pilar fault resulted in
high water levels (Fig. 12). The models indicate that the activation of
this fault system triggers a westward-propagating wave that results in
high water levels on both the leeward and windward sides of the ABC
Islands.

In terms of hurricanes, Hurricane Ivan (2004) resulted in the

displacement of coastal boulders weighing up to 2.5 tons in Bonaire
(Bries et al., 2004; Scheffers and Scheffers, 2006; Engel et al., 2012b).
However, although the path of this hurricane crossed the Caribbean
region approximately 140 km north of the ABC Islands, it generated
swell waves that were amplified by cliff fronts, reaching heights of
around 12 m on the windward side of Bonaire (Scheffers and Scheffers,
2006). Our model of these events indicates that the ABC Islands were
impacted by water levels of about 0.15 m asl, with significant wave
heights of 6 m (Fig. 13). Another major event that impacted the ABC
Islands was Hurricane Felix (2007), whose predicted water level and
significant wave height values were 0.15 m and 4.5 m, respectively.
Simulations of Hurricane Cesar (1996) and Hurricane Matthew (2016)
exhibited water levels of about 0.2 m and wave heights of around 3 m
along the coast of ABC Islands.

Among the modeled extreme events, the highest water levels along
the coasts of the ABC islands were generated by tsunamis triggered by
the El Pilar fault and the South Caribbean Deformed Belt (SCDB)
structures. The estimated first arrival times from the tsunami generated
by the El Pilar earthquake were 50 min in Bonaire, 60 min in Curaçao,
and 80 min in Aruba (after the initialization of the simulation).

Fig. 13. Water level and significant wave height modeled for the main hurricanes that impacted the ABC Islands (events are described in Table 3, while sampling
points are reported in Fig. 12).
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However, the estimated first arrival times from the tsunami generated
by the SCDB structure were 20 min in Aruba, 30 min in Curaçao, and 80
min in Bonaire. Furthermore, the raised water levels produced by the
tsunami generated by the El Pilar fault were observed to dissipate as they
progressed towards Aruba, with higher water levels (~3 m) modeled in
Bonaire that became progressively lower in Aruba and Curaçao (~1m;
Fig. 14a–e). In contrast, tsunamis generated by the SCDB structure
exhibited higher water levels in Aruba (~4.3 m) compared to Curaçao
and Bonaire (~0.8 m; Fig. 14b–f). Water levels observed in models of the
Enriquillo fault and Muertos Thrust Belt (MTB) structures exhibited
values lower than 0.5 m (Fig. 14c–h).

4.4. Cross-shore velocity modeled in XBeach 1D

A 1D non-hydrostatic XBeach model was used to calculate the flow
velocity generated by the highest tsunami waves shown in Fig. 14. The
water level and cross-shore velocities were extracted along each transect
reported based on the non-linear wave field modeled in XBeach 1D
(Fig. 15). The results show an increased cross-shore velocity at the edge
of the cliff, with values exceeding the flow velocity threshold needed to
initiate boulder transport. The maximum cross-shore velocities in the
500 years BP and 4000 years BP scenarios were approximately 7.5 m/s
on Aruba, 8 m/s on Curacao, and 12 m/s on Bonaire. The highest water
levels occurred in the 500 years BP scenario, ranging from 5 to 7 m.
These values could strengthen the hypothesis of a tsunami impact
capable of moving the observed boulders, as these values are greater
than the c-axis values of the surveyed boulders.

5. Discussions

5.1. Limitations on the minimum flow for extreme wave scenarios

The distribution of coastal boulders in the ABC Islands provides a
clear indication of the impact of extreme wave events capable of dis-
lodging the boulders. Boulders weighing more than 50 tons are found
only in Bonaire and Curaçao, with the largest ones located on the
western side of Bonaire (Scheffers, 2002; Scheffers et al., 2014), indi-
cating that the minimum flow required to initiate boulder movements
was higher in Bonaire than in Curaçao and Aruba. The inverse modeling
presented in this study shows that tsunamigenic sources located in the
eastern part of the Caribbean basin—such as the El Pilar fault—are most
likely to have caused boulder displacement. The strongest swells were
also associated with storms arriving from the eastern side of the Carib-
bean basin. In contrast, several other probable sources could be
responsible for boulder displacements that may have impacted from
other directions, including the SCDB structure located offshore on the
northern side of the ABC Islands (Brink et al., 2008; UNESCO, 2012).
Considering the minimum flow velocities reported in Fig. 8, a singular
marine event is not capable of transporting boulders more than 100 m
(Goto et al., 2010; Nandasena et al., 2011a). Flows measured in similar
conditions during the 2011 Great East Japan tsunami showed that
boulder displacements exceeding 100 m require flow velocities of
7.5–23.7 m/s (Nandasena et al., 2013); consequently, based on the
geographic context of the ABC islands, it is more realistic to consider
multiple wave events that may have contributed to the observed cu-
mulative different boulder displacements.

It should be noted that some criticisms have been leveled against the
application of the incipient motion formula to distinguish types of wave
events responsible for boulder movements in the ABC Islands (Engel and
May 2012; Costa et al., 2021). In particular, the wave energy can be
underestimated if the pre-transport setting and transport mode are not
clearly defined. For example, the boulders of Boka Olivia (Bonaire) have
their a-axis sub-parallel to the coastline, suggesting a saltation transport
mode (Watt et al., 2010). However, evidence of detachment surfaces and
notches on the boulders can provide additional insights into their
transport mode (Pignatelli et al., 2010; Engel and May 2012); a com-
parison between the transport mode and minimum flow required to
initiate boulder movement is reported in Table 6 based on the field
evidence reported in Engel and May (2012).

Boulder Bo4 is the largest boulder surveyed in this study and overlies
a 0.7 m high pedestal, indicating a long period of protection from so-
lution agents on the order of many hundreds or even thousands of years
(Engel and May 2012). There is a notch at the base of Bo4, suggesting
that the most likely pre-transport setting is that of a joint-bounded
emplacement. Furthermore, Bo4 is the heaviest boulder recorded in
this study, and the minimum flow required for its displacement is a
useful benchmark for the application of the inverse modeling approach.
Indeed, the modeled cross-shore velocities were higher than those
indicated by the incipient mode for both the 4000 years BP and 500
years BP scenarios.

5.2. Attribution of the most reliable tsunamigenic source

Chronological constraints were obtained from the radiocarbon
dating of subtidal and intertidal samples transported onto the MIS 5e
terraces of Aruba island. The calibrated ages revealed three key horizons
during which multiple wave events would have been capable of dis-
lodging the boulders of ABC Islands: 500, 2000, and 4000 years BP. The
500 years BP horizon is consistent with other geological evidence of a
tsunami that occurred on September 1st, 1530, such as debris ava-
lanches into the sea of the eastern Islands (i.e., Basse-Terre, Guadeloupe,
St. Lucia, Grenada) (Boudon et al., 1984, 2007) and fine-grained
extreme wave deposits on the lagoonal areas of Lesser Antilles (Engel
et al., 2012a; Engel and May 2012).

Fig. 14. Time series of the modeled earthquake-generated tsunamis. Water
levels of the leeward side of the ABC islands as modeled for the a) El Pilar, b)
SCDB, c) MTB, and d) Enriquillo faults; water levels of the windward side of the
ABC islands as modeled for the e) El Pilar, f) SCDB, g) MTB, and h) Enri-
quillo faults.
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The current positions of the coastal boulders suggest that they were
displaced by more than 100 m from the surf zone. This degree of
movement could not have occurred during a single event as indicated by
the cross-shore velocities predicted by the XBeach 1Dmodel (Nandasena
et al., 2011a, 2013; Cox et al., 2020). Therefore, boulder transport must
have occurred across multiple events as indicated by the chronological
ranges obtained from the radiocarbon dating (Table 5). The initial
displacement of coastal boulders could have occurred during the 4000
years BP scenario, during which the maximum cross-shore velocity

reached 12 m/s (Fig. 11). This velocity is consistent with other tsunamis
that have caused the displacements of similar boulders, as observed
during events such as the 2004 Indian Ocean Tsunami (Paris et al., 2010;
Nandasena et al., 2011a).

Field evidence from Spain has shown that minimum flow velocities
between 3.6 and 8 m/s can displace coastal boulders by a maximum
distance of 40 m (Lario et al., 2023). Similarly, boulders weighing 60–90
tons were moved up to 32 m by wave flows of around 10 m/s in New
South Wales, Australia (Young et al., 1996). Several instances of coastal

Fig. 15. Non-hydrostatic simulation outputs obtained through the XBeach model of the ABC islands. The different times were extracted from the calibrated ages,
while the topographic profiles were extracted from the paleo-landscape of the relevant sea-level scenarios.

Table 6
Pre-transport settings of the surveyed boulders as well as the correlation between their masses and the minimum flow velocities required to initiate boulder movements
as calculated from the equations described in Nandasena et al. (2022).

ID
boulder

Pre-transport
setting

Transport mode Location Event Mass
(t)

Minimum flow required to
initiate boulder displacement
(m/s)

Modeled cross-shore
velocities (m/s)

Bo2 Cliff-edge
boulder

Cliff edge - Rolling/overturning (Rixhon
et al., 2018)

Boka Onima Tsunami
1200 BP

125.21 8.2 12

Bo5 Joint-
bounded

Cliff edge - Rolling/overturning (Rixhon
et al., 2018)

Spelonk
Lighthouse

Tsunami
1200 BP

8.59 5.4

Bo4 Joint-
bounded

Cliff edge - Rolling/overturning (Engel
and May, 2012b); Saltation (Watt et al.,
2010)

Boka Olivia – 175.08 9.1
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boulders being displaced multiple times due to different tsunami events
have been studied in Australia; in these cases, top-cliff boulders
weighing 20–100 tons were moved up to 100 m inland by two Holocene
tsunami events (Scheffers et al., 2008). In this study, the location of the
coastal boulders of the ABC Islands may be the culmination of different
tsunami events that drove boulder transport as indicated by the
paleo-landscape reconstruction of the 500 years BP scenario.

5.3. Inundation surfaces and boulder accumulations

The impact of tsunamis and storm waves can result in the severe
inundation of the three studied islands. Pignatelli et al. (2010) showed
that the inundation limit was located further inland than the positions of
the tsunami-transported boulders. Using paleo-landscape re-
constructions at Tierra del Sol on Aruba, which was hit by relatively
small waves compared to Bonaire and Curaçao (Fig. 14), we simulated

the paleo-landscape inundation caused by the impact of tsunamis that
occurred 500 and 4000 years BP and compared them to the flooding
caused by Hurricane Ivan (September 2004) under present sea-level
conditions (Fig. 15a). In general, the inundation extent was similar for
all events, extending a maximum of 200 m inland. This similarity be-
tween these events makes determining the scenario responsible for the
observed boulder displacement more challenging. For example, the
impact of hurricanes has occasionally led to the displacement of some
boulders, such as was observed during Hurricane Ivan in Bonaire
(Scheffers and Scheffers, 2006; Engel and May 2012).

Small boulders were observed to be sorted along the ridge deposits,
with their a-axis values decreasing in length landward (Fig. 16). The
presence of ridge deposits resulting from hurricane impacts on the ABC
Islands has been discussed in previous studies (Morton et al., 2008;
Spiske et al., 2008). Nevertheless, there are boulders weighing over 50
tons that have not been displaced by hurricanes (Scheffers and Scheffers,

Fig. 16. Modeled inundation scenarios at the Tierra del Sol site, Aruba: a) inundation caused by Hurricane Ivan (2004) at present-day sea levels, b) inundation
caused by the El Pilar tsunami based on relative sea-levels in the 500 years BP and c) 4000 years BP scenario. The empty black circles indicate the location of the
mega-boulders surveyed at this site, while the colored dots represent smaller boulders that comprise the ridge, colored by their a-axis size as measured from field
photos. Basemap source: Esri, Maxar, Earthstar Geographics, and the GIS User Community.

Fig. 17. Modeled El Pilar fault-generated tsunami effects at Malmok beach (Aruba). a) Flooding map at Malmok beach obtained using the Celeris software (DEM
derived from TanDEM X). b) Coral debris within cactus plants observed in Malmok lagoon.
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2006; Engel and May 2012). Some coral debris and overwash deposits
were observed in the back lagoon located at Malmok Beach (Aruba;
Fig. 17). This may be related to the El Pilar earthquake-generated
tsunami, which produced water levels of ~3 m, resulting in a
maximum inundation surface that extended across the lagoon. A similar
pattern was observed in Salina Tam (leeward Bonaire; Engel et al.,
2012b), where high-energy deposits were observed in sedimentary cores
and attributed to episodic tsunami events.

6. Conclusions

The coastal boulders of the ABC islands represent out-of-size deposits
that may be related to tsunami or storm events. The dimensional fea-
tures and distributions of these deposits are important factors that can be
used to constrain the type of event that was responsible for their
displacement. Here, SfM/MVS methods allowed us to obtain high-
resolution dimensional data of the studied coastal boulders as well as
reconstruct paleo-landscapes in the ABC islands. Radiocarbon dating
allowed for the identification of three key event horizons associated
with multiple extreme wave occurrences: 500, 2000, and 4000 years BP.
Given the distance of the boulders from the surf zone (more than 100 m
in some cases), these displacements are likely to have occurred at
different times. The onset of boulder displacement is most likely to be
associated with the oldest key horizon (4000 years BP), corresponding to
a sea-level position of − 1.65 m and a paleo shoreline located about 60 m
seaward. An analysis of the incipient motion of the boulders combined
with numerical models and chronological constraints revealed that the
events responsible for boulder displacement would have resulted in high
flow velocities in Bonaire and slightly lower velocities in Curaçao and
Aruba. The overall displacement of the coastal boulders is likely to have
been caused by multiple events across the three key event horizons.

Based on hydrodynamic simulations and the calculated wave flow
velocities required to move the boulders, the most likely tsunamigenic
scenario is associated with slip along the El Pilar fault system (a Ven-
ezuelan structure); this hypothesis is supported by water level models of
tsunami propagation. Furthermore, the cross-shore velocities of the
modeled El Pilar fault-generated tsunami resulted in higher values than
the required flows as indicated by incipient motion formulas. The El
Pilar fault-generated tsunami models were also consistent with other
geomorphological evidence of coastal flooding detected in Aruba. While
hurricanes can result in the deposition of imbricated ridges and may
have influenced the current positions of the coastal boulders across the
islands, we show that the initial and main factors that drive coastal
boulder transport are likely related to the impacts of different tsunamis
across multiple event horizons.
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Regard, V., 2023. On a 210 t Caribbean coastal boulder: the huracanolito seaward of
the ruins of the Bucanero resort, Juragua, Oriente, Cuba. Earth Surf. Process.
Landforms 48, 3074–3090. https://doi.org/10.1002/esp.5682.

Perez, O., Wesnousky, S., De La Rosa, R., Márquez, J., Uzcategui, R., Quintero, C.,
Liberal, L., Mora-Paez, H., Szeliga, W., 2018. On the interaction of the North Andes
plate with the Caribbean and South American plates in northwestern South America
from GPS geodesy and seismic data. Geophys. J. Int. 214, 1986–2001. https://doi.
org/10.1093/gji/ggy230.
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