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Abstract
Unveiling the intricate relationships between animal movement ecology, feeding 
behavior, and internal energy budgeting is crucial for a comprehensive understand-
ing of ecosystem functioning, especially on coral reefs under significant anthropo-
genic stress. Here, herbivorous fishes play a vital role as mediators between algae 
growth and coral recruitment. Our research examines the feeding preferences, bite 
rates, inter-bite distances, and foraging energy expenditure of the Brown surgeonfish 
(Acanthurus nigrofuscus) and the Yellowtail tang (Zebrasoma xanthurum) within the fish 
community on a Red Sea coral reef. To this end, we used advanced methods such as 
remote underwater stereo-video, AI-driven object recognition, species classification, 
and 3D tracking. Despite their comparatively low biomass, the two surgeonfish spe-
cies significantly influence grazing pressure on the studied coral reef. A. nigrofuscus 
exhibits specialized feeding preferences and Z. xanthurum a more generalist approach, 
highlighting niche differentiation and their importance in maintaining reef ecosys-
tem balance. Despite these differences in their foraging strategies, on a population 
level, both species achieve a similar level of energy efficiency. This study highlights 
the transformative potential of cutting-edge technologies in revealing the functional 
feeding traits and energy utilization of keystone species. It facilitates the detailed 
mapping of energy seascapes, guiding targeted conservation efforts to enhance eco-
system health and biodiversity.
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1  |  INTRODUC TION

The dynamics of herbivore consumption, both spatially and tem-
porally, are pivotal in sustaining ecosystem functioning, particu-
larly through their impact on energy and nutrient flows (Bauer & 
Hoye,  2014; Lundberg & Moberg,  2003). Influenced by resource 
availability, feeding preferences, and internal energy budgets, 
these dynamics shape herbivore foraging strategies (Gordon & 
Prins, 2019). Yet, a fundamental question remains in ecology: how 
do these factors interact to influence the expression of functional 
traits in herbivores, and what is their relative importance in this pro-
cess (Bellwood et  al., 2019)? Even further, behavioral adaptations 
driven by metabolic demands have far-reaching implications for spe-
cies interactions, community dynamics, and ecosystem functionality 
(Candolin & Rahman, 2023). Understanding these linkages is critical 
for predicting ecosystem responses to environmental changes and 
preserving biodiversity and ecosystem health (Schlägel et al., 2020).

To fully grasp the complexities of ecosystem functioning, 
going beyond studying foraging behavior is inevitable (Semmler 
et  al.,  2021). However, assessing metabolic traits and the energy 
invested into certain behaviors in the field (e.g. field metabolic 
rates) remains challenging – especially in aquatic organisms (Treberg 
et  al.,  2016). Synchronous consideration of functional traits and 
metabolic rates presents a promising approach to decipher the en-
ergetic foundations of species co-existence and community inter-
actions (Brandl et al., 2023). These traits are inextricably linked to 
an organism's strategy for acquiring, utilizing, and distributing en-
ergy, thus impacting its ecological fitness and shaping community 
functioning (Burton et al., 2011; Grémillet et al., 2018). Therefore, 
overcoming these challenges to measure energy expenditure (EE) 
in free-roaming animals is crucial for assessing ecosystem-level en-
ergy landscapes, enabling an understanding of metabolic constraints 
underlying animal movement and an ecosystem's ability to function 
(Shepard et al., 2013).

Through the use of remote underwater video (RUV), we can now 
further our understanding of aquatic herbivore fine-scale feeding hab-
its and their role in maintaining ecosystem balance (Lamb et al., 2020; 
Streit et  al., 2019). Even further, with the rising application of RUV 
combined with advanced AI-driven object recognition and tracking 
capabilities (Dell et al., 2014; Kays et al., 2015), our capacity to study 
animal behavior has improved considerably. Particularly in aquatic 
environments, remote underwater stereo-video (RUSV) in combina-
tion with AI can meticulously track and analyze the 3D movements of 
foraging animals (Engel et al., 2021; Francisco et al., 2020). This inno-
vative approach allows for a broader exploration of animal behavior, 
providing unprecedented insights into foraging strategies, feeding 
habits, and energy budgeting (Nathan et al., 2022). The resulting high-
resolution data becomes even more meaningful when combined with 
measurements of Overall Dynamic Body Acceleration (ODBA). This 
method assumes a direct correlation between an animal's movement 
and energy expenditure (EE), making it an effective proxy for estimat-
ing metabolic rates in free-ranging animals (Gleiss et al., 2011; Gómez 
Laich et al., 2011). Indeed, previous research has successfully applied 

this method to study the relationship between field metabolic rates 
and fitness variations in wild animals (Grémillet et al., 2018).

Herbivorous fishes, characterized by diverse feeding-related 
functional traits, substantially contribute to herbivory within coral 
reef ecosystems (Green & Bellwood, 2009; Kelly et al., 2016; Tebbett 
et al., 2020). These fishes play a key role in controlling the spread of 
epilithic algal turfs (EAT) and macroalgae fronds, which compete with 
coral colonies for light and space, facilitating the settlement of coral lar-
vae and the eventual recovery of the reef (Ceccarelli et al., 2005; Roth 
et al., 2018). Disruptions to this intricate relationship could significantly 
impede the recovery process of these delicate ecosystems (Hoegh-
Guldberg et al., 2007; Pratchett, Hoey, & Wilson, 2014). Among her-
bivorous fishes, surgeonfishes are known for their ubiquitous presence 
and instrumental role in turf algae removal (Green & Bellwood, 2009; 
Kelly et al., 2016; Tebbett et al., 2020). A more in-depth analysis of 
surgeonfishes' fine-scale feeding behaviors is crucial to better under-
standing their role in reef resilience (Korzen et al., 2011).

In a coral reef ecosystem influenced by global changes, our study 
focuses on unraveling the community-scale functional feeding traits, 
as well as feeding behaviors and EE of the two most dominant graz-
ing herbivores, the Brown surgeonfish (Acanthurus nigrofuscus) and the 
Yellowtail tang (Zebrasoma xanthurum). Utilizing innovative tools such as 
RUSV and AI-driven multi-object tracking for measuring EE through al-
lometric scaling and ODBA, our investigation aims to reveal the intricate 
feeding dynamics and energy utilization patterns of these functional 
key species. This approach is designed to enhance our understanding 
of their metabolic mechanisms and their roles within the broader reef 
community, contributing to the rapid assessment of field metabolic 
rates and the expression of functional traits in fish communities.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

Sampling was conducted on the reef located in front of the Inter-
University Institute for Marine Sciences (IUI) (29°30′7.0″ N, 
34°55′3.7″ E) in Eilat, Gulf of Aqaba, between March 8 and 14, 2018. 
Prior to the 1970s, Eilat's reefs, nestled at the northern tip of the 
Gulf of Aqaba in the Red Sea, boasted exceptional within-habitat 
coral species diversity, comparable to the Great Barrier Reef's reef 
flats (Loya, 2004). However, since the 1970s, these reefs have been 
under persistent anthropogenic stress, resulting in a worrying shift 
toward dominance by EAT, covering over 70% of available hard 
substrates (Bahartan et al., 2010; Loya, 2004). This sustained reef 
degradation has triggered a concerning drop in the region's marine 
biodiversity (Reverter et al., 2020).

2.2  |  Remote underwater stereo-video surveys

To carry out the surveys, we deployed three calibrated stereo-video 
systems, each comprising two GoPro cameras (four Hero 5 and 
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two Hero 4), following the methodology outlined by Neuswanger 
et  al.  (2016). Footage was shot with a resolution of 1080p and a 
recording rate of 60 frames per second (fps). To validate the cali-
bration accuracy of our stereo-video systems, we measured the dis-
tances between dots on the front surface of the calibration frame 
(199 mm) across 10 different video frames and distances from the 
systems. The mean absolute errors (±SD) and mean absolute per-
centage errors for the three systems were 5.06 ± 5.79 mm and 2.5%, 
6.80 ± 5.20 mm and 3.4%, and 5.73 ± 3.17 mm and 2.9%, respec-
tively. Over three sampling days, we installed all three stereo-video 
systems at a single sampling station each day, positioning them at 
depths of 2–3 m and approximately 10 m apart from each other.

For each system placement, sites were selected based on the 
diversity of grazable substrata, a key factor for understanding 
the varied feeding strategies of herbivorous reef fishes and cat-
egorizing different micro-habitats (Green & Bellwood, 2009). This 
methodological choice facilitated a detailed analysis of the impact 
of substrata types on the foraging behaviors of these fishes within 
their respective ecological niches. Hence, sites with a heteroge-
neous mix of benthic substrate cover were preferred. Since sur-
geonfishes exhibit peak grazing rates around midday, the majority 
of our filming took place between 11:00 and 15:00 (Fouda & El-
Sayed, 1994; Montgomery et al., 1989). From nine rack placements, 
we obtained 13.5 h of analyzable video footage, with each original 
video lasting 1.75 h.

2.3  |  Assessment of benthic cover

At the start of each recording session, a 1 × 1 m quadrat was po-
sitioned in front of the cameras. To quantify the substrate cover 
within each quadrat, a long shot photograph was taken from above, 
capturing the entire quadrat in the frame. These images were up-
loaded to the program SketchAndCalc (iCalc Inc, Version 1.1.2), in 
which the 1 × 1 m quadrat was calibrated, so each transformed image 
contained roughly the same number of cells. This equated to ~1000 
cells per image, each being around 5 cm2. The images with the canvas 
imprinted upon them were subsequently exported and annotated 
with each form of substratum – live coral and standing dead coral, 
bare calcium-carbonate/sedimentary rock, coral rubble, and sand – 
having a corresponding color. We counted the annotated cells and 
calculated relative substrate cover (%).

2.4  |  Assessment of feeding dynamics

We manually measured fish total length (TL; mm) and functional 
traits, bite rate (bites min−1) as well as the distance between each 
consecutive bite (bite distance, in mm), only within the delimited 
quadrat area during the entirety of the recorded video footage. The 
initial 15 min of each video were discarded to allow for fishes to 
resume normal behavior after the quadrat was removed and divers 
left the site. The time at which a single fish entered the area of the 

quadrat to take bites from substrates until the time when it exited 
constituted a feeding event. For each feeding event, all bites were 
counted and then standardized against time to obtain bite rates.

We calculated individual fish mass according to each species' 
length-weight relationship: mass = aTLb, where a and b for each spe-
cies were informed from FishBase (see Table A1) (Froese et al., 2014). 
For each rack placement, fish biomass (g m−2) was calculated by add-
ing all masses of individuals (from 19 species) that entered the quad-
rat during 45 min of filming to take bites. With this information, we 
were able to calculate total feeding rates (bites m−2 h−1) as well as 
feeding pressure as biomass standardized bites (kg bites m−2 h−1) per 
species (Longo et al., 2015).

The surgeonfishes A. nigrofuscus and Z. xanthurum contributed 
more than 86% of all recorded bites, and were thus selected as the 
model species to address our research question (Table 1, Videos 1 
and 2). For each species, we manually recorded the substrate type for 
each bite observed in our stereo-videos. This detailed data was then 
utilized to calculate Manly's feeding ratios, effectively illustrating 
the utilization of different substrate categories by individual fish in 
relation to the availability of these substrates across the reef (Manly 
et al., 2002). The summed feeding ratios per grazed substrate were 
compared to ascertain feeding preference (%) for the two target spe-
cies across the entire reef (Pratchett, Hoey, Cvitanovic, et al., 2014). 
Further, for the focal species in each feeding event we averaged the 
distances between consecutive bites to obtain mean bite distance 
(mm). We conducted all manual measurements in the open source 
software VidSync Version 1.661 (Neuswanger et al., 2016).

2.5  |  AI-driven tracking of coral reef fish

In this study, we aimed to achieve AI-driven automated fish detec-
tion, identification, and tracking from stereo-video by performing 
several steps:

2.5.1  |  Calibration

Our calibration process had to accurately estimate the 3D position 
of objects using our stereo camera system. This system captures 
two-dimensional images, and our task was to project these onto a 
three-dimensional plane. We employed the pinhole camera model 
for this purpose, a standard approach in photogrammetry, which 
facilitates the projection of 3D points onto the image plane via a 
perspective transformation.

However, pinhole cameras, like the ones we used in our study, 
are inherently prone to certain distortions. Radial and tangen-
tial distortions are common issues, which often result in straight 
lines in the real world appearing curved in the captured images. 
To address this, we first synchronized our stereo-video image set 
in time through a clap. Following this, we recorded a checkboard 
pattern with both cameras, which is a standard practice in camera 
calibration.
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For the actual calibration in Matlab (TheMathWorks, Version 
R2022a), we utilized Zhang's calibration method (Zhang, 2000). This 
method is particularly effective for correcting the mentioned distor-
tions and aligning the 3D and 2D points accurately (Figure 1). The 
function allowed us to make use of the maximum number of rect-
angles from the calibration chessboard pattern on the back of our 
calibration frame. After calibrating our camera system in Matlab, we 
reformatted the detected image points and calibration parameters 
to align with OpenCV's data representation conventions for subse-
quent processing.

2.6  |  Stereorectification

Stereorectification aligns left and right camera images in such a 
way that they appear as if they have been shifted only horizon-
tally. This alignment facilitates locating corresponding pixels in 
each image, which is crucial for accurately triangulating the depth 
of the scene. The rectification was done with OpenCV (Open 
Source Computer Vision Library, Version 4.9.0). The function 

CVstereoRectify takes the projection matrices and the distortion 
parameters of both cameras as input. As output, it provides two 
rotation matrices and two projection matrices in the new coor-
dinates. We could now reassign all the pixels of the left image to 
the right image to get a rectified pair (Figure 2). Using this method 
of calibration, we obtained an overall mean [±SD] absolute re-
projection error of 0.9 [±1.9] mm which corresponds to 0.45% of 
the true value.

2.7  |  Object detection

For object detection, we employed the You Only Look Once Version 
5 (YOLOv5) convolutional neural network (CNN) (Bochkovskiy 
et  al., 2020). Initially, YOLOv5 was trained on a diverse dataset 
comprising 32,054 annotated images, covering 52 animal species, 
including corals, and divided into 80% training, 10% validation, 
and 10% testing sets, ensuring distinct locations for training and 
validation. To tailor YOLOv5 for our specific requirements, we 
retrained it with additional background images from the Red Sea 

TA B L E  1 Replication details for the study on feeding behavior (feeding preferences and functional traits) and energy expenditure 
of A. nigrofuscus and Z. xanthurum on a coral reef in Eilat, Israel, Gulf of Aqaba. Energy expenditure assessments were not conducted 
simultaneously with the observation of feeding behaviors.

Species
Number of individuals 
(feeding behavior)

Number of replicates 
(feeding events) Total bites

Number of trajectories 
(energy expenditure)

Acanthurus nigrofuscus 20 40 559 14

Zebrazoma xanthurum 10 72 1375 21

V I D E O  1 Zebrazoma xanthurum taking bites from the reef matrix on a coral reef in Eilat, Gulf of Aqaba, Red Sea.
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    |  5 of 19LILKENDEY et al.

V I D E O  2 Acanthurus nigrofuscus and Ctenochaetus striatus foraging on the reef matrix on a coral reef in Eilat, Gulf of Aqaba, Red Sea.

F I G U R E  1 Detection of the checkboard pattern on the back of the calibration frame in Matlab.

F I G U R E  2 The calibration frame in a stereorectified frame pair in OpenCV.
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videos, aiming for precise detection that differentiates fish from 
corals and other background elements. This retraining involved 
using images where fish were consistently present, treating mov-
ing foreground objects as noise, and calculating frame medians for 
background extraction.

Our retraining strategy maintained the original data ratio while 
incorporating 10% of new background images. The goal was to 
achieve clear and accurate object detection, avoiding misidentifi-
cation of non-fish elements and reducing computational overhead. 
Post-detection, the bounding boxes generated by YOLOv5 served 
as input for further classification and stereo matching. This step in-
volved comparing feature vectors of bounding boxes from left and 
right camera images along the same epipolar line, ensuring accurate 
matching and spatial positioning of detected objects (Figure 3).

2.8  |  Object classification

We utilized iNaturalist (www.​inatu​ralist.​org), a social network and 
image repository used by community scientists globally, to classify 
detected fish species in our study (Shepley et al., 2021; Van Horn 
et al., 2018). iNaturalist serves as a platform for sharing biodiversity 
observations, where users contribute to the identification of various 
organisms. To augment training of our CNN, we selected research 
grade, location-invariant images of identified fish species from this 
repository. Due to iNaturalist's limitations on mass image download-
ing, we employed web scraping techniques using the Beautiful Soup 
Python library (Richardson,  2007) and Selenium (ThoughtWorks, 
Version 4). To comply with the FAIR (Findable, Accessible, 
Interoperable, and Reusable) data principles, we made our train-
ing dataset openly available  (Lilkendey, 2023): https://​github.​com/​
Knoch​enfis​ch/​Funct​ional​-​and-​Metab​olic-​Trait​s-​of-​Surge​onfis​hes/​
blob/​6ece6​3aaaf​20133​084f8​e7496​0796b​37fd5​40317/​​data/​iNatu​
ralist_​obser​vatio​ns_​train​ing_​datas​et.​csv

In the process of handling the high-resolution images from iNat-
uralist, we first passed them through our detection system. This 
system primarily cropped the images to enhance focus on the sub-
ject animals. When multiple bounding boxes were detected in an 
image, suggesting the presence of various species, these instances 
required manual verification to ensure accuracy. Furthermore, we 

tackled the disparity in image resolution between our training data-
set and the iNaturalist images. The iNaturalist images, being of a 
much higher resolution compared to the medium-quality images our 
detector was trained on, were scaled down to match the resolution 
of our training dataset.

However, the iNaturalist dataset had limited images (A. nigro-
fuscus: 827, Z. xanthurum: 234), and therefore we employed trans-
fer learning using weights computed from a previously recorded 
dataset from Mayotte, Indian Ocean, as a starting point (Villon 
et  al.,  2018). In this approach, we adapted a pre-trained neural 
network model to our task, focusing on four specific classes. Since 
the feature extraction part of the model, represented by the early 
layers, was already trained on a large dataset for classifying fish 
species, we “froze” these layers to retain their learned general 
features. This decision was based on the similarity of the tasks 
– classifying fish species in both original and new contexts. We 
then modified the number of output nodes in the final layer from 
52 to 4, tailoring it to our specific class requirements and enabling 
this layer to adapt to the nuances of our classification task. To 
account for the variability in iNaturalist images, caused by differ-
ent capture conditions and sources, and to ensure the robustness 
and generalization of our method, we implemented a K-fold cross-
validation strategy.

2.9  |  Multi-object tracking

Finally, we implemented the DeepSORT framework – an enhanced 
version of the Simple Online and Realtime Tracking (SORT) algo-
rithm – for multi-object tracking (Wojke et  al.,  2017). More pre-
cisely, DeepSORT merges object detection with a tracker to follow 
and identify multiple targets in video sequences. It employs convo-
lutional neural networks to extract visual features of objects and 
embeddings to represent unique identities, enabling precise asso-
ciation of objects across successive frames and handling occlusions. 
Additionally, DeepSORT integrates a Kalman filter on stereo-video 
coordinates to correct misdetections and to display the bounding 
boxes continuously. This framework tracked each bounding box in 
both the left and right videos. Triangulation was performed to re-
trieve the 3D coordinates of the fish relative to the left camera, 

F I G U R E  3 Performance of automatic object detection (a) before and (b) after background subtraction.
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and we applied denoising to remove any erroneous data points. 
Overall, our approach enabled reliable and automatic object detec-
tion and tracking from stereo-video (Video  3), providing valuable 
data for studying movements of the two focal species in their natu-
ral habitats. For comprehensive documentation on automated fish 
length measurements and the tracking algorithm, refer to Barrelet 
et al. (2023).

To further optimize the quality of our 3D fish trajectory data, 
we implemented a systematic three-step process in R (R Core team, 
Version 4.2.3):

1.	 Outlier Removal: Recognizing the sensitivity of Kalman filter-
ing to outliers, due to its Gaussian-distributed measurement 
noise assumption, we initiated our process with the interquartile 
range (IQR) method for outlier detection and removal. IQR is 
a statistical measure representing the range within which the 
middle 50% of data values lie, making it useful for assessing 
data variability and identifying outliers. We removed data points 
that fell below the lower bound (Q1–1.5 * IQR) and above 
the upper bound (Q3 + 1.5 * IQR) using a threshold of 1.5 
times the IQR. This ensures that the filter operates optimally, 
delivering robust performance even when conditions deviate 
from the norm (Kassam & Poor, 1985; Kautz & Eskofier, 2015).

2.	 Running Median Smoothing: We used the zoo package to apply a 
5-point running median filter (Zeileis et al., 2023). The choice of 
a 5-frame filter size, given our dataset's 60 Hz acquisition rate, 
adeptly balances noise reduction and the preservation of intrinsic 

data features, all while achieving our targeted minimum resolu-
tion of 10 Hz.

3.	 Kalman Filtering: Building upon the median-smoothed data, 
we employed Kalman filtering, as suggested by Kalita and 
Lyakhov  (2022). A Kalman filter is an algorithm that refines es-
timates of unknown variables over time using a series of meas-
urements, even when these measurements contain noise or 
inaccuracies. It improves predictions by continuously updating 
them with new data (Welch, 1997). Kalman filtering was facili-
tated by the KFAS package, which hinges on the Gaussian distri-
bution assumption of measurement noise (Helske, 2017).

2.10  |  Assessment of energy expenditure from 3D 
fish trajectories

To quantify EE we used change in velocity data obtained via the 
AI-generated fish trajectories on the basis of stereo-video foot-
age (Krohn & Boisclair, 1994). We selected a subset of the longest 
detected surgeonfish trajectories, ensuring that the automatically 
measured surgeonfish individual TL fell within the length frequency 
distribution of each species determined manually via VidSync 
(Figure A2; Table A1).

From these trajectories, we computed velocity (cm s−1) by mea-
suring the distances a fish moved between X, Y, and Z coordinates 
between consecutive video frames. Acceleration (cm s−2) was com-
puted using the differences in velocity between consecutive frames. 

V I D E O  3 Coral reef fishes detected and tracked automatically through artificial intelligence while foraging on a coral reef in Eilat, Gulf of 
Aqaba, Red Sea.
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8 of 19  |     LILKENDEY et al.

Using the methodology of Gleiss et al. (2011), we calculated ODBA, 
incorporating net acceleration to account for both movement and 
direction changes (Equation 1).

We implemented allometric scaling to correlate body mass 
with our ODBA data, as suggested by Chakravarty et  al.  (2023). 
To establish this correlation, we utilized Standard Metabolic Rate 
(SMR)-mass relationships, which were derived from data recorded 
by Schiettekatte et al. (2022) (https://​github.​com/​nschi​ett/​activ​ity_​
rate_​fishes/​blob/​master/​data/​data_​respi​romet​ry.​csv). The correc-
tion factor K (mg O2 

−1 g−E d−1) was derived from the intercept of the 
log–log regression of SMR against body mass, serving as a baseline 
metabolic rate per unit mass, essential for accurately scaling the EE 
calculations in relation to the specific body mass and activity lev-
els of the studied species. The exponent E was obtained from the 
slope of the log–log regression line between log SMR and log mass. 
Our methodology involved using the functionally similar surrogate 
species, specifically Ctenochaetus striatus (SMR = 3.9994 × body 
mass0.7789) and Zebrasoma scopas (SMR = 3.9109 × body mass0.6958), 
as proxies for A. nigrofuscus and Z. xanthurum, respectively.

To account for variations in metabolic rates due to different am-
bient temperatures, we applied a temperature correction to our EE 
calculations. We employed the Q10 temperature coefficient, which 
quantifies the rate of metabolic change associated with a 10°C in-
crease in body temperature. This factor is crucial for poikilotherms, 
as their body temperatures and metabolic rates can significantly vary 
with their thermal environment (Hill et al., 2012). We adopted a Q10 
value of 1.92, typical for one of our surrogate species Zebrasoma sco-
pas (McFarlane, 2016), and set our reference temperature at 28°C, 
aligning with the conditions under which Schiettekatte et al. (2022) 
conducted their metabolic studies in Mo′orea, French Polynesia. 
Our study temperature was selected as 21°C, representing the 
water temperature at sampling depth. The Temperature Adjustment 
Factor was calculated using Equation 2.

We converted metabolic rates to EE using a conversion factor of 
14.1 J mg−1 O2 based on Brownscombe et al. (2017), with reference 
to the established bioenergetic standard for ammoniotelic animals 
(Elliott & Davison, 1975). For each frame, we computed EE (W) using 
Equation 3 where mass is in g and ODBA is unitless.

The culmination of this data processing protocol enabled cal-
culations of mean velocity and EE for each recorded 3D trajectory: 
https://​github.​com/​Knoch​enfis​ch/​Funct​ional​-​and-​Metab​olic-​Trait​s-​
of-​Surge​onfis​hes/​blob/​6ece6​3aaaf​20133​084f8​e7496​0796b​37fd5​
40317/​​output/​3D_​surge​onfish_​traje​ctori​es.​html

2.11  |  Statistical analysis

2.11.1  |  Analysis of benthic cover composition and 
functional feeding traits

Spearman Rank Sum tests were utilized to identify correlations 
within the quadrat benthic cover composition. Also, analyses and 
visualizations of total bites, feeding rates, biomass and feeding pres-
sure at the community level as well as surgeonfish feeding prefer-
ences were executed using JMP Pro (SAS Institute Inc, Version 
16.0.0).

All following analyses were done in R. During initial data pro-
cessing, outliers in our data on surgeonfish bites rates and inter 
bite distances were identified and excluded using the IQR method. 
Skewness in our data on bite distances and bite rates was rectified 
through a logarithmic transformation.

Six models were devised to assess the influence of “Species” and 
“Mass” on bite rates and bite distances. These models were designed 
to account for the potential non-independence of observations:

1.	 A linear mixed-effects model (LMM) with “Fish ID” and “Quadrat 
ID” as random effects, to compensate for resampling the same 
individual and the same quadrat, respectively.

2.	 Another LMM incorporating only “Fish ID” as a random effect, 
to address the potential non-independence of observations from 
the same individual.

3.	 A basic linear model without random effects, to assess the direct 
effects of the fixed factors.

We employed the Akaike Information Criterion (AIC) to compare 
these models, favoring those with the best fit. Notably, linear models 
excluding random effects and using only “Species” as an explanatory 
variable consistently showed the lowest AIC values (Table A2). In 
our final models, homoscedasticity and normality of residuals were 
visually assessed using Residuals vs. Fitted Values and Quantile-
Quantile (Q-Q) plots, respectively.

For exploring correlations between functional feeding traits (bite 
distance and bite rate) and environmental metrics, we employed 
LMMs. These models, developed with the lmer function in the lme4 
package in R (Bates et al., 2015), included species as a fixed effect 
and individual fish and quadrat identity as nested random effects. 
Every substrate type was analyzed separately to avoid multicol-
linearity (Equation 4).

2.11.2  |  Analysis of velocity and energy expenditure

To ascertain significant differences in velocity and EE between 
the studied species, we employed Wilcoxon rank sum tests. 
Additionally, Levene's test was utilized to assess the equality of 
variances in the model residuals. We employed an Analysis of 
Covariance (ANCOVA) to investigate whether the slopes of the 

(1)

ODBA =
|
|
|
acceleration Xcms−1

|
|
|
+
|
|
|
acceleration Ycms−1

|
|
|
+
|
|
|
acceleration Zcms−1

|
|
|

(2)Temperature Adjustment Factor = 1.92
28

◦

C−21
◦

C

10

(3)

EE =
K × bodymassE ×ODBA × TemperatureAdjustmentFactor × 14.1Jmg−1O2

60 × 60 × 24

(4)
Functional Feeding Trait ∼ Species ID + Substrate Type + ( 1|Fish ID:Quadrat ID)
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regression lines, depicting the relationship between EE and indi-
vidual mass, exhibited significant differences between the two 
fish species.

We consulted the large language model ChatGPT (version 4.0, 
OpenAI) for two key aspects of our study. First, the model aided 
in refining our methodology, which involved integrating allometric 
scaling with ODBA data obtained from three-dimensional trajecto-
ries. Second, ChatGPT provided assistance in English language edit-
ing, enhancing the clarity and coherence of the manuscript.

3  |  RESULTS

3.1  |  Benthic cover composition

The benthic cover of the study quadrats was dominated by rub-
ble, followed by dead corals (Figure A1). Overall, only 10% of the 
substrate across all quadrats was covered by live coral. In the study 
quadrats, significant correlations were found within the substrate 
categories, where benthic cover in rock was negatively correlated 
with both standing dead coral (Spearman's ρ = −0.7667, p = .0159) 
and live coral (Spearman's ρ = −0.7000, p = .0358). Additionally, ben-
thic cover in sand was positively correlated with rock (Spearman's 
ρ = 0.6833, p = .0424).

3.2  |  Community-scale functional feeding traits

Acanthurus nigrofuscus accounted for 33.56% of total bites with 
a mean ± SD biomass of 616.57 ± 767.14 g, a mean feeding rate 
of 290.22 ± 259.07 bites m−2 h−1, and a mean feeding pressure of 
298.61 ± 433.85 kg bites m−2 h−1. In contrast, Z. xanthurum con-
tributed 52.52% of total bites, presenting a mean biomass of 
166.53 ± 142.81 g, a mean feeding rate of 227.11 ± 331.15 bites 
m−2 h−1, and a mean feeding pressure of 52.78 ± 90.07 kg bites 
m−2 h−1. All other species recorded for this study contributed less 
substantially to total bites, feeding rates, biomass, and feeding 
pressure. Although certain species exhibited higher mean biomass 
values, such as Daisy parrotfish (Chlorurus sordidus) with a mean bio-
mass of 2052.15 ± 1596.13 g and Broomtail wrasse (Cheilinus lunu-
latus) at 915.73 ± 870.09 g, their overall contributions to total bites, 
feeding rates, and feeding pressure were lower compared to the two 
focal species (Figure 4).

3.3  |  Surgeonfish feeding preferences and 
functional feeding traits

In terms of grazed benthos, A. nigrofuscus primarily grazed EAT on 
standing dead coral, whereas feeding preference was generally more 
spread out across a range of substrates in Z. xanthurum, led by EAT 
on rock (Figure 5).

Acanthurus nigrofuscus exhibited a mean ± SD bite distance 
of 58.44 ± 32.54 mm and a bite rate of 44.82 ± 25.14 bites min−1. 
Conversely, individual Z. xanthurum exhibited an average bite dis-
tance of 79.52 ± 42.43 mm and a bite rate of 40.57 ± 19.08 bites min−1. 
The mean distances between consecutive bites were significantly 
greater for Z. xanthurum compared to A. nigrofuscus, as evidenced by 
the linear model (SE = 0.11914, t = 2.37, p = .0197) (Figure 6). Across 
both species, our data underscored a significant negative correlation 
between the percentage of sand cover and bite distance, estimating 
a decrease of 0.05 mm in the distance of consecutive bites for each 
percent increase in sand cover (LMM, SE = 0.01999, df = 17.89422, 
t = −2.225, p = .039).

3.4  |  Surgeonfish velocity and energy expenditure

The mean ± SD classification results for the tracked individuals 
were 0.54 ± 0.09 in A. nigrofuscus and 0.78 ± 0.24 in Z. xanthu-
rum. A. nigrofuscus exhibited a mean velocity of 28.6 ± 7.64 cm s−1, 
while Z. xanthurum displayed a mean velocity of 24.6 ± 9.46 cm s−1. 
Using the Wilcoxon rank sum test on individual mean velocities, 
the results showed no statistically significant difference between 
the two species (W = 179, p = .2931). In terms of rates of EE dur-
ing foraging, A. nigrofuscus exhibited a mean EE of 21.12 ± 17.43 W, 
while Z. xanthurum had a mean EE of 19.95 ± 29.10 W. Upon ap-
plying the Wilcoxon rank sum test to individual mean EE values, 
a statistically significant difference was not identified in the 
mean EE between the two species (W = 179, p = .2931) (Figure 7). 
ANCOVA revealed that while mean mass significantly influenced 
EE (F = 57.59, p < .001), there was no significant difference in the 
slopes of the regression lines between the two surgeonfish spe-
cies (p = .596), suggesting a consistent relationship between mass 
and EE across species.

4  |  DISCUSSION

Understanding the movement ecology and foraging behavior of her-
bivores is essential for insights into the functioning of anthropogeni-
cally stressed ecosystems like coral reefs. Herbivory plays a critical 
role in reef recovery (Eddy et  al., 2021; Ledlie et  al., 2007), yet our 
grasp of how species exhibit functional feeding traits in response to 
resource availability and metabolic constraints within these changing 
ecosystems remains limited (Goatley et al., 2016). By employing a novel 
methodology combining RUSV with AI-driven 3D tracking, we estab-
lished that A. nigrofuscus and Z. xanthurum are substantial contributors 
to grazing pressure on a Red Sea coral reef, despite their relatively low 
biomass. Our results reveal distinct foraging behaviors between the 
two species, characterized by variations in functional feeding traits, yet 
they maintain comparable rates of EE. This suggests that despite dif-
ferences in their foraging strategies and interactions with the benthic 
environment, on a population level, both species achieve a similar level 
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10 of 19  |     LILKENDEY et al.

of energy efficiency. Such observations are pivotal in understanding 
the resilience and ecological strategies of herbivorous fishes within 
coral reef ecosystems. It underlines the complexity of the ecological 
roles played by different species and the importance of the interplay 
between energy budget and foraging behavior in maintaining the 
health and balance of coral reef systems.

4.1  |  Feeding dynamics of surgeonfish within the 
coral reef fish community

It is crucial to acknowledge and value the significance of herbivorous 
fish species that surpass predicted feeding pressure based on their 
biomass alone, as they play a vital role in maintaining ecosystem in-
tegrity (Longo et al., 2014). A. nigrofuscus alone accounted for over a 
third of the total bites observed, demonstrating substantial feeding 
activity despite its relatively moderate biomass when compared to 
other fishes on the reef for which we recorded bites. Similarly, Z. xan-
thurum contributed over half of the total bites, yet its mean biomass 
was significantly lower than most other species. Species-specific mean 
feeding rates were comparable to surgeonfish feeding rates on Heron 

Island's near-pristine shallow reefs (ca. 240 bites m−2 h−1), while feed-
ing pressures in both species were markedly higher than on Heron 
Island (ca. 32 kg bites m−2 h−1) (Marshell & Mumby, 2015). It must be 
acknowledged that these metrics are not fully comparable as time 
of day and seasonality also affect grazing rates in herbivorous fishes 
(Ferreira et al., 1998; Magneville et al., 2023). However, our findings 
indicate that both A. nigrofuscus and Z. xanthurum play a disproportion-
ately large role in grazing pressure relative to their biomass, underscor-
ing their importance in maintaining ecosystem balance on our studied 
coral reef. Consistent with the findings of Paddack et al.  (2006), our 
study underscores the pivotal role surgeonfishes play in mediating pri-
mary productivity in coral reef environments.

The foraging behavior of herbivores is often determined by 
various ambivalent and interrelated factors such as competi-
tion for resources, nutritional ecology, and physiology (Choat & 
Clements, 1998; Robertson & Gaines, 1986). In terms of foraging 
mode, A. nigrofuscus is using short nipping bites and spatulate teeth to 
remove algal matter from the EAT (Marshell & Mumby, 2012; Purcell 
& Bellwood, 1993; Tebbett et al., 2017). Z. xanthurum, on the other 
hand, is considered a browser, cutting off brown and red turf algae 
along the thallus (Fouda & El-Sayed, 1994; Perevolotsky et al., 2020). 

F I G U R E  4 Percentage of total bites and mean (±Standard Error) feeding rate, biomass, and feeding pressure for all fish species recorded 
in 45 min of video per stereo-video rack placement. Footage was obtained on a coral reef in Eilat, Gulf of Aqaba, Red Sea.
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    |  11 of 19LILKENDEY et al.

In our study, A. nigrofuscus exhibited a specialized foraging prefer-
ence for EAT on standing dead coral, while Z. xanthurum exhibited a 
more generalized grazing strategy, favoring a variety of substrates 
including EAT covering rock. Z. xanthurum is known to feed mainly on 
shallow rocks covered by turf algae (Perevolotsky et al., 2020), and 
species of the genus Zebrasoma have morphological features that 
enable them to feed in crevices and concealed locations to a much 
greater extent than other acanthurids (Brandl et  al., 2015). These 
behaviors suggest niche differentiation at the microhabitat scale, 
potentially reducing competition and promoting coexistence within 
this coral reef ecosystems. Such a high spatial complementarity is 
often reported, even for seemingly similar functional groups and on 
disturbed coral reefs (Brandl et al., 2016; Brandl & Bellwood, 2014; 
Marshell & Mumby, 2012).

4.2  |  Surgeonfish functional feeding traits and 
rates of energy expenditure in relation to ecosystem 
functioning

Environmental changes, such as habitat alteration and climate shifts, 
significantly affect interactions within ecosystems, particularly be-
tween herbivores and their resources, due to changes in habitat 
structure and resource availability (Wong & Candolin, 2015). In our 
study, we observed a decrease in bite distances with an increase in 
the presence of sand, a less favorable foraging substrate. This vari-
ability in foraging behavior, triggered by resource scarcity, provides 
insight into how these species might respond to the ongoing degra-
dation of coral reefs. Changes in how herbivores interact with their 
environment and express functional feeding traits can lead to cas-
cading effects that ripple through the food web: These can manifest 

as top-down effects, where alterations in consumer behaviors im-
pact lower trophic levels, or as bottom-up effects, where changes at 
lower trophic levels, such as the availability of food, influence higher 
trophic dynamics (Jochum et al., 2012; Pace et al., 1999). However, 
the complexity of species interactions within these networks makes 
it challenging to predict the full extent of these cascading processes 
and their ultimate impact on community structure and ecosystem 
functioning (Wong & Candolin, 2015).

Tracing the flow of energy plays a pivotal role in understand-
ing ecosystem functioning, particularly in the context of coral reefs 
(Bellwood et al., 2019). The meticulous delineation of energy budgets 
provides important insights into the variations in fish fitness (Watson 
et al., 2020). For instance, variable metabolic rates, turnover rates of 
energy from food into usable biological energy, can impact interspe-
cies competition, survival, and coexistence patterns on coral reefs 
(Clarke, 1989, 1992). Assessing metabolic traits of fishes can thus help 
in grasping complex, unpredictable outcomes in these species interac-
tion networks (Brandl et al., 2023). In the context of our study on coral 
reef herbivores, EE serves as an indicator of the energy invested into 
foraging by two dominant grazing fish species. Longer bite distances in 
Z. xanthurum are an indication that the fish have to traverse longer dis-
tances to find feeding spots on a microhabitat scale. Despite differing 
foraging behaviors, the similar EE of these species suggests potential 
variations in diet nutritional quality or absorption efficiency (Clements 
et al., 2009; Schiettekatte et al., 2023). Z. xanthurum may also employ 
a more energy efficient biting physiology than A. nigrofuscus (Mihalitsis 
& Wainwright, 2024; Perevolotsky et al., 2020). Our results, therefore, 
provide direct insights into population-level energy use strategies by 
investigating EE and the functional responses of fishes to changes in 
habitat quality – shedding light on the processes that mediate compet-
itive interactions between the two model species (Brandl et al., 2023). 

F I G U R E  5 Feeding preferences of the two study surgeonfish species on a coral reef in Eilat, Gulf of Aqaba, Red Sea. EAT, epilithic algae 
turf.
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12 of 19  |     LILKENDEY et al.

Ultimately, combining approaches to assess energy flows across tro-
phic levels and ecosystem scales will help to paint a more holistic 
picture of how energy moves through aquatic food webs (Robinson 
et al., 2023).

4.3  |  Automated tracking and inference of energy 
expenditure in fish

Recent AI advancements have significantly improved object rec-
ognition and tracking, leading to enhanced accuracy in species 
identification. However, there's a need for developing innovative, 
automated approaches and multidimensional data analysis in the 
fields of ecology and conservation (Besson et  al., 2022; Nathan 
et  al.,  2022). Also, classification accuracy still heavily relies on 
the training data's quality and quantity (Muksit et  al., 2022; Tan 
et  al.,  2022). Our automated method detects fish from stereo-
video images on a Red Sea coral reef using YOLOv5. Employing 

pre-trained EfficientNet CNN and fine-tuning with a limited 
dataset from iNaturalist, we automatically identify fish species, 
achieving an overall classification accuracy of 73% and showcas-
ing transfer learning's potential.  Our classification performance 
for one model species was suboptimal, potentially due to the close 
resemblance between A. nigrofuscus and C. striatus, which we also 
found on the reef, posing a challenge even for expert human ob-
servers. We expect that expanding the iNaturalist dataset with 
more varied images will enhance our system's ability to accurately 
classify these species. Our system, capable of tracking and clas-
sifying multiple objects, marks a significant advancement over 
previous studies lacking species identification (Engel et al., 2021; 
Francisco et  al., 2020). Our methodology leveraged DeepLabv3 
for the segmentation of fish within digital imagery, facilitating 
accurate measurements through 3D localization and triangula-
tion techniques by pinpointing extremal points and leveraging 
Principal Component Analysis (Barrelet et  al., 2023; Chen et  al., 

F I G U R E  6 Violin plots of manually determined bite distances 
and bite rates of the two study surgeonfish species on a coral reef 
in Eilat, Gulf of Aqaba, Red Sea. The asterisk indicates a significant 
difference.
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F I G U R E  7 Violin plots showcasing mean velocities and rates 
of energy expenditures during foraging, based on artificial 
intelligence-generated three-dimensional fish trajectories for 
Acanthurus nigrofuscus and Zebrasoma xanthurum. Stereo-video 
footage was captured in Eilat, Red Sea, Israel.
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    |  13 of 19LILKENDEY et al.

2018). In contrast, methodologies like the one presented by Coro 
and Walsh (2021) utilize YOLO for frame-by-frame detection, rely-
ing on image characteristics for size estimation without distance 
sensors which could lead to less precision in complex or overlap-
ping scenarios. Our methodology employs DeepSORT for robust 
tracking, allowing for dynamic 3D trajectory creation thanks to 
triangulation. The presence of noise in our trajectory data led to 
inaccuracies, necessitating the use of denoising methods to en-
hance data quality. We adapted YOLOv5 and DeepSort for new 
environments and species, employing techniques like background 
subtraction and transfer learning, due to the scarcity of extensive 

training data. The model's effective adaptation from the Mayotte 
dataset to the Red Sea, despite requiring effort, underscores its 
flexibility and potential for wide-ranging applications in marine 
environments.

Inference of EE in aquatic organisms remains a challenging task 
and metabolic studies conducted in respiratory chambers – if avail-
able at all – seldom capture complex activity patterns observed in 
the field (Treberg et  al.,  2016). Animal movement often involves 
variable acceleration patterns, and tracking acceleration has be-
come a dependable way to study animal activity in the wild (Yoda 
et  al.,  2001). Moreover, measuring an animal's acceleration in all 

TA B L E  A 1 Mean (±Standard Deviation) total length (TL), bite distance, as well as a and b (from FishBase) of fish species recorded taking 
bites from the reef matrix in Eilat, Gulf of Aqaba, Red Sea.

Family Species TL (mm) Bite distance (mm) a b

Acanthuridae Acanthurus nigrofuscus 134.7 ± 30.1 66.0 ± 41.4 0.02455 2.97

Ctenochaetus striatus 152.4 ± 16.6 123.4 ± 164.7 0.02344 3.06

Zebrasoma desjardinii 202.9 ± 55.0 86.2 ± 4.6 0.02344 2.97

Zebrasoma xanthurum 135.3 ± 28.1 81.7 ± 48.2 0.02344 2.96

Balistidae Sufflamen albicaudatum 153.8 ± 10.7 246.9 ± 158.6 0.02570 2.94

Chaetodontidae Chaetodon paucifasciatus 108.6 ± 17.6 294.8 ± 321.6 0.02291 3.00

Chaetodon trifascialis 138.9 525.0 0.02138 2.95

Chaetodon trifasciatus 130.8 0.02344 3.06

Kyphosidae Kyphosus bigibbus 276.2 ± 51.0 197.0 ± 158.8 0.01660 2.98

Labridae Cheilinus lunulatus 336.0 ± 125.9 0.01995 3.00

Mullidae Parupeneus macronemus 131.8 ± 26.3 152.5 ± 167.4 0.00912 3.15

Ostraciidae Ostracion cubicus 95.6 42.6 0.05248 2.76

Scaridae Calotomus viridescens 178.3 105.3 0.02089 2.98

Cetoscarus bicolor 164.8 0.01445 3.03

Chlorurus sordidus 377.8 ± 8.5 126.6 ± 96.5 0.01585 3.05

Scarus ferrugineus 254.8 ± 46.7 111.7 ± 72.8 0.01445 3.00

Scarus niger 275.5 ± 81.7 55.6 ± 4.5 0.01622 3.04

Siganidae Siganus luridus 162.7 ± 53.4 39.3 ± 30.9 0.01288 2.96

Tetraodontidae Canthigaster cyanospilota 106.9 68 ± 7.8 0.02818 2.94

Independent variables Dependent variable Random effects AIC

Species + Mass Bite rate Fish ID + Quadrat ID 200.5431

Species Bite rate Fish ID + Quadrat ID 187.8529

Species + Mass Bite rate Fish ID 198.5431

Species Bite rate Fish ID 185.8529

Species + Mass Bite rate 185.2544

Species Bite rate 183.2562

Species + Mass Bite distance Fish ID + Quadrat ID 218.4714

Species Bite distance Fish ID + Quadrat ID 205.2367

Species + Mass Bite distance Fish ID 216.4714

Species Bite distance Fish ID 203.2367

Species + Mass Bite distance 196.8243

Species Bite distance 195.0681

TA B L E  A 2 Akaike Information 
Criterion (AIC) values for linear mixed-
effects models examining the relationship 
between surgeonfish species, individual 
mass, and either bite rate or bite distance, 
with varying combinations of Fish identity 
(ID) and Quadrat ID as random effects. 
The lowest AIC value is marked in bold.
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three dimensions provides a valuable proxy to infer EE while moving 
(Wilson et al., 2006). We are confident that our acceleration values 
are correct, as the swimming speeds for the two model species are 
well within the range of swimming speeds of other coral reef fishes 
observed using stereo-video (Schiettekatte et al., 2022). We extrap-
olated EE from ODBA, calculated using AI-generated trajectories, 
based on previously published relationships between SMR and mass 
from functionally similar species. This method aligns with approaches 
used in various studies, such as Gómez Laich et al. (2011) for Imperial 
Cormorants (Phalacrocorax atriceps) and Wright et  al.  (2014) for 
sea bass (Dicentrarchus labrax). Chakravarty et al.  (2023) leveraged 
past allometric research to quantify EE in free-roaming meerkats 
(Suricata suricatta) as a function of body size by deriving SMR-mass 
relationships from a related species, the dwarf mongoose (Helogale 
pervula). Our EE values are consistent with studies that utilized ac-
celeration data post-calibration with respirometry in marine fishes 
(Brownscombe et al., 2017; Krohn & Boisclair, 1994), and are situ-
ated within the intermediate metabolic range between MMR and 
SMR of our surrogate species (Schiettekatte et  al., 2022). This in-
dicates the potential of combining accelerometry and allometry for 
estimating EE in aquatic species, especially when in-lab calibration 
is not feasible.

4.4  |  Limitations and future research avenues

Future studies should overcome our research's limitations for a 
fuller understanding across varied marine environments. A notable 
constraint was our inability to measure bite distance, rate, and EE 
for individual A. nigrofuscus and Z. xanthurum, limiting our analysis 
to species-level energy use strategies. Given the current reliance 
on labor-intensive manual methods for evaluating functional traits, 
there's a pressing need for automated systems to identify and meas-
ure these traits accurately. This gap in methodology presents a sig-
nificant avenue for future studies using methods that can integrate 
these crucial aspects of foraging behavior and metabolic activity in 
individual fish. Obtaining comprehensive data is crucial for under-
standing the relationship between feeding behavior and EE at an in-
dividual level. Additionally, the sample size in our study may not be 
large enough to represent the species' general behavior, potentially 
limiting our findings to the specific coral reef area we examined. 
Furthermore, integrating ecological variables like competition and 
predator–prey dynamics, along with direct SMR measurements, will 
contribute to a more nuanced understanding of herbivore foraging 
behaviors and energetics.

As AI and tracking technologies continue to advance, they will 
become integral to understanding ecological processes and eco-
system resilience (Besson et al., 2022). Incorporating AI into RUSV 
devices will revolutionize marine ecology research by streamlin-
ing data collection, improving methodological consistency, and 
expanding study scales, thereby elevating AI from a mere data 
recording tool to a fundamental aspect of ecological monitoring. 
Our approach offers potential for studying movement and energy 

budgets of keystone species across habitats and ecosystems, 
rapidly assessing metabolic traits in entire communities (Nathan 
et al., 2022). By analyzing acceleration patterns across communi-
ties, we can deduce “energy seascapes” in marine environments, 
mapping the varied energy costs of foraging in diverse settings 
(English et al., 2024; Wilson et al., 2012). These contributions are 
pivotal for developing ecosystem health indicators and shaping ef-
fective conservation strategies (Bograd et al., 2010). Such knowl-
edge is invaluable for deriving targeted protection and restoration 
initiatives, thereby enhancing both biodiversity and overall eco-
system functionality.

5  |  CONCLUSIONS

In our study conducted on a Red Sea coral reef, we leveraged 
RUSV and AI-generated 3D movement trajectories to delve into 
resource use patterns, the expression of functional feeding traits, 
and rate of EE – a key metabolic trait – in two dominant grazing 
fish species. Our innovative methodology revealed distinct forag-
ing behaviors between two surgeonfish species, characterized by 
variations in functional feeding traits, yet they maintained com-
parable rates of EE. This suggests that despite differences in their 
foraging strategies and interactions with the benthic environment, 
on a population scale, both species achieve a similar level of energy 
efficiency. This study underscores the transformative potential of 
technologies like RUSV, AI-driven fish identification, and 3D track-
ing in enhancing our understanding of metabolic traits and their 
role in big data-driven conservation strategies. While our research 
was specific to a coral reef, it opens the door for further studies 
to explore ecological energetics and energy landscapes in various 
ecosystems.
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F I G U R E  A 2 Total length frequencies 
of the focal species on a coral reef in 
Eilat, Gulf of Aqaba, measured manually 
using VidSync (a) and measured by object 
recognition driven by artificial intelligence 
in individuals used for this study (b).

(a)

(b)
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