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A B S T R A C T

Groundwater depletion results from a groundwater withdrawal rate exceeding groundwater recharge. Although
groundwater depletion is recognized as a pressing global phenomenon, global groundwater recharge remains one
of the least constrained aspects of the global hydrological cycle. This study aims to evaluate the spatial and
temporal variations of global rain-fed groundwater recharge over the last two decades (2001–2020), and to
assess how climate change and variability have affected the temporal patterns of groundwater recharge. We
developed a three-layer transient water balance model to estimate the daily dynamics of global rain-fed
groundwater recharge at a spatial resolution of 0.1◦. The 20-year average groundwater recharge is estimated
to be 176 mm per year. The assessment of the global recharge trend shows that the global groundwater recharge
trend has increased by 0.2 mm per year during these 20 years. However, when evaluating the recharge trend of
each global river basin, we found that recharge has declined in 40 % of the river basins. These declines are
primarily located in South America and Europe, with additional scattered basins in northern Australia and
eastern China. In 26 % of the world’s basins, declining groundwater storage combined with increasing
groundwater recharge, suggests that storage loss is likely due to anthropogenic factors such as over-exploitation,
affecting 2.6 billion people. In contrast, in 22 % of basins, the decline in groundwater storage coincides with a
decline in groundwater recharge. These basins, inhabited by 1.7 billion people, are climatic hotspots for
groundwater sustainability, where drying recharge exacerbates groundwater storage losses.

1. Introduction

Escalating global groundwater depletion has become an urgent
concern, with the rate increasing significantly from 56 km3a− 1 between
1960 and 2000 to 113 km3a− 1 between 2000 and 2009 (Döll et al.,
2014b). The alarming trend in the reduction of the largest liquid
freshwater resource not only jeopardizes water and food security (Dalin
et al., 2017), but also threatens groundwater-dependent ecosystems (de
Graaf et al., 2019; Mohan et al., 2023). It also leads to other crises, such
as land subsidence, escalating costs associated with groundwater with-
drawal, and rising sea levels (United Nations, 2022).

Intensive groundwater withdrawal has historically been identified as
the primary factor contributing to groundwater depletion (Dalin et al.,
2017; Wada et al., 2014). Increased withdrawal is a consequence of the
growing global population (Rodell et al., 2009), improving living stan-
dards, and the expansion of industries and agriculture (Alley et al.,

2002). Approximately a quarter of the world’s freshwater withdrawal is
sourced from groundwater resources to meet the basic freshwater de-
mands, including 9 % of industrial, 22 % of domestic, and 69 % of
irrigation freshwater consumption (United Nations, 2022).

While groundwater withdrawal is often identified as a critical driver
of groundwater depletion, it is important to recognize that depletion
occurs when the rate of groundwater withdrawal surpasses the recharge
rate (Famiglietti, 2014). Therefore, to evaluate the dynamics of
groundwater storage, the role of groundwater recharge needs to be
considered. Long-term groundwater recharge trends are influenced by
climate change and variability and have impacts on groundwater stor-
age, groundwater quality (Scanlon et al., 2005), and groundwater-
dependent ecosystems (Bergkamp and Cross, 2006; Gleeson et al.,
2020; Kløve et al., 2011).

Rain-fed groundwater recharge, a vital natural source of ground-
water replenishment, is primarily governed by precipitation, total
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evapotranspiration, and percolation into the soil layers. The estimation
of rain-fed recharge depends on several factors, including soil proper-
ties, vegetation types, land use, topography, climate, and the temporal
and spatial scales of calculation (Alley et al., 2002; Small, 2005). Due to
the scarcity of global-scale recharge observations, calculating recharge
from observations or calibrating modeled recharge involves uncertainty
and complexity (Moeck et al., 2020b; Wada, 2016).

Global hydrological models (GHMs) and datasets have been used to
analyze global groundwater recharge. These studies have primarily
focused on simulating long-term average recharge to assess groundwater
depletion and water table depth (de Graaf et al., 2017; Döll et al., 2014a;
Döll et al., 2014b; Wada et al., 2010), groundwater-surface water in-
teractions (Bierkens et al., 2021; de Graaf et al., 2019), and the impacts
of groundwater withdrawal on water resource status (Bierkens et al.,
2021; Döll et al., 2012).

Recent studies have investigated rain-fed groundwater recharge
(Berghuijs et al., 2022; Jung et al., 2024) and projected the future im-
pacts of climate change on it (Berghuijs et al., 2024; Reinecke et al.,
2021). However, comprehensive analyses that quantifys the effects of
recent climate change and variability on the temporal variation of rain-
fed groundwater recharge—independent of groundwater with-

drawals—remain scarce (Kundzewicz et al., 2007). This gap is critical
because changes in groundwater recharge trends, whether indicating
drying or wetting, significantly impact groundwater management. A
drying trend can exacerbate groundwater storage stress, while a wetting
trend can help mitigate it (Huggins et al., 2022).

This study aims to evaluate the spatial and temporal variations of
global rain-fed groundwater recharge over the past two decades
(2001–2020). The primary objective is to assess how climate change and
land use variability have influenced the temporal patterns of ground-
water recharge. We focus on processes driven mainly by climatic factors,
while minimizing the impact of direct anthropogenic influences, except
for indirect effects such as those arising from climate or land cover
changes. To support this analysis, we developed a grid-based Global
Groundwater Rain-fed Recharge (GGR) model.

By utilizing two decades of groundwater storage anomaly data from
the Gravity Recovery and Climate Experiment (GRACE) satellite mission
(Güntner et al., 2023; Wiese et al., 2016) and an analytical evaluation of
how periodic climate variability affects groundwater recharge and water
table dynamics (Moeck et al., 2024), we identify regions where recharge
variability correlates with groundwater storage fluctuations. Specif-
ically, this study seeks to pinpoint hotspot areas where declining rain-
fed recharge exacerbates groundwater storage losses.

For the sake of simplicity, throughout the manuscript, rain-fed
groundwater recharge is referred to as ‘recharge’ and groundwater
storage as ‘storage’.

2. Methods

2.1. General description

In this study, a grid-based Global Groundwater Rain-fed Recharge
(GGR) model utilizing satellite imagery and environmental parameters
was developed and implemented in Python (Nazari, 2024). The GGR
model operates at a spatial resolution of 0.1◦ × 0.1◦ and a daily temporal
resolution. The daily temporal resolution was chosen because ground-
water recharge is significantly influenced by extreme precipitation

events (Berghuijs et al., 2024; Jung et al., 2024) which occur over short
periods. Modeling at a daily timescale allows for capturing the impacts
of individual rain events on soil moisture dynamics and groundwater
recharge processes. The model covers the spatial extent from 180.0◦W to
180.0◦E longitudes and 60.0◦N to 60.0◦S latitudes with a temporal range
from January 2001 to December 2020.

Based on common definitions of recharge (Gong et al., 2023), in this
study, we define it as the water that infiltrates through the evapo-
transpiration and root zones (Delleur, 2006), penetrates deeply into the
soil, and potentially recharges the aquifer (De Vries and Simmers, 2002).

The GGR model consists of three layers: topsoil (root zone), subsoil,
and aquifer (Fig. 1), inspired by the approach developed by Hajati et al.
(2019). It calculates the exchange of water between the topsoil and at-
mosphere, as well as surface runoff, water volume in soil layers, subsoil
infiltration from topsoil, capillary rise from the subsoil to the topsoil,
and groundwater recharge, all on a daily time step and grid-based
values.

A different thickness for the layers of each grid was considered based
on the absolute depth to the bedrock Ztotal data (Hengl et al., 2017). The
topsoil, subsoil, and aquifer thicknesses Ztop, Zsub, and Zaq, respectively,
were identified based on Eq. (1):

The topsoil layer was considered to be up to 30 cm thick to represent the
root zone. This layer models the soil-atmosphere interface by incorpo-
rating total evapotranspiration and precipitation. The soil moisture ca-
pacity of the topsoil layer was used to calculate surface runoff
generation in response to precipitation events. The subsoil layer was
considered as a transition layer between the topsoil, which is influenced
by atmospheric parameters, and the aquifer and can be up to 200 cm in
depth. Additionally, the selected thicknesses of the topsoil and subsoil
layers were based on the availability of soil data (Simons et al., 2020;
Wieder, 2014). This setup leads to neglecting capillary rise from the
volume below that threshold, which can lead to an overestimation of
recharge.

While the GGR model shares similarities with existing GHMs in
calculating rain-fed groundwater recharge, it differs in both its calcu-
lation process and the input datasets used. The GGR model incorporates
different meteorological and soil properties datasets, and we have
reduced the model’s complexity and computational demands by omit-
ting the calculation of certain processes (e.g., total evapotranspiration
and snowmelt), instead utilizing readily available global datasets.

The default spatial and temporal model setup was determined using
meteorological input parameters (Huffman et al., 2019; Muñoz Sabater,
2019). The GGR model begins at 2001, aligned with the available
temporal period of the IMERG final run dataset (Huffman et al., 2019)
for rainfall. The spatial resolution of 0.1 degrees is dictated by the res-
olution of the rainfall, total evapotranspiration, and snowmelt datasets.
As with other GHMs, uncertainty from the input datasets propagates into
our model output (Condon et al., 2021).

Spanning over a 20-year period, this study can capture the effects of
some teleconnections that influence groundwater recharge, such as the
Pacific-North American (PNA) pattern, the North Atlantic Oscillation
(NAO), and the El Niño-Southern Oscillation (ENSO), that typically
operate on cycles ranging from 1 to 7 years (Corona et al., 2018; Fleming
and Quilty, 2006; Rust et al., 2019). However, longer-term phenomena
like the Pacific Decadal Oscillation (PDO), which cycles over 15 to 30
years (Kuss and Gurdak, 2014; Moeck et al., 2024), may not be fully
captured within our study period.

(
Ztop, Zsub,Zaq

)
=

⎧
⎨

⎩

Ztop = Z total, Zsub = 0,Zaq = 0 if Z total ≤ 30 cm
Ztop = 30cm, Zsub = Z total − 30,Zaq = 0 if 30 < Z total ≤ 200 cm
Ztop = 30cm, Zsub = 170cm,Zaq = Z total − 200 if Z total > 200 cm

(1)
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2.2. Input data

Meteorological and soil properties data from various sources were
collected as fundamental inputs for the GGR model (see Table 1). These
datasets were employed to calculate the interactions between soil and
atmosphere, surface runoff, and fluxes within the soil layers, all while
accounting the variability of soil composition, land use, and topo-
graphical features.

The Integrated Multi-satellite Retrievals for GPM (IMERG) Final Run
product (Huffman et al., 2019) was used as the rainfall input data.
IMERG Final Run employs sophisticated algorithms to integrate and
calibrate various precipitation estimates, ranging from satellite micro-
wave to gauge analysis, at half-hourly resolutions with a spatial scale of
0.1◦ x 0.1◦. Among the different IMERG products, IMERG Final Run is
specifically tailored for hydroclimatology and water resources (Li et al.,
2021).

The input datasets for snowmelt and total evapotranspiration were
sourced from ERA5-Land (Muñoz Sabater, 2019). ERA5-Land is a
reanalysis product that provides land-only variables, published by the
European Centre for Medium-Range Weather Forecasts (ECMWF), and is
available hourly at a spatial scale of 0.1◦x0.1◦. A land-surface model is

used to calculate snowmelt, taking into account factors such as tem-
perature, energy balance, and snowpack properties. ERA5-Land snow-
melt represents the amount of melted water from the snow-covered area
of a grid. The IMERG Final Run and ERA5-Land datasets were used in
conjunction to provide a comprehensive representation of rainfall and
snowmelt processes.

Additionally, a combination of meteorological variables, soil prop-
erties, and vegetation parameters is used to calculate total evapotrans-
piration (ECMWF, 2016). ERA5-Land total evapotranspiration is the
accumulated amount of water evaporated from the Earth’s surface
taking into account different components such as low vegetation, high
vegetation, and bare soil.

Three sources of soil-related attributes were utilized: SoilGrid250m
(Hengl et al., 2017), HiHydroSoil V2.0 (Simons et al., 2020), and
HydroPy(v1.0) (Stacke and Hagemann, 2021). SoilGrid250m, provided
by the International Soil Reference Information Centre (ISRIC), was used
for the total depth to the bedrock input data. This dataset offers pre-
dictions of soil properties at seven standard depths and total depth to
bedrock. SoilGrid250m employed approximately 150,000 soil profiles in
conjunction with remote sensing data, and applied machine learning
methods to predict the soil properties across the globe at a resolution of

Fig. 1. The conceptual model of the Global Groundwater Rain-fed Recharge (GGR). The diagram illustrates three layers with their respective thicknesses, input
meteorological variables, water volumes within soil layers, and the exchanges between the topsoil and atmosphere. It also shows surface runoff, groundwater
discharge, and the potential fluxes between soil layers, including capillary rise, subsoil infiltration, and groundwater recharge.
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250 m (Hengl et al., 2017).
For soil hydraulic properties, HiHydroSoil V2.0 was used. HiHy-

droSoil implements soil properties based on SoilGrid250m and pedo-
transfer functions to evaluate global soil hydraulic properties on 250 m
resolution for six standard depths, as well as topsoil and subsoil layers
(Simons et al., 2020). Furthermore, two soil-related datasets were ob-
tained from a data repository provided by HydroPy model, a global
hydrological model with a resolution of 0.5◦ (Stacke and Hagemann,
2021).

While these datasets were globally available, they vary in temporal
or spatial resolutions (refer to Table 1). To ensure consistency, all input
data were considered daily and were adjusted to a spatial resolution of
0.1◦ × 0.1◦. Input data with a resolution of 250 m were reprojected to a
geographical coordinate system and aggregated to 0.1◦ using averages.

2.3. Model structure

GGR simulates daily transient water balances per cell over three
layers. The model estimates changes in the daily amount of topsoil
water, Stop(t) (mm), based on total throughfall into the ground and total
evapotranspiration. The topsoil layer is replenished by total throughfall
Tthru(t) (mm/day) and capillary rise from subsoil CR(t) (mm/day), while
it losses water through total evapotranspiration Teva(t) (mm/day), sub-
soil infiltration Rsub(t) (mm/day), and surface runoff Rrun(t) (mm/day)
(Eqs. (2) and (3)).

Tthru(t) = Pr(t)+Psmlt(t) (2)

Stop(t+Δt) = Stop(t)+Tthru(t)+CR(t) − Teva(t) − Rrun(t) − Rsub(t) (3)

where Psmlt(t) (mm/day), and Pr(t) (mm/day) are snowmelt, and rainfall,
respectively.

The subsoil water volume Ssub(t) (mm) is influenced by recharge from

topsoil Rsub(t) and discharge resulting from groundwater recharge Rgw(t)
(mm/day), along with capillary rise CR(t) from the subsoil to the topsoil
(Eq. (4)).

Ssub(t+Δt) = Ssub(t)+Rsub(t) − Rgw(t) − CR(t) (4)

The calculation of the daily recharge for every grid point involves a
series of flux estimations. The specific steps of this calculation sequence
are outlined in Fig. 2, describing the usage of the input data and the
equations explained in the following sections.

2.4. Surface runoff and vertical fluxes simulation

The available topsoil water volume Stop(t) and soil properties deter-
mine the proportion of total throughfall Tthru(t) turning into surface
runoff Rrun(t). In the GGR model, the Improved Arno scheme (IA
scheme) (Hagemann and Gates, 2003) was applied to simulate Rrun(t).
The IA scheme assumes a bucket-type reservoir and estimates the excess
infiltration as surface runoff in response to the fraction of the topsoil
saturation. When the topsoil layer is not saturated, Tthru infiltrates and
no surface runoff occurs. However, when the soil is saturated, the
fraction of soil moisture determines the fraction of Tthru changing to Rrun.
The IA scheme applies a shape parameter b (− ) and maximum and
minimum soil water volume capacities, Smax,top (mm) and Smin,top (mm),
respectively, to account for topsoil moisture variability and calculate
surface runoff (Eq. (6)).

The shape parameter b is derived based on the distribution parameter
bsg (− ) and the sub-grid orography standard deviation σh (m), as shown
in Eq. (5), to consider how the distribution of the soil moisture affects
surface runoff.

b =
{
bsg + boro if boro > 0.01
bsg otherwise, (5)

Table 1
Overview of the input parameters used in the GGR model with the abbreviation (Abbr.), spatial and temporal resolutions (Res.), unit, and source.

Parameter Abbr. Res. Unit Source

Rainfall Pr 0.1◦(daily) mm/day IMERG Final Run,
Huffman (2019)

Snowmelt Psmlt 0.1◦(daily) m/day ERA5,
Muñoz Sabater (2019)

Total evapotranspiration Teva 0.1◦(daily) m/day ERA5,
Muñoz Sabater (2019)

Absolute depth to bedrock Ztotal 250 m cm SoilGrids250m,
Hengl et al. (2017)

Topsoil residual water content θres,top 250 m − HiHydroSoil v2.0,
Simons et al. (2020)

Topsoil saturated water content θsat,top 250 m − HiHydroSoil v2.0,
Simons et al. (2020)

Topsoil unsaturated hydraulic conductivetiy Kf,top 250 m cm/day HiHydroSoil v2.0,
Simons et al. (2020)

Topsoil Alpha parameter for Mualem Van Genuchten Equation αtop 250 m 1/cm HiHydroSoil v2.0,
Simons et al. (2020)

Topsoil N parameter for Mualem Van Genuchten Equation ntop 250 m − HiHydroSoil v2.0,
Simons et al. (2020)

Subsoil residual water content θres,sub 250 m − HiHydroSoil v2.0,
Simons et al. (2020)

Subsoil saturated water content θsat,sub 250 m − HiHydroSoil v2.0,
Simons et al. (2020)

Subsoil unsaturated hydraulic conductivetiy Kf,sub 250 m cm/day HiHydroSoil v2.0,
Simons et al. (2020)

Subsoil Alpha parameter for Mualem Van Genuchten Equation αsub 250 m 1/cm HiHydroSoil v2.0,
Simons et al. (2020)

Subsoil N parameter for Mualem Van Genuchten Equation nsub 250 m − HiHydroSoil v2.0,
Simons et al. (2020)

Sub-grid distribution parameter bsg 0.5◦ − HydroPy(v1.0),
Hagemann and Gates (2003)Stacke and Hagemann (2021),

Orographical sub-grid standard deviation σh 0.5◦ m HydroPy(v1.0),
Amante and Eakins (2009)Stacke and Hagemann (2021),
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where boro = σh − σ0
σh+σmax and σ0 and σmax are the minimum and maximum of

the standard deviation of the sub-grid orography and equal to 100 m and
1000 m, respectively.

Maximum topsoil water volume capacity Smax,top and minimum
topsoil water volume capacity Smin,top are calculated as functions of the
saturated water content θsat,top (− ), residual water content θres,top (− ),
and topsoil thickness Ztop (mm); hence, Smax,top =

(
θsat,top − θres,top

)
× Ztop

and Smin,top = θres,top × Ztop. In addition, Sdif,top (mm) equals to the dif-
ferences of Smax,top and Smin,top, and x (− ) is calculated as a fraction of the

available topsoil layer moisture to this difference (x =
Smax,top − Stop(t)

Sdif ,top ).
The next step in the GGR calculation procedure is to determine

subsoil infiltration Rsub(t) as equal to the unsaturated topsoil hydraulic
conductivity Ktop(t) (mm/day) based on Eq. (8); hence, Rsub(t) = Ktop(t).

The Mualem Van Genuchten equation was applied to estimate the
unsaturated hydraulic conductivity (Van Genuchten, 1980). Based on
Mualem’s model (Mualem, 1976), Van Genuchten (1980) described a
simple equation to calculate the unsaturated hydraulic conductivity,
containing a pressure head and three independent curve fitting

Fig. 2. A flowchart of the sequence of calculations in the GGR model needs to be performed to estimate rain-fed groundwater recharge, including the input pa-
rameters and equations described in the method section. θtop(t) and θsub(t) are calculated as a ratio of Stop(t) and Ssub(t) to the total volume of the topsoil and subsoil,
respectively.* equation (7) and (8) are also used for calculating groundwater recharge like subsoil infiltration with the application of the subsoil properties.

Rrun(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 Tthru(t) < Stop(t) − Smin,top

Tthru(t) −
(
Smax,top − Stop(t)

)
+

Sdif ,top.
(

x
1
b+1 −

Tthru(t)
(b+ 1)Sdif ,top

)b+1 Stop(t) − Smin,top ≤ Tthru(t) < (b+ 1)Sdif ,topx
1
b+1

Tthru(t) −
(
Smax,top − Stop(t)

)
Tthru(t) ≥ (b+ 1)Sdif ,topx

1
b+1

(6)
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parameters. The pressure head htop(t) was estimated as a function of
effective saturation Θtop(t) based on Eq. (7).

Θtop(t) =
θtop(t) − θres,top
θsat,top − θres,top

=
[
1 + (αtophtop(t))ntop

]− mtop (7)

Ktop(t) = Kf ,topΘtop(t)0.5(1 −

[

1 − Θtop(t)
1
m

]m

)
2 (8)

The parameter Kf,top (mm/day) represents the saturated hydraulic con-
ductivity. Moreover, αtop (mm− 1) and ntop (− ) are the Mualem Van
Genuchten curve-fitting parameters of the topsoil, which present the soil
water retention curve and are derived empirically, and mtop =

1 − 1/ntop. The available water content in the topsoil at time step t
represented by θtop(t) (− ) is a ratio of Stop(t) to the total volume of the
topsoil.

In order to estimate the subsoil water volume, subsoil infiltration
from the topsoil Rsub(t), recharge Rgw(t), and capillary rise CR(t) values
are required. Similar to subsoil infiltration (Eqs. (7) and (8)), Rgw(t) is
determined by subsoil unsaturated hydraulic conductivity Ksub(t) (mm/
day). Moreover, the capillary rise from the subsoil to topsoil CR(t) is a
function of the topsoil water content Stop(t) and subsoil unsaturated
hydraulic conductivity Ksub(t) (Eq. (9)).

CR(t) =
{
Ksub(t)Θsub(t)(1 − Θtop(t)) Θsub > Θtop

0 Θsub ≤ Θtop
(9)

Once the soil layers’ water volume is computed, it is checked to stay
within the maximum water storage capacities. Accordingly, when Ssub(t
+ Δt) exceeds Smax,sub, it is assumed Ssub(t + Δt) = Smax,sub and the sur-
plus is added to the topsoil water storage and if Stop(t+ Δt) > Smax,top, the

topsoil water storage is considered as Smax,top and the difference is added
to the surface runoff.

2.5. Spatial aggregation

To estimate recharge and other fluxes at the global river basin scale,
the HydroBASINS dataset was utilized (Lehner and Grill, 2013). This
dataset provides the river basin areas at various levels, ranging from
large basins at level 1 representing each continent to finer basins at level
12. HydroBASINS level 4 was used here. The zonal statistics method of
the rasterstats Python module (https://github.com/perrygeo/python-ra
sterstats) was employed to evaluate the average flux values for each
river basin.

2.6. Groundwater storage variations

To investigate the potential impact of recharge dynamics on storage
variability, we used the Global Gravity-based Groundwater Product
(G3P) (Güntner et al., 2023). G3P is a distinctive dataset derived from
observations made by the Gravity Recovery and Climate Experiment
(GRACE) satellite mission and GRACE Follow-On (GRACE-FO) (Wiese
et al., 2016). The GRACE satellite mission stands out as the sole remote
sensing technology capable of monitoring subsurface mass variations.
GRACE provides a global dataset of monthly gravity anomalies that
reflect changes in total Terrestrial Water Storage (TWS) (Chen et al.,
2016; Humphrey et al., 2023; Rodell et al., 2018).

TWS anomalies encompass variations in multiple storage compo-
nents, including groundwater, surface water, soil moisture, glacier, and
snow. G3P was developed using a mass balance approach to exclusively
represent the Groundwater Storage Anomaly (GWSA) data (Sharifi and
Güntner, 2022). Evaluations of in-situ groundwater observations for 13

Fig. 3. Average rain-fed groundwater recharge for each basin from 2001 to 2020. Bar charts of three sample basins exemplify the underlying annual rain-fed
groundwater recharge. Permafrost and karstic areas are highlighted because of increased uncertainty of the results in these areas.
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large basins worldwide showed a high correlation between the GWSA
and the variations in groundwater observations (Sharifi et al., 2023).
G3P provides information from 2002 to the present, with monthly
temporal resolution and a spatial resolution of 0.5◦, covering the entire
globe.

In this study, we applied G3P to calculate temporal variations in
storage. For each grid point, we computed the temporal trend in storage
by conducting a linear regression on the GWSA time series within the
2002–2020 time window and extracting the slope. This quantity was
defined as the groundwater storage anomaly (GWSA) trend.

Due to the long groundwater system response times (Cuthbert et al.,
2019), we assume that alterations in discharge pattern from a ground-
water body exhibit a temporal lag in response to changes in recharge
dynamics. Therefore, significant shifts in recharge rates are expected to
be detected in a trend calculated from GWSA over a period of 19 years
that could be detected in the G3P.

Uncertainty in the G3P product can be attributed to several factors,
including satellite measurement errors, soil moisture and snow water
equivalent corrections, and groundwater-surface water partitioning.
Although there are uncertainties in the G3P, the product has shown
higher correlation with in situ groundwater data at the large aquifer
scale than at the pixel level. This is because large aquifer dynamics are
better captured by satellite measurements, whereas pixel-based assess-
ments require more detailed assessment of water compartments, which
increases uncertainty (Vinueza et al., 2023).

The declining trend of GWSA was considered a significant indicator
of storage loss and stressed groundwater basins. The GWSA trend was
utilized to evaluate its co-occurrence with the recharge trend, helping to
detect the role of recharge on storage dynamics. This analysis also
facilitated the identification of hotspot areas experiencing sinking stor-
age and declining recharge.

In addition, to assess the extent to which recharge trends influence
groundwater storage, we incorporated annual (365 days) and decadal
(3652 days) damping depths, following the methodology outlined by
Moeck et al. (2024). Damping depth is defined as the depth below the
surface where only 5 % of the flux variation is preserved, reflecting the
extent to which the unsaturated zone dampens infiltration signals. This
is influenced by factors such as soil properties, the timescale of flux
variations, and average recharge rates (Dickinson et al., 2014; Moeck
et al., 2024). By distinguishing between transient and steady-state
recharge behavior over different periodic cycles, this approach enables
us to capture how recharge signals propagate through the vadose zone
and identify regions where groundwater storage is more sensitive to
climate-driven recharge variability.

Specifically, we calculated the damping depth for both annual (365
days) and decadal (3,652 days) periods and evaluated whether recharge

in each basin behaves in a transient or steady-state manner over these
timescales. In river basins where recharge is classified as transient at
either the annual or decadal scale, we expect to observe the impact of
recharge variability on groundwater storage. This assessment was con-
ducted by analyzing the majority of grid values within each basin to
determine if recharge is dampened by the vadose zone or if it remains
transient, indicating more influence on groundwater storage.

3. Results and discussion

3.1. Spatial distribution of global recharge

According to the model, the average global groundwater recharge is
176 mm a− 1 over the period from 2001 to 2020 (Fig. 3), with a median
value of 120 mm a− 1. The spatial distribution of Rgw closely mirrors the
precipitation patterns. The 25th percentile of grid cells (Rgw < 36 mm
a− 1) is concentrated in arid regions, such as the Sahara Desert, Saudi
Arabia, Yemen, and Oman, as well as some basins in Iraq, Iran, China,
and southern Africa. In contrast, the 75th percentile (Rgw> 241 mm a− 1)
of grid cells is found in tropical and northern mid-latitude regions, e.g.,
in Europe, North America, and the Himalayas.

Since the GGR model does not account for permafrost processes or
the macropore flow characteristic of karstic aquifers, regions with
permafrost (Gleeson et al., 2014; Gruber, 2012) and karstic aquifers
(Chen et al., 2017) are highlighted in Fig. 3. Recharge estimates in these
regions may be subject to additional uncertainty because the model is
unable to capture the specific hydrological processes operating in these
unique geological settings.

The range of Rgw spans from 0 mm a− 1 to 1876 mm a− 1 on average
per basin (Fig. 4b). The frequency distribution of Rgw reveals that 27 % of
basins experience an average recharge of less than 50 mm a− 1 (Fig. 4a).
In contrast, for 6 % of the river basins, Rgw exceeds 500 mm a− 1, pre-
dominantly located in North America. Nearly half (48 %) of the popu-
lation residing within the latitudes of 60◦S to 60◦N in 2020 (Center for
International Earth Science Information Network - CIESIN - Columbia
University, 2018), live in basins with recharge below the global average.

3.2. Global recharge comparison

GHMs that estimate groundwater recharge are often evaluated using
proxies such as streamflow observations rather than groundwater
recharge measurements (Berghuijs et al., 2022). In this study, we
compared the GGR model results with both global groundwater recharge

Fig. 4. Average annual rain-fed groundwater recharge per basin unit statistics
(a) frequency histogram of average recharge per basin; and (b) box plot of river
basin recharge presenting interquartile ranges, median, and mean values,
respectively.

Table 2
Comparison between global groundwater recharge estimations of various
models, including this study, and observed groundwater recharge.

Approach S. Res. T.
Res.

Timespan Rgw

(mm
a− 1)

R2 Source

WaterGAP
2

0.5◦ Daily 1960–2001 107 0.26a Döll and
Fiedler
(2008)

PCR-
GLOBWB

0.1◦ Daily 1957–2002 111 0.26a de Graaf
et al. (2015)

PCR-
GLOBWB

0.1◦ Daily 1960–2010 121 0.19a de Graaf
et al. (2019)

WaterGAP
v2. 2d

0.1◦ Daily 1901–2016 141 0.46a Müller
Schmied
et al. (2021)

Sigmoid
Function

0.008◦b − 1968–2018 218 0.41a Berghuijs
et al. (2022)

GGR 0.1◦ Daily 2001–2020 160 0.41 

a R2 is presented based on the Berghuijs et al. (2022) study that compares each
study’s modeled global groundwater recharge with observations.

b The spatial resolution of this recharge is presented based on the published
data (Berghuijs, 2022).
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estimates from previous studies (Berghuijs et al., 2022; de Graaf et al.,
2019; de Graaf et al., 2015; Döll and Fiedler, 2008; Müller Schmied
et al., 2021; Simon N. Gosling et al., 2024) and global recharge mea-
surement datasets (Moeck et al., 2020a).

While the GGR model exhibits a similar spatial distribution of
recharge to other global estimations, differences in recharge estimates
are particularly pronounced in certain regions (Fig. SF3). For example,
in tropical areas such as Indonesia, the GGR model estimates lower

Fig. 5. Spearman’s Rho correlation rs assessment between groundwater recharge Rgw and five input variables (a) total throughfall Tthru; (b) total evapotranspiration
Teva; (c) topsoil maximum water storage capacity Smax,top; (d) topsoil saturated hydraulic conductivity Kf,top; and (e) subsoil saturated hydraulic conductivity Kf,sub.
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recharge values compared to other models, while in arid and semi-arid
regions like the Sahara and parts of Australia, it predicts higher recharge
rates.

When comparing the Rgw with global recharge measurement points,
the R2 value of the GGR model is 0.41, placing it among the most
favourable models in terms of performance (Table 2, Fig. SF4). Across all
measurement points, 16 % of the GGR model’s long-term average annual
recharge estimates fall within 30 % of the observed values, while 38 %
are within 50 % (Fig. SF5). The GGR model generally provides results
closer to the observations than the compared long-term recharge esti-
mates, with the exception of the empirical sigmoid function (Berghuijs
et al., 2024; Berghuijs et al., 2022), which performs better.

Overall, the GGR model tends to overestimate recharge, particularly
in Australia, where a significant portion of the measurement points are
located. Wan et al. (2024) similarly found that the WaterGAP2.2e model
overestimated recharge in Australia, which they attributed to native
vegetation not being accurately represented in the model’s land cover
data, as it relies on the MODIS dataset. Likewise, the GGR model uses
total evapotranspiration data from ERA5-Land (Muñoz Sabater, 2019),
which also incorporates MODIS land cover data. This likely contributes
to the overestimation of recharge in these regions. Thus, improving land
cover classification and the associated evapotranspiration parameters in
input data will likely improve recharge estimates of the GGR and similar
models.

The correlation between modeled recharge and observations are
generally modest, largely due to the uncertainties associated with both
the modeled recharge and the measurement data. These uncertainties
arise from differences in modeling approaches, the global scale input
datasets, observation techniques, and limitations in the availability of
global in-situ data. Additionally, the temporal mismatch between
observation periods and modeled recharge estimates, combined with the
uneven spatial coverage of observation points, makes it challenging to
more accurately evaluate the performance of the modeled groundwater
recharge.

3.3. Controls on recharge

To evaluate the sensitivity of Rgw to input parameters, we conducted
Spearman’s Rho correlation rs analysis. The selected input variables
include the total throughfall Tthru, total evapotranspiration Teva, topsoil
maximum water storage capacity Smax,top, topsoil saturated hydraulic
conductivity Kf,top, and subsoil saturated hydraulic conductivity Kf,sub. A
total of 1000 sample points were randomly selected worldwide, and the
correlation between groundwater recharge and each of these variables
based on the grid unit was determined.

The strongest correlation is observed between total throughfall and
recharge, with a correlation coefficient of 0.78 (Fig. 5a). However, high
precipitation does not always create higher recharge values, e.g., when
soil layers are saturated or rainfall events are too intense for percolation

to generate Rgw. Additionally, soil properties can play a role, as high
rainfall amounts often occur in areas with lower hydraulic conductiv-
ities, inhibiting their recharge effect (Supplementary Fig. SF1).

Total evapotranspiration correlates positively with Rgw (rs = 0.52,
Fig. 5b). This study accounts for land cover and vegetation types through
the total evapotranspiration data. Therefore, high total evapotranspi-
ration occur in areas with high precipitation (rs = 0.86, calculated be-
tween precipitation and total evapotranspiration, Supplementary
Fig. SF1). It is evident that total evapotranspiration exceeding 1000 mm
a− 1 primarily occurs in tropical areas, whereas the range of 800 < Teva<
1000 (mm a− 1) rarely arises and indicates a transition zone into tropical
areas.

Considering the influence of soil properties on Rgw, topsoil maximum
water storage capacity exhibits the strongest correlation (rs = 0.56,
Fig. 5c). The larger the topsoil water storage capacity, the more water
can be stored, contributing to subsoil infiltration and groundwater
recharge.

In addition, the weak correlation between topsoil and subsoil satu-
rated hydraulic conductivity and Rgw (Fig. 5d and 5e) can be attributed
to the collective influence of topsoil and subsoil properties on Rgw. The
negative correlation between these two soil properties and Rgw also in-
dicates that soil hydraulic conductivity tends to be higher in arid areas
with less rainfall and accordingly lower recharge (rs = -0.76 and rs =
-0.74 are correlations between precipitation and topsoil and subsoil
saturated hydraulic conductivity, respectively, Supplementary Fig. SF1).

3.4. Long-term temporal distribution of recharge

The temporal distribution of recharge in river basins spanning from
2001 to 2020 was evaluated using linear regression analysis. The Rgw
trend, herein denoted as the slope of the linear regression line, quantifies
the annual change in Rgw over the study period. It also serves as an

Fig. 6. Average annual rain-fed groundwater recharge Rgw trend per basin (2001–2020) with indication of statistically significant trend (p-value < 0.05).

Fig. 7. Average annual rain-fed groundwater recharge Rgw trend per basin unit
statistics (a) frequency histogram of recharge trend per basin from 2001–2010
and 2011–2020; and (b) comparison of recharge trend box plots presenting the
interquartile ranges for each ten-year trend assessment separately. The black
line and × show the median and the mean values, respectively.
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Fig. 8. Average annual rain-fed groundwater recharge Rgw trend per river basin for two decades (a) 2001–2010, and (b) 2011–2020; and (c) the two decades trends
are compared, considering two sorts of trends, increasing and decreasing (numbers in parentheses indicate the number of river basins in each category).

Fig. 9. Comparison of Groundwater Storage Anomaly (GWSA) and rain-fed groundwater recharge Rgw dynamics, highlighting basins where groundwater recharge is
damped and has minimal influence on groundwater storage, as a function of damping depth calculated by Moeck et al. (2024). The values indicate the percentages of
the basins in each category. The four categories describing the role of groundwater recharge in groundwater storage are: Thriving basins, where both recharge and
storage are increasing; Compensatory basins, where recharge is increasing and storage is sinking; Resilient basins, which are resilient to recharge reduction; and
Dwindling basins, where drying recharge exacerbates storage loss, and are considered as climatic hotspots for groundwater sustainability.
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indicator of climatic variability and its influence on groundwater con-
ditions. Linear regression results disclosed that the Rgw trend across
basins varied from − 24 mm a− 1 to 9 mm a− 1 over the 20-year modeling
period (Fig. 6). On average, global recharge demonstrated an annual
increase of 0.2 mm a− 1. This variation, when normalized to the basins’
long-term average Rgw, ranged from a 12 % decline to a 28 % increase
annually (for basins with very small annual recharge).

In 40 % of the river basins, Rgw showed a declining trend, notably
throughout South America and Europe, with additional scattered basins
in northern Australia, Myanmar, China, Thailand, Cambodia, Vietnam,
Kyrgyzstan, and Russia. Conversely, wetting trends were observed in the
Sahara Desert, the Sahel region, Saudi Arabia, and several basins in Iran,
Pakistan, China, and Australia. Figure SF2 shows the contribution of the
input datasets to the recharge trend, including rainfall, snowmelt, and
total evapotranspiration.

Moreover, we studied which basins exhibited statistically significant
wetting or drying trends, based on a significance level of p-value < 0.05.
Our results revealed that 33 % of the basins displayed significant trends,
of which 82 % were characterized by wetting trends, as shown in Fig. 6.

3.5. Temporal variability of recharge

To examine recent changes in recharge, the modeling period was
divided into two intervals, 2001–2010 and 2011–2020. The average
recharge for the first and second decades was calculated to be 173 and
178 mm a− 1 per grid unit, respectively (Fig. 7). While the average Rgw
increased slightly in the second decade, the recharge trend changed
from an average increase of 1.3 mm a− 1 per unit area, to a decrease of
− 0.8 mm a− 1 in the second decade.

The frequency of Rgw trends in river basins for both decades was
calculated and compared in Fig. 7. The Rgw trend from 2001 to 2010
revealed an increase in recharge in 67 % of the world’s basins, while
from 2011 to 2020, this increasing trend was observed in 48 % of the
basins.

Upon comparing the Rgw trends in each basin over these two decades,
it is evident that the recharge trend remained increasing for 30 % of the
basins and decreasing for 15 % of the basins in both decades. However,
in 35 % of all the basins, the Rgw trend shifted towards a decline in the
second decade (Fig. 8).

While a 10-year period is too short to evaluate the impact of climate
change on recharge, it is observed that climate variability in the last
decade has led to more frequent instances of Rgw drying worldwide.
About 50 % of the world’s population (3.6 billion people) inhabit basins
where the groundwater recharge (Rgw) has either constantly decreased
over the past 20 years or has shifted towards a decline in the last 10
years.

While this study does not project recharge trends into the future, past
changes are consistent with projected recharge trends in the existing
literature (Reinecke et al., 2021) in the majority of river basins. For
instance, a drying trend is projected for northeast Brazil, southern Chile,
southern Europe, and east China, while an increasing trend is antici-
pated for east Africa and India. Despite the inherent uncertainty in
recharge projections, it is evident that these projected trends are already
emerging for the majority of global basins.

3.6. Recharge contribution to storage variability

The comparison between the trends of groundwater storage anomaly
and Rgw showed a consistent pattern in the majority of the world’s ba-
sins. In 34 % of the basins, an increase in recharge coincided with an
increase in storage, indicating a wetting trend (Fig. 9). These basins
present the thriving role of groundwater recharge on groundwater re-
sources and are mainly prominent in regions like Sub-Saharan Africa,
southern Australia, and North America. Further studies are needed to
evaluate whether this wetting recharge trend can provide opportunities
to enhance groundwater usage, especially in Sub-Saharan Africa, where

currently only 5 % of irrigated areas utilize groundwater (United Na-
tions, 2022).

Conversely, in 22 % of the basins, both decreases in recharge and
storage were observed, indicating a drying trend. It is challenging to
discern the predominant factor of sinking storage in these cases. How-
ever, the dwindling recharge exacerbates storage loss, especially in
comparison to basins with increasing recharge, which can mitigate
human-induced impacts. This co-occurrence is considered here to
identify climatic hotspots for groundwater sustainability, affecting 1.7
billion inhabitants.

In 44 % of the basins, the dynamics of recharge did not align with
changes in storage. It is expected that an increase in recharge, as the
primary natural factor replenishing groundwater storage, would lead to
an increase in storage. However, in 26 % of the basins experiencing an
increase in recharge, a corresponding increase in storage is not observed.
This suggests that direct anthropogenic drivers, such as over-
exploitation, are the major factors causing storage losses. These basins
are home to 2.6 billion people. This phenomenon is particularly evident
in regions like the Indo-Gangetic Plain and northwestern India, where
intensive irrigation practices have led to overexploited groundwater
resources and high depletion rates (Dangar et al., 2021; Mishra et al.,
2018). Similar situations are observed in countries such as Saudi Arabia,
Iran, Iraq and parts of western China. In these basins, the slight increase
in recharge has not been able to compensate for the anthropogenic
impact and has led to a reduction in storage.

In the remaining basins, a decrease in recharge was associated with
an increase in storage. These basins present to be resilient to the reduced
recharge, which can be attributed to reductions in groundwater
abstraction or the impacts of other recharge sources. For instance, the
implementation of Integrated Water Resources Management (IWRM)
strategies has been shown to reduce the vulnerability of freshwater re-
sources (Huggins et al., 2022).

Incorporating annual and decadal damping depths (Moeck et al.,
2024) into our assessment shows that in approximately 60 % of the river
basins within our study domain, the annual recharge cycle is transient,
meaning that annual variability in recharge should have a noticeable
impact on groundwater storage. However, in 35 % of the river basins,
primarily located in arid and semi-arid regions with deep groundwater
tables, the recharge is steady over a 10-year timescale. In these regions,
recharge variability over decadal periods should have minimal impact
on groundwater storage, and the timeframe of this study may be too
short to see changes. Longer-term assessments are necessary in these
areas to accurately capture the influence of recharge variation on
groundwater storage. This will become increasingly possible in the
future, as satellite products cover longer periods.

3.7. Limitations

The presented analysis of the spatiotemporal distribution of global
groundwater recharge is based on the development of a grid-based water
balance model. However, this approach is associated with limitations
and uncertainties.

This study focuses solely on rain-fed recharge, not accounting for
focused recharge from surface water. Based on evaluations using the
WaterGAP2.2e model (Müller Schmied, 2024; Gosling et al., 2024),
focused recharge contributes, on average, about 10 % of the total
recharge in river basins. Ignoring focused recharge can lead to an un-
derestimation of total groundwater recharge, particularly in basins with
losing streams, where groundwater-surface water interactions are crit-
ical (Condon et al., 2021; Döll and Fiedler, 2008).

Recharge estimates in permafrost regions are subject to additional
uncertainties. The GGR model does not account for soil seasonal freezing
or permafrost processes, which may result in an underestimation of
recharge during warmer seasons and an overestimation during colder
seasons in these zones (Diak et al., 2023). Additionally, the model’s
ability to capture macropore effects, such as those found in karstic
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regions, is limited by the soil and aquifer property datasets used. The
absence of specific differentiation for karstic areas may lead to an un-
derestimation of recharge in these regions.

The assessment of the impacts of teleconnections, vadose zone pro-
cesses, and recharge variability on groundwater storage is constrained
by the time scale of this study. While annual to decadal phenomena can
be evaluated, longer-term climate cycles (e.g., 15–30 years) are beyond
the scope of the current analysis. Moreover, the model’s ability to cap-
ture the impact of recharge variability in areas with deep groundwater
tables, such as arid regions, is limited.

Finally, the GGR model, like other GHMs, is subject to uncertainties
arising from input meteorological and soil property data. The over-
estimation of recharge due to the use of land cover data that fails to
accurately represent vegetation types (Wan et al., 2024) underscores
how GHMs could be significantly improved with more precise input
data. While these limitations are inherent to the study and may impact
the total estimated recharge values, we expect they should not signifi-
cantly alter the observed recharge trends over time in each region.

Furthermore, the limitations of available global groundwater
recharge observation datasets underscore the need for the development
of more comprehensive datasets for systematic validation of global
models. Improvements in observational data will support a deeper un-
derstanding of global groundwater recharge dynamics and enhance
water resource management strategies.

4. Conclusion

We assessed the spatial and temporal patterns of global rain-fed
groundwater recharge over the past two decades (2001–2020) to un-
derstand the influence of climate variability and change on groundwater
recharge across global river basins. To achieve this, we developed the
Global Groundwater Rain-fed Recharge (GGR) model—a three-layer,
transient water balance model. The GGR model integrates global
meteorological datasets and soil properties, operating daily at a spatial
resolution of 0.1◦ for the period from 2001 to 2020.

The modeled average global groundwater recharge between 2001
and 2020 is 176 mm a− 1, closely following the global precipitation
pattern. Groundwater recharge rates are lowest in arid regions, while
basins located in the tropics and northern mid-latitudes have the highest
groundwater recharge rates. Over the 20-year period, groundwater
recharge has varied across global river basins from − 24 mm a− 1 to 9 mm
a− 1.

The recent variability of groundwater recharge from 2011 to 2020
was also examined and compared with the recharge changes over the
2001–2010 period. It was observed that while the average recharge
increased from 173 to 178 mm a− 1 in the second decade, its temporal
trend showed a decline from 1.3 to − 0.8 mm a− 1. In 50 % of the river
basins, inhabited by 52 % of the global population (3.6 billion people),
groundwater recharge has either constantly declined during the study
period or shifted towards a decreasing trend in the second decade.

The combined analysis of rain-fed groundwater recharge and the
Global Gravity-based Groundwater Product (G3P) helps distinguish the
role of groundwater recharge in groundwater storage dynamics. In 26 %
of the world’s basins, home to 2.6 billion people, storage loss is likely
attributable to anthropogenic factors such as over-exploitation rather
than climatic variability. However, 1.7 billion people live in the 22 % of
basins where groundwater recharge reduction coincides with declining
groundwater storage. These basins were identified as hotspots, where
dwindling groundwater recharge can exacerbate groundwater storage
loss and stress groundwater resources.

5. Code availability

The source code of GGR model is available under the GNU General
Public License v3.0 at Zenodo https://doi.org/10.5281/zenodo.13225
038 (Nazari, 2024).
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Döll, P., Mueller Schmied, H., Schuh, C., Portmann, F.T., Eicker, A., 2014b. Global-scale
assessment of groundwater depletion and related groundwater abstractions:
combining hydrological modeling with information from well observations and
GRACE satellites. Water Resour. Res. 50 (7), 5698–5720. https://doi.org/10.1002/
2014WR015595.

ECMWF, 2016. IFS Documentation CY41R2 - Part IV: Physical Processes, IFS
Documentation CY41R2. Doi: 10.21957/tr5rv27xu.

Famiglietti, J.S., 2014. The global groundwater crisis. Nat. Clim. Chang. 4 (11), 945–948.
https://doi.org/10.1038/nclimate2425.

Fleming, S.W., Quilty, E.J., 2006. Aquifer responses to el Niño–Southern oscillation,
southwest British Columbia. Groundwater 44 (4), 595–599. https://doi.org/
10.1111/j.1745-6584.2006.00187.x.

Gleeson, T., Moosdorf, N., Hartmann, J., Van Beek, L., 2014. A glimpse beneath earth’s
surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity.
Geophys. Res. Lett. 41 (11), 3891–3898. https://doi.org/10.1002/2014GL059856.

Gleeson, T., Cuthbert, M., Ferguson, G., Perrone, D., 2020. Global groundwater
sustainability, resources, and systems in the Anthropocene. Annu. Rev. Earth Planet.
Sci. 48, 431–463. https://doi.org/10.1146/annurev-earth-071719-055251.

Gong, C., Cook, P.G., Therrien, R., Wang, W., Brunner, P., 2023. On groundwater
recharge in variably saturated subsurface flow models. Water Resour. Res. 59 (9).
https://doi.org/10.1029/2023WR034920.

[dataset] Gosling, S.N., Schmied, H.M., Burek, P., Guillaumot, L., Hanasaki, N., Kou-
Giesbrecht, S., Otta, K., Sahu, R.-K., Satoh, Y., Schewe, J., 2024. ISIMIP3b Simulation
Data from the Global Water Sector (v1.2). ISIMIP Repository. Doi: 10.48364/ISIMIP
.230418.2.

[dataset] Simon N. Gosling et al., 2024. ISIMIP3a Simulation Data from the Global Water
Sector (v1.3). In: Repository, I. (Ed.). Doi: 10.48364/ISIMIP.398165.3.

Gruber, S., 2012. Derivation and analysis of a high-resolution estimate of global
permafrost zonation. Cryosphere 6 (1), 221–233. https://doi.org/10.5194/tc-6-221-
2012.

Güntner, A., et al., 2023. Global Gravity-based Groundwater Product (G3P). V. 1.11.,
GFZ Data Services. Doi: 10.5880/G3P.2023.001.

Hagemann, S., Gates, L.D., 2003. Improving a subgrid runoff parameterization scheme
for climate models by the use of high resolution data derived from satellite
observations. Clim. Dyn. 21 (3), 349–359. https://doi.org/10.1007/s00382-003-
0349-x.

[dataset] Hengl, T., Mendes de Jesus, J., Heuvelink, G.B., Ruiperez Gonzalez, M.,
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