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a global coastal permeability 
dataset (CoPerm 1.0)
Nils Moosdorf  1,2 ✉, Jarrid tschaikowski1, Daniel Kretschmer3,4 & Robert Reinecke  3,4

The permeability of aquifers strongly influences groundwater flow characteristics. Worldwide, coastal 
groundwater is often the primary freshwater source for coastal communities and ecosystems but is 
also particularly vulnerable to abstraction since saltwater intrusion may threaten its quality. Thus, 
understanding coastal permeability is crucial to the sustainable use of coastal groundwater. Here, we 
present the first global dataset of coastal permeability (CoPerm 1.0), which provides data on coasts’ 
landward, shoreline, and seaward permeability. CoPerm accounts for shoreline characteristics such 
as cliffs and beaches and contains information on four million segments representing more than two 
million kilometers of global coastline. Rocky Shores are the most abundant shoreline class, followed by 
mangroves, beaches, and muddy coasts. Permeability differs between the immediate shoreline (median 
permeability: 10−12.3 m2), the seaward (median: 10−13.3 m2), and the landward (median: 10−13 m2) sides 
of the coast. CoPerm provides input data for global coastal groundwater assessments and regional 
studies of submarine groundwater discharge or saltwater intrusion that can radiate into ecological and 
economic studies.

Background & Summary
Groundwater is a crucial freshwater resource for humans and ecosystems that is under intensive pressure world-
wide1–3. Groundwater at the coasts is particularly vulnerable to abstraction and climate change4–6. The threat of 
seawater intrusion to groundwater quality is amplified by sea level rise7,8, while pumping of coastal groundwater 
can lead to land subsidence and flooding9. Since population density at coasts is very high, groundwater conser-
vation is particularly urgent there, as it often is the only source of available freshwater10.

In addition to its relevance as a source of fresh water, fresh submarine groundwater discharge is a transport 
pathway for nutrients11,12 and trace elements13. The nutrient fluxes have been demonstrated to affect coastal eco-
systems worldwide14–16. Groundwater poses a risk of eutrophication in 25% of the estuarine coasts worldwide12, 
entailing that coastal groundwater deserves particular attention at a global scale.

Permeability, the capacity of rocks to transmit fluids, is essential to subsurface groundwater flows. It deter-
mines the flow rates for given hydraulic gradients and aquifer geometry. At the global scale, the permeability of 
aquifers was estimated based on global lithological maps17–19. Yet the lithological maps that are the foundation 
of global permeability maps, e.g.20, were focused on land areas and did not pay particular attention to the coast-
line. Notably, the coasts are linear features with high variability that require a different approach than inshore 
permeability. While it is even difficult to define the exact position or length of the coastline21, the linear coastal 
features have a tiny areal footprint. Still, they can strongly influence groundwater-ocean connectivity22,23. The 
existence of coastal features such as beaches24, reef plates25 or burrows in fine-grained sea-bottom sediment26 can 
be relevant to coastal groundwater flows and biogeochemistry but are usually not represented by the available 
regional terrestrial aquifer information.

Introducing the coast into earth system models based on synthesizing different coastal attributes will be 
important for our understanding of the earth system and is one of the grand challenges of that field27. While 
attempts have been made to characterize regional coastal aquifers22,28, the specifics of the immediate coastline 
have yet to be considered globally. Here, we present a dataset integrating interdisciplinary input data to address 
three different permeability values for the global coasts, onshore aquifers, the immediate coastline, and offshore 
coastal sediment (Fig. 1). The immediate coastline is here defined as the few 100 s of meters around the coast. 
A lot of it usually would consist of the intertidal area, where the most intensive groundwater ocean interaction 
takes place29. The seafloor is thought to represent subtidal areas down to a few tens of meters water depth. 
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However, there is no clearly defined boundary, given also the nature of the data. The dataset can provide a basis 
for large-scale coastal groundwater studies and representation of the coast in earth system models.

The landward, shoreline and seaward permeabilities could be classified along more than 90% of the global 
coastline (Table 1), whereas a seaward permeability could be assigned for about half of the coast. The unas-
signed values for seaward permeability are primarily situated in the far north, where few DbSeabed data are 
available (Fig. 2). Landward permeability was taken directly from the GLHYMPS data18,19. The most abundant 
shoreline permeability class was Rocky Shores (Table 1, Fig. 3). While this aligns with previous work report-
ing a dominance of rocky shores along the global coastline30, their frequent occurrence along the northern 
coasts could also partly be attributed missing data which would have led to other classifications, paired with an 
emphasis on bedrock in the lithological source data (see decision tree in Fig. 4). Sandy coasts are found, e.g., 
around the western coasts of the Americas, and muddy shores are assigned to large parts of central Europe 
and most of the Brazilian coast (Fig. 2). The most abundant seaward permeability was muddy gravel (Table 1, 
Fig. 4). The seaward permeabilities were equally distributed between the dominating classes over the entire 
coastline (Fig. 2).

The translation into permeability shows that the median landward permeability is 10−13 m2, the median shore-
line permeability is 10−12.3 m2, and the median seaward permeability is 10−13.3 m2 (Table 1). Shoreline permeability 
is generally the highest, while seaward permeability is the lowest, particularly towards the equator (Fig. 5). In con-
trast, in the northern and southern latitudes, seaward permeability is higher than the others (but with a low data 
coverage).

This study is the first global permeability dataset focusing on the ocean coast, but its collection of coastal 
attributes can also be used for other applications. While the uncertainties of the dataset are substantial, they are 
very hard to quantify. Geographically, the coastline features and many input data have a very high spatial reso-
lution of up to 30 m. However, thematic uncertainty remains very high. Classes could have been categorized into 
the wrong class, based on wrong data inputs (e.g. errors in land cover dataset classification) or unavailable data. 
Then, the classification system can yield unlikely results (as e.g. for the rocky coasts in large parts of northern 
Asia). In some cases, the classification itself can be misleading, e.g. in the case of sandy cliffs. To keep the deci-
sions transparent and the data replicable, the decision tree is clearly explained and no exceptions were made.

The here applied approach to sort the coastline into classes and assign one permeability to each specific 
class implies the permeabilities of each coastline class were the same across the globe. This substantial sim-
plification is necessary to produce a reasonable value, but the translation between coastal features and per-
meability adds uncertainty, since permeability of individual sediment types, particularly on the seafloor, can 
vary substantially, based on local conditions17,31. The attributes of beaches, for example, can be influenced by 
the provenance of their sediments, as shown e.g. in Mallorca32 and Victoria (AUS)33. Their shape and form is 
controlled by their morphodynamic positioning at the coast34. Sediment permeability also changes strongly 
with depth of the sediment35 and based on sediment layering, permeability can differ in horizontal and ver-
tical direction. Locally, bioturbation, such as crab burrows, can significantly alter permeability36,37. This, and 
effects of storm reworking of sediment38, means that coastal permeability does not just change over space and 
depth, but also over time. The values for mud that are used here are lower than they may be at the immediate 
surface and also do not account for effects of macropores, which may locally be significant39. Such grade of 
detail can at this time not be represented at the global scale based on existing data. Quantifying permeability 

Fig. 1 Three aspects of coastal permeability. This study considers the landward aquifer, the immediate 
shoreline, and the seaward coastal marine bottom sediment. The figure is simplified and just aims at 
illuminating the nomenclature used in the dataset.

Landward Shoreline Seaward

Length 2.1 * 106 km (total coast length)

Percent classified 92.9% 96.2% 49.7%

Most abundant coastal class (and its length) n.a. Rocky Shores (8.2*105 km) Muddy Gravel (2.9 * 105 km)

Median permeability 10−13 m2 10−12.3 m2 10−13.3 m2

Table 1. Describing statistics of the landward, shoreline and seaward permeability values of the global coast.
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at the global scale is a compromise and will not be accurate for the local scale. Thus, the values provided here 
are highly uncertain and should not be applied for local scale problems of individual locations. A likely range 
of expectable permeability values can serve as estimate for uncertainty (Table 2). Yet, the uncertainty ranges 
provided in this study are taken from literature values and can seem narrow, e.g. for sandy shores. The values 
were selected to be broadly usable, however, for each individual application of the dataset for any specific 
problem, it is worth evaluating if the provided values are usable, or if they need to be adapted. Adaptation 
is possible using the provided code40. The seaward permeability still has a lot of unknown areas, particularly 
where DBSeabed data were missing, and the places where it is based on DBSeabed data are influenced by a 
certain overestimation of the gravel content and an underestimation of the unmixed sand classes because of 
interpolation mechanics between the DBSeabed points (personal communication by Chris Jenkins, the author 
of the dataset).

Yet, the presented dataset will prove helpful in global scale coastal groundwater modelling and geochemi-
cal flux estimates at the coast. It will be improved with the availability of new data and will enable large-scale 
coastal groundwater assessments and products applying their results.

Fig. 2 Global distribution of (a) shoreline permeability and classes and (b) seaward permeability classes.

Fig. 3 Decision tree for the shoreline classification into different permeability classes and their assigned 
shoreline length (in grey; total combined shoreline length: 2.1 * 106 km). Class names: B1: Sandy shore low 
waves; B2: Sandy shore mid waves; B3: Sandy shore high waves; P: concreted shore; M2: Mangrove shore; M1: 
Muddy shore; R: Rocky shore; C: Coral shore; SU: Not assigned shoreline.
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Methods
Permeability at the coastline was classified for the landward aquifer, the immediate shoreline, and the coastal sea-
floor sediment at the seaward side of the coast. The physical shape of the coastline is defined by a 30-meter res-
olution global shoreline vector database41 available for download. The global coast (which excludes Antarctica) 
has a total length of approx. 2.1 million km and was cut into 4.005 million pieces of ≤1 km (in the following 
termed “coastline vector”). This dataset already provides a set of environmental information42, which was com-
plemented with additional data for this study.

Unless explicitly stated, spatial procedures were done using the software QGIS 3.22.4. Depending on the 
parameter dataset (vector type, raster resolution), either the original line segments or midpoints of the line seg-
ments (provided in the initial global shoreline vector database) were used for the parameter value assignment to 
the coastline vectors.

Fig. 4 Decision tree for the seaward permeability classification into the different permeability classes and 
their assigned shoreline length (in grey; total combined shoreline length: 2.1 * 106 km). MS: Marine seagrass 
sediments; MC: Marine coral sediments; MM: Marine muddy sediments; MU: Not assigned for seaward view; 
G: Gravel; mg: muddy Gravel; msG: muddy sandy Gravel; sG: sandy Gravel; gM: gravelly Mud; gmS: gravelly 
muddy Sand; gS: gravelly Sand; M: Mud; sM: sandy Mud; mS: muddy Sand; S: Sand.

Fig. 5 Global distribution of the coastal permeability. The figure shows the median of the landward, shoreline, 
and seaward permeabilities.
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All input data are publicly available for download where mentioned in the references. The code used 
to derive the dataset and described in plain words in the methods section is available for download from 
Zenodo40.

The data of the CoPerm v1.0 are available for download from PANGAEA43.

Landward permeability. The landward permeability represents the coastal aquifer that extends on land. It 
can be relevant for regional scale saltwater intrusion studies e.g.7, as well as studies of coastal groundwater avail-
ability e.g.10. This part of coastal permeability is already represented best by global permeability datasets, namely 
GLHYMPS18,19. Thus, the landward permeability for our database was derived from the permeability dataset 
GLHYPMS 2.019, which represents the regional scale landward aquifer.

To extrapolate the permeability data to coastline segments slightly outside the GLHYPMS 2.0 coverage because 
of a different definition of coast, GLHYPMS 2.0 was rasterized with a cell size of 1 km using the permeability as 
raster value and the provided standard variation for uncertainty analysis and converted into a 16-bit signed integer 
type. To cover areas slightly outside the original data, the raster was extended by 5 km (5 grid cells) using the Focal 
Statistic tool in ArcGIS Pro with a neighborhood circular setting with a radius of 5 and statistic type ‘mean’. The 
GLHYPMS 2.0 original and extended raster were then merged with the GDAL tool ‘Merge’, favoring the original 
raster where it had data. This produces an output of the GLHYPMS raster extended by 5 km with the average perme-
ability of the neighboring cells. The spatially extended permeability raster was joined to the coastline segment mid-
points using the QGIS ‘Pointsampling’ tool. By spatially joining the point sampling results to the coastline segment 
midpoints (using the QGIS tool join by location), the coastline segments received their permeability information.

Shoreline permeability. The immediate coastline is a highly reactive zone that controls chemical fluxes and 
interaction between groundwater and the ocean44. It is essential for studies assessing the biogeochemical role of 
the subterranean estuary e.g.45,46. The existence of a beach, for instance, can change water flows strongly. To define 
a permeability classification, several datasets providing information about attributes of the immediate coastline 
were combined. Based on these attributes, the coastline was divided into permeability-related classes in a defined 
decision tree (Fig. 3). The order of the decision tree is based on the impact of the attribute on permeability, its 
thematic specificity, and the spatial resolution of its input data. The description of the individual input data in this 
chapter follows the order shown in the decision tree (Fig. 3).

The existence of beaches was derived from a global beach occurrence dataset47. It identified sandy beaches 
every 500 m of the coast by applying a pixel-based supervised classification to a high-resolution global composite 
satellite image of 2016. The point data set is binary, with 1 for Sandy Beach and 0 for no beach. The beach occur-
rence data and the coastline segment midpoints were buffered by 0.5 km to merge the point data information 
to the coastline vector. That ensures an overlay of the buffers as the spacing of the beaches is denser than that of 
the coastline segment midpoints of 1 km. Both buffers were then intersected, and the result dissolved with the 
GDAL tool per coastline segment, the maximum identification value per segment. This ensures that each coastal 
segment within a beach occurrence within a radius of 1 km is assigned a beach value.

An approximate grain size was estimated for beaches based on wave amplitude at those sites in three broad 
categories (B1, B2, B3), for low, medium and high wave energy. Wave amplitude per coastal segment was pro-
vided in the original shoreline data42.

To represent artificial coasts (class P), point data of global ports of the World Food Program48 were used. The 
points represent locations of 3581 Ports sorted into size classes. To integrate artificial/concrete coastlines along 
the ports, examples of the different port sizes were first reviewed in Google Maps and assigned an affected length 
of the coast (Big = 5 km; Large = 3 km; Medium = 2 km; Small = 1 km; Very Small = 0,5 km; Unknown was set 
as the average of all class sizes to 2.3 km). The port points were then buffered in QGIS with a radius according 
to their assigned port size. The buffers were intersected with the coastline segment midpoints and dissolved to 
avoid duplications.

Permeability Class Permeability value (m²) Permeability Range (m²) Permeability source

Sandy shore (B1 - Low 
Waves) 10−11 10−11–3*10−11

Value: Lowest value of beach the permeability range 
stated by61–64 Range: Whole range for all beach 
literature values stated

Sandy shore (B2 - Mid 
waves) 2*10−11 10−11–3*10−11

Value: Middle value of beach permeability range stated 
by61–64 Range: Whole range for all beach literature 
values stated

Sandy shore (B3 - High 
Waves) 3*10−11 10−11–3*10−11

Value: The highest value of beach permeability 
range stated by61–64 Range: Whole range for all beach 
literature values stated

Concreted shore (P) 10−20 10−20–10−20 Considered as Impermeable

Muddy shore (M1) 5*10−13 10−13–10−12 Value: Average of the range of literature values65–69

Mangrove shore (M2) 5*10−12 10−12–10−11 Value: Average of range70,71

Rocky Shore (R) Permeability taken 
from19 The range was taken from19 Rocky shorelines are assigned the permeability values 

stated by19 for that location.

Coral shore (C) 1.2*10−10 2.9*10−11–4.6*10−10 Average of range for coral sand72

Table 2. Assigned permeability values and ranges for the different permeability shoreline classes with an 
explanation.
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One way to learn about the characteristics of coastal sediments is by covering coastal ecosystems. 
Therefore, the World Atlas of Mangroves (v. 3.1)49 was employed to define coastal segments as a mangrove 
class (M2). Mangroves tend to indicate a muddy-sandy coastline. The global mangrove distribution coastlines’ 
30-meter resolution polygon vector data are similar to the coastline segments. For the merging process, the 
coastline segment midpoints were buffered with a width of 1 km. The Buffer was then intersected with the 
mangrove polygon vector data. The resulting intersection was then dissolved by coastal segment to avoid 
duplications. The mangrove dataset is high in the decision tree because of its high spatial resolution and 
specific nature.

Saltmarshes, estuaries, rivers, and unconsolidated geology define the mud-influenced shoreline class (M1), 
which is here called “muddy” for simplicity. We used the global saltmarsh map (v6.1)50 to classify coastal seg-
ments as saltmarshes. The dataset contains vector polygons of saltmarsh distribution in 99 countries with raw 
data of scales from 1:10.000 to 1:4.000.000, most finer than 1:100.000. Since the saltmarsh coastlines aligned 
well with the coastline segments, the datasets were spatially superimposed with a snap geometry to layer tool. 
For this, the coastline segment midpoints were chosen as the input layer, and the salt marsh vector was chosen 
as the reference layer with a tolerance of 500 m. The snapped midpoints were joined to intersecting salt marsh 
polygons by location.

The shorelines of coastal segments were classified as estuaries if they were within 2 km of the global estuary 
database V 2.051. All distances mentioned here are based on assumptions on the effect scale and the resolution 
of the input data and represent a compromise between the goal to provide as many values as possible and the 
uncertainty increasing with distance from the original data. The estuary database is a polygon shapefile contain-
ing 1201 estuaries. The estuary polygons were joined to the coastline segment midpoints by buffering those with 
a radius of 2 km. These buffers were intersected with the estuary polygons, and the intersection was then merged 
by segment (QGIS tool: ‘dissolve’) to avoid duplications.

The coastline segments follow the coast inland along large rivers at many locations. Our database represents 
this by classifying shorelines of coastal segments closer than 500 m to a river in the global large river dataset52 
as ‘river’. For this, the polyline river data set was first buffered with a width of 10 meters. Then, the coastline 
segment midpoints were buffered with a radius of 500 m. Midpoint buffers were then intersected with river 
polygons, and the results dissolved to avoid duplications.

Another indicator for mud-influenced coasts is unconsolidated geology at places where no beach is indicated 
in the dataset. Unconsolidated geology is represented by the global lithological map GLiM20. The QGIS tool 
‘Snap geometries to layer’ was used to spatially superimpose coastline segment midpoints on the closest lithol-
ogy polygon. Since the coastline of the GLiM dataset has a coarse resolution, we ran the procedure two times, 
first with a snapping distance of 5 km, and increased the tolerance to 10 km in the second run. Both snapped 
coastline segment midpoints were spatially joined with the GLiM polygons. The resulting points were then spa-
tially merged with the lithology data using the join attribute by location tool in QGIS. In R Studio, the merged 
coastline segment lithology data with the tolerance of 5 km and 10 km were then merged, preferring data of the 
5 km tolerance run.

The class rocky shore (R) is based on three methods. First, they are classified when the sloping data in the 
original coastline vectors42 reported the segment as “steeply sloping” or “vertical.” Second, they were classified 
using a global cliff probability dataset53. The cliff data were points of cliff probability in percent, spaced approxi-
mately every 800 meters alongshore. The percentage was interpolated along the shoreline using the ArcMap 10.5 
IDW tool (output cell size 1 km, power 2, up to 3 input points within a distance of 1000 m). The interpolated 
cliff probability value was extracted to the coastline segment midpoints using the ‘Extract Values to Points’ tool 
in ArcMap 10.5. Cliff probabilities of at least 50% were classified as rocky shore. Lastly, coastal segments with 
consolidated GLiM lithology and without indicators for mud-influenced coasts or beaches are classified as rocky 
shores.

Since no information on coastline types is available for many small islands, many of which are carbonate 
islands, the particular coral coast class (C) was added based on the global distribution of warm-water coral 
reef data (v. 4.1)54 for coastal segments closer than 1 km to a coral reef. The coral reef data were polygons with a 
resolution of 30 m and derived using high-resolution satellite imagery. To transfer coral reef occurrence to the 
coastline segments, the coastline segment midpoints were buffered with a width of 1 km and then intersected 
with the coral polygon vector data. The result was dissolved per segment to avoid duplicates.

All remaining coastal segments are classified into unknown information (SU).
After the classification of the coastal segments, each class was assigned permeability values based on ranges 

of permeability values identified in the literature (Table 2).

Seaward permeability. The third aspect of coastal permeability is that of the marine sediment on the coast. 
This can be important when addressing porewater flow and associated solute flux55 but also for studies interested 
in coastal stability. The seaward permeability was determined based on sediment information derived from the 
DBSeabed database (developed and supplied by Chris Jenkins, INSTAAR). Where no data from DBSeabed were 
available, the classification relied on other datasets in a decision tree similar to the one presented for the imme-
diate shoreline above (Fig. 4).

The DBSeabed database creates unified, detailed mappings of the seafloor material by integrating thou-
sands of individual datasets, mostly from drill logs. We used a point data output from the database where a 
Compositional Data Analysis was applied to gravel:sand:mud (g:s:m) data to treat the closed triplet structure of 
the data. To perform statistical, graphical, and geometrical (including gridding) operations, the g:s:m data were 
transformed into three log ratios of the geometric mean (“centered log ratios”).

https://doi.org/10.1038/s41597-024-03749-4
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DBSeabed data points with a maximum water depth of 40 meters were extracted in R-Studio individually 
for centered log ratios of gravel, sand, and mud. The point data were separately interpolated into raster files 
in ArcMap 10.5 using inverse distance weighting (IDW; cell size of 1 km, search distance of 20 km, 12 points, 
power of 2). The interpolated raster values for the corresponding coastline segments were then sampled with the 
‘Point sampling’ tool in QGIS and joined to the coastline segment features by location. Rasters of gravel/sand/
mud proportion on the seabed sediments were retrieved using exp(CLRsand, gravel, mud)/Σ(exp(sand, gravel, mud))*100 
and linked to coastal segments, as previously described for raster data. Based on the gravel proportion and the 
mud/sand ratio, the coastline segments were sorted into sediment classes following the system set up by Folk56 
(Table 3).

At coastlines outside a 20 km radius of DBSeabed-points, the seaward permeability was determined using 
a classification based on seagrass (class MS), coral (class MC), estuary, and river datasets (class MM) (Fig. 3). 
For classifying coastline segments into the seagrass class, we used a dataset of the global distribution of sea-
grasses (version 7.1)57. The vector polygon dataset contains reviewed seagrass locations of 128 countries and 
territories. Merging to the coastline segments was performed by buffering the coastline segment midpoints 
with a radius of 1 km, intersecting the midpoint buffers with the seagrass polygons, and dissolving the result-
ing intersection to avoid duplications. Treatment of the coral, estuary, and river datasets was described above. 
However, for the seaward classification, a longer radius of buffering was used for estuary (5 km) and river 
(2 km) influence, representing an assumed broader impact of those structures on the seaward permeability, 
as inferred from river sediment plume shapes58,59. The remaining coastline is in the class MU, indicating an 
unknown seaward permeability.

Each class was assigned a seaward permeability based on literature values (Table 4). While for the coastal 
classes based on the Folk classification system, the permeability for those respective grain sizes was sought in the 
literature, the ecological classes are defined based on the ecosystem needs. Seagrass tends to live on fine-grained 
sandy-muddy sediments, while the mud can’t dominate, so the grass still gets enough light through the water 
column. Similarly, corals usually live on hard substrate or coral rubble but do not tolerate high water turbidity 
and high mud content. On the contrary, river and estuary seaward sediments are expected to have a high mud 
content and are classified as such.

Data Records
The here-described data records on PANGAEA (https://doi.pangaea.de/10.1594/PANGAEA.958901)43 encom-
pass a technical description (Filename: CoPerm_Technical_Appendix.v.1.0.pdf) and a zip archive (filename: 
CoPerm_.v.1.0_Data.zip) containing the actual data in CSV format (filename: CoPerm_v.1.0_Dataset.csv) and 
a set of metadata (filename: CoPerm_v.1.0_Metadata_Descriptor.txt). In that metadata set, all columns in the 
data table are described.

Geographical features are not included in our published data to avoid double publication of data. 
The table has to be joined to the original geographical features of the coastline that are easiest availa-
ble from a derivate produced from the original author at https://doi.org/10.5066/P9HWHSPU60 (File: 
USGSESRIGlobalCoastalSegmentsv1.mpk) using the column “MasterKey” in both datasets. The coastal perme-
ability values presented here are fully usable only joined to those data.

Technical Validation
Due to the global nature of the dataset and the available observational data at this scale, we do not see a for-
mal way to validate the global coastal permeability data. We thus chose to be as transparent as possible in our 
decision-making, based on published literature throughout the process, from classification to assigning a per-
meability class. The dataset is built so that even if users disagree with any individual decision or permeability 
attribution, they can easily change it and insert their preferred values. Given the published literature values of 
permeability, the dataset is as robust as possible. To represent its uncertainty, we added permeability ranges to 
the coastal segments. We have further checked and re-checked the relations between decisions, coastal positions, 

Folk class Defining condition

Gravel (G) Gravel % ≥ 80%

muddy Gravel (mG) 80% < Gravel % ≥ 30% & Muddy % ≥ Sand %

gravelly Sand (gS) 30% < Gravel % ≥ 5% & Sand % > Sand % & Mud % * 9 < Sand %

Mud (M) Gravel % < 5% & & Mud % > Sand % * 9

Sandy Mud (sM) Gravel % < 5% & Mud % > Sand % & Sand % * 9 ≥ Mud %

muddy sandy Gravel (msG) 80% < Gravel % ≥ 30% & Sand % > Sand % & Mud % * 9 ≥ Sand %

muddy Sand (mS) Gravel % < 5% & Sand % > Mud % & Mud % * 9 ≥ Sand %

sandy Gravel (sG) 80% < Gravel % ≥ 30% & Sand % > Sand % & Mud % * 9 < Sand %

gravelly Mud (gM) 30% < Gravel % ≥ 5% & Muddy % ≥ Sand %

gravelly sandy Mud (gmS) 30% < Gravel % ≥ 5% & Sand % > Sand % & Mud % * 9 ≥ Sand %

Sand (S) Gravel % < 5% & Sand % > Mud % * 9

Table 3. Sorting conditions of DBSeabed gravel, sand, mud percentage into Folk classification (compare 
Fig. 4 for a visual representation of the classification system). The Folk-Classes were adopted here as coastline 
permeability classes.
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coastal categories, and permeabilities. We have internally reviewed the code and all datasets manually. The deci-
sion trees are documented above; the code is published (see below).

Code availability
The code developed to derive classification decisions and permeability assignments, as described before, is 
available at: https://doi.org/10.5281/ZENODO.784556840.
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