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Abstract. Plankton community modeling is a critical tool
for understanding the processes that shape marine ecosys-
tems and their impacts on global biogeochemical cycles.
These models can be of variable ecological, physiological,
and physical complexity. Many published models are either
not publicly available or implemented in static and inflexi-
ble code, thus hampering adoption, collaboration, and repro-
ducibility of results. Here we present Phydra, an open-source
library for plankton community modeling, and Xarray-
simlab-ODE (XSO), a modular framework for efficient, flex-
ible, and reproducible model development based on ordinary
differential equations. Both tools are written in Python. Phy-
dra provides pre-built models and model components that
can be modified and assembled to develop plankton com-
munity models of various levels of ecological complexity.
The components can be created, adapted, and modified us-
ing standard variable types provided by the XSO frame-
work. XSO is embedded in the Python scientific ecosys-
tem and is integrated with tools for data analysis and visu-
alization. To demonstrate the range of applicability and how
Phydra and XSO can be used to develop and execute mod-
els, we present three applications: (1) a highly simplified
nutrient—phytoplankton (NP) model in a chemostat setting,
(2) a nutrient—phytoplankton—zooplankton—detritus (NPZD)
model in a zero-dimensional pelagic ocean setting, and (3) a
size-structured plankton community model that resolves 50
phytoplankton and 50 zooplankton size classes with func-

tional traits determined by allometric relationships. The ap-
plications presented here are available as interactive Jupyter
notebooks and can be used by the scientific community to
build, modify, and run plankton community models based on
differential equations for a diverse range of scientific pur-
suits.

1 Introduction

Scientists have used mathematical models to advance our
understanding of marine ecosystems for at least 70 years
(Sverdrup, 1953; Fasham et al., 1990; Gentleman, 2002;
Follows et al., 2007; Acevedo-Trejos et al., 2016). Early
models comprising a few differential equations describing
phytoplankton populations in a simplified physical setting
(Evans and Parslow, 1985; Fasham et al., 1990) have matured
into detailed descriptions of multiple trophic levels that are
run in complex three-dimensional general circulation mod-
els (GCMs) (e.g., Dutkiewicz et al., 2020). While plank-
ton community models often lack biological realism (Smith
et al., 2014) and suffer from poorly constrained model pa-
rameters and comparisons to observations (Anderson, 2005),
they have been important in developing our understanding of
the mechanisms shaping plankton biogeography (e.g., Fol-
lows et al., 2007), phenology (e.g., Taylor et al., 1993), and
biodiversity (e.g., Barton et al., 2010; Acevedo-Trejos et al.,
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2015), as well as links between ecosystems and biogeochem-
ical cycles (e.g., Fasham et al., 1990; Sarmiento et al., 1998;
Merico et al., 2006; Dutkiewicz et al., 2009).

Despite this progress, we argue that the technical imple-
mentations of plankton community models are often inflexi-
ble, complicated, and inaccessible, which obscures valuable
research and presents a high barrier of entry for beginners
or students. Existing model code is rarely reused beyond the
development teams (Belete et al., 2017). Many models use
legacy codes that are difficult to modify or integrate, result-
ing in “good knowledge bound in outdated code” (Argent,
2004). This creates challenges, particularly when attempting
to integrate models across domains, e.g., linking ecological
models to sophisticated physical models (Koralewski et al.,
2019), or when calibrating models (Steenbeek et al., 2021).

A collective and dedicated effort in the marine ecosystem
modeling community is ongoing to improve on these issues.
It has become more common to publish model source code,
and there is an ongoing development of open-source frame-
works that can make models more approachable, flexible,
and reproducible (Janssen et al., 2015). On one end, there
are large-scale global models, often written in the highly effi-
cient programming language Fortran, that are systematically
embedded in frameworks. Examples are the modular biogeo-
chemical modeling suite MARBL (Long et al., 2021) and
the limnological FABM-PCLake model (Hu et al., 2016). In
these projects, generally, a large monolithic model code is
modularized and partially retrofitted with a user interface, for
example by allowing the user to supply a markup language
file to initialize the model. Much of the model is still hard-
coded in the underlying Fortran scripts such that advanced
technical knowledge is necessary for granular control of
model structure. Not all students entering the field of plank-
ton community modeling will start working on such large
ecosystem models, and Fortran is not among the first pro-
gramming languages learned by beginners. Instead, students
usually start with interpreted programming languages com-
monly used for data analysis applications, such as Python.
These languages are typically designed with the aim of im-
proving code structure and readability and have evolved the
capabilities to efficiently support advanced numerical com-
putations (Lin, 2012), in part by wrapping lower-level lan-
guages such as Fortran or C++. This is showcased by Veros, a
global circulation model (GCM) translated to Python (Hafner
et al., 2018). The Python scientific ecosystem and Jupyter
notebooks in particular (Kluyver et al., 2016) have proven to
be a useful tool for collaborative model development work-
flows (e.g., eWaterCycle platform; Hut et al., 2022).

To efficiently test and answer ecological and biogeochem-
ical questions using plankton community models, we need
modeling tools that (1) are easy to use, (2) are open-source,
(3) allow flexible and granular control of model structure,
and (4) are conducive to scientific collaboration via an open
and extensible framework. These motivations led us to de-
velop the novel XSO framework and Phydra library in the
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programming language Python. The XSO framework offers
a set of building blocks for developing computational mod-
els based on ordinary differential equations. XSO is used as
the basis of the plankton community models contained in
the Phydra library. The foundational framework facilitates
the modification of model structure, dimensionality, and pa-
rameterization. The ultimate goal is to provide usability and
flexibility in line with popular Python data analysis and visu-
alization tools, such as Pandas, Xarray, and Matplotlib. The
XSO framework depends on functionality from these pack-
ages and provides direct interoperability for an integrated
modeling environment.

In the next sections, we present the XSO framework and
structure of the Phydra library, including the steps of an ex-
emplary model development workflow. We show the util-
ity of the tool set in three exemplary model applications:
(1) a basic nutrient—phytoplankton (NP) chemostat model,
(2) a nutrient—phytoplankton—zooplankton—detritus (NPZD)
model in a slab-ocean physical setting adapted from Ander-
son et al. (2015), and (3) a complex size-resolved plankton
community model in a simple box setting adapted from Ba-
nas (2011). These models form the basis of the first release
of the Phydra library. We then discuss the architecture of the
framework, current limitations, and possible future develop-
ments.

2 Descriptions of the XSO framework and the Phydra
library

2.1 The XSO framework

Xarray-simlab-ODE (XSO) is a Python framework that al-
lows users to construct and customize models based on or-
dinary differential equations (ODEs) in a modular fashion.
It is a non-opinionated framework; i.e., it does not provide a
fixed notion of how a model should be implemented. Instead
it attempts to remove the redundant boilerplate code, allow-
ing a user to efficiently construct and work with ODE-based
models. XSO was developed as the technical foundation of
the Phydra library but is not limited to any particular domain
and can be used to create ODE-based models of any type.
The typical steps of a model development workflow are pre-
sented in Fig. 1.

The XSO framework is an extension of Xarray-simlab
(Bovy and Braun, 2018; Bovy et al., 2021), which itself
provides a generic and highly flexible model development
framework in Python. It relies on object-oriented Python
functionalities, such as compact data classes and decora-
tors (see the online documentation for more details). Xarray-
simlab provides a succinct set of functions and attributes to
construct Python objects that can interact as processes of a
larger model. In addition to this interface, Xarray-simlab pro-
vides powerful data handling capabilities, storing model in-
put and output as multidimensional Xarray datasets (Hoyer
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Figure 1. Schematic of a typical workflow utilizing XSO and Phydra. XSO provides the framework. Phydra is a library of functional
components and pre-built model objects that can be used, extended, and modified. A typical workflow would consist of five steps. (1) Choose
a pre-existing model, and potentially remove or add components or create a new model using xso.create (). (2) Create a model setup
by supplying the appropriate labels, parameters, and solver to xso . setup () . The model setup is an Xarray dataset. (3) To run the model,
call the xsimlab.run () method on the model setup. Output is returned as an Xarray dataset containing all metadata. (4) These datasets
can be easily stored or shared. (5) Xarray datasets are fully compatible for being analyzed and visualized with the wealth of tools provided

by the Python scientific ecosystem.

and Hamman, 2017) including all relevant metadata (such as
units of variables). Model output is thus directly compatible
with a wealth of other Python tools for data analysis or vi-
sualization and can be readily exported to the NetCDF file
standard (amongst others).

Xarray-simlab has found various applications, for example
in landscape evolution (Bovy, 2021) and plant growth mod-
eling (Vaillant et al., 2022). The Xarray-simlab framework
is generic in that it provides only a step-wise execution of
model processes and could be utilized to build almost any
kind of computational model. Our package XSO is, techni-
cally, a wrapper around Xarray-simlab, adding custom build-
ing blocks and back-end code to allow a user to easily define
and compute models based on differential equations.

Our objective in developing the XSO framework was to
enable users to construct ODE-based models to be readily
modified, especially in relation to dimensionality as well as
the number of state variables and processes involved. XSO
provides an interface for iterative modifications to both more
complex and simpler model constructs. The building blocks
provided by XSO are as follows.

https://doi.org/10.5194/gmd-17-1175-2024

— Variable types. These are the most granular elements of
the framework, which directly correspond to the basic
mathematical components of ODE-based models (e.g.,
state variables, parameters, forcing, and partial equa-
tions). XSO currently provides the following variable

types.

— xso.variable defines a state variable in a com-
ponent, either locally or via reference in another
component.

- xso.forcing defines an external forcing as a
constant or time-varying value via an additional
setup function. It can also be a reference to a forc-
ing in another component.

- xso.parameter defines a constant model pa-
rameter.

— xso. flux defines a partial equation with the vari-
able types within the component and adds the term
to the system of differential equations of the under-
lying model. The flux function decorator provides
a group argument that allows passing fluxes as ar-
guments between components.

Geosci. Model Dev., 17, 1175-1195, 2024
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— xso0.index creates an input variable to define
a dimension label (i.e., Xarray index) within the
model, stored as metadata in the input and output
dataset.

These can be used to define variables in compact Python
classes to construct functional XSO components. All of
them can be defined with a variable number of dimen-
sions (i.e., as a vector, array, or matrix).

— Components. These are the building blocks of a model.
Components declare a subset of variables and define
a specific set of mathematical functions computed for
these variables during model runtime. More specifically,
a component refers to a Python class containing variable
types that is decorated with the @xso.component
function. For example, a component could define a spe-
cific nutrient uptake function, e.g., Monod-type phy-
toplankton growth on a single nutrient. The decorat-
ing function registers the variable types within the
framework, reducing boilerplate code and creating fully
functional model building blocks. Components can be
reused within a model.

— Model object. These are instances of the model class
provided by Xarray-simlab. They consist of an or-
dered, immutable collection of components. An XSO
model object is created with a call to the function
xso.create () by supplying a dictionary of model
components with their respective labels. Model objects
contain the components relevant to a model and can be
easily stored and shared. They do not contain custom
parameterization.

— Model setup. This object is an Xarray dataset that
includes all relevant information needed at runtime,
such as the model object, solver algorithm to be
used, time steps, and model parameterization. An XSO
model setup is created with a call to the function
xso.setup () supplying the aforementioned infor-
mation as arguments. At this step, the variable types ini-
tialized in a component must be supplied with a value,
as well as a label that can be used to reference them
in other components. The model parameterization is
passed as a dictionary, referencing the component labels
and variable names.

The system of differential equations is constructed from
the fluxes using the labels supplied during model setup. The
number of values in a defined dimension is flexible, but they
have to match across the model in order for the model to run.
When executing the model by calling the xsimlab. run ()
method of the model setup dataset and supplying the appro-
priate model object, a “filled-out” Xarray dataset is returned
containing model setup parameters, metadata, and output.

The XSO framework currently provides two solver algo-
rithms: an adaptive step-size solver from the SciPy package
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solve_ivp (Virtanen et al., 2020) and a simple step-wise
solver that is built into the back-end Xarray-simlab frame-
work. The solve_ivp algorithm is implemented to use
the default RK45 method, which is an explicit Runge—Kutta
method of order 5(4) (Dormand and Prince, 1980). Apart
from the technical limitations of the solver algorithm used,
there are no restrictions to the dimensionality and number of
variable types used within a component and no limitations to
the levels of group variables linking components to define a
single ecosystem process. The xso Python package is avail-
able via PyPI and GitHub (Post, 2023b).

2.2 The Phydra library

Phydra is a Python package that provides a library of modu-
lar plankton community models built using the XSO frame-
work. Phydra establishes conventions and common usage for
building models using XSO.

The plankton community models included in the Phydra
package are available to the user at multiple hierarchical lev-
els: as a library of pre-built XSO model components, as pre-
assembled model objects, and as exemplary model simula-
tions in interactive Jupyter notebooks. These levels are de-
scribed below.

1. Components. The first version of the library will contain
all components used to create the three model applica-
tions presented in Sect. 3. The components can be com-
bined to zero-dimensional plankton community models
of variable complexity. The library follows common us-
age patterns and conventions. As long as the labeled
model dimensions between components match at model
setup, all components included in the Phydra library are
compatible.

2. Model objects. The first release of Phydra contains the
model objects defined in the three model applications
presented in Sect. 3. The model objects can be imported
from the library and can be readily set up, modified, and
run by a user.

3. Example notebooks. Model objects only define the col-
lection of components. To run a model, the input pa-
rameters still need to be defined and supplied at run-
time. The Phydra library comes with three fully doc-
umented model applications that are presented in in-
teractive Jupyter notebooks. These notebooks show all
steps from creating the model setup object to analyzing
model output and provide a template for further explo-
ration and experimentation with the provided plankton
community models.

The open-source and extensible nature of Phydra and XSO
enables users to customize and develop processes that ac-
curately describe a particular ecosystem. In a collabora-
tive effort aiming to promote efficient, transparent, and re-
producible marine ecosystem modeling, Phydra encourages
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users to contribute their own components and models to the
core library. The Phydra library could potentially offer a
comprehensive, well-documented, and peer-reviewed code
base for the scientific exploration of plankton community
models. Phydra is available via GitHub (Post, 2023a).

3 Model applications

To showcase the utility of the XSO framework and Phydra
library, we present three plankton community model applica-
tions of varying complexity. For each application, we present
the mathematical model, the implementation within the XSO
framework, and the model results. To highlight the flexible
nature of the model implementations, we also show how one
aspect of each model can be modified.

For the first application, we consider a simple chemo-
stat model, whose implementation using the XSO frame-
work is presented in full detail. For the presentation of the
more complex models, we show only the component struc-
ture and highlight additional technical aspects of the imple-
mentation. For all use cases, the complete codes, following
the full development workflow from model creation to out-
put visualization, are available publicly as interactive Jupyter
notebooks in the “notebooks” folder of the Phydra repository
(Post, 2023a).

3.1 Model application 1: phytoplankton growth in a
chemostat

Chemostats are a commonly used experimental setup for
studying the growth dynamics of microorganisms under con-
trolled laboratory settings. They are characterized by a con-
stant inflow of the medium containing nutrients and a con-
stant outflow of the culture, both at a fixed rate d (d~'). Un-
der constant conditions, a steady state emerges that is par-
ticularly useful for studying growth rates of microorganisms.
Although the conditions of chemostat systems do not have a
direct equivalent in nature, some oceanic upwelling systems
can be approximated with such a simple model (Haefner,
2005).

To showcase the flexibility and simplicity of the XSO
framework, we consider two cases: (1) a constant nutrient
input and (2) a sinusoidal nutrient input (time-varying d).

3.1.1 Description

The chemostat model is presented in Fig. 2. It comprises
two state variables, dissolved nutrients (N) and phyto-
plankton (P). The model expresses quantities in units of
UMN (i.e., umolNm™3). The physical environment is a
flow-through system corresponding to a laboratory chemo-
stat setup. Growth medium with nutrient concentration Ny
(UMN) flows into the system at a rate d (d~!). The model
components (N and P) flow out of the system at that same
rate.

https://doi.org/10.5194/gmd-17-1175-2024
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Figure 2. Schematic of model application 1: phytoplankton P con-
suming a single nutrient N in a flow-through chemostat system. The
chemostat system is supplied with external medium with nutrient
concentration Ng. The medium flows into the system, and both N
and P flow out of the system at a constant rate, d.

Phytoplankton growth p (d~!) is described by Monod ki-
netics (Monod, 1949):

- N (1)
M = Mmax kn+ N ,

where kxy (UMN) is the half-saturation nutrient concentra-
tion defined as the concentration at which half the maximum
growth rate is achieved, N is the ambient nutrient concentra-
tion, and fimax (d~1) is the maximum growth rate achievable
under ideal growth conditions.

The model equations are

dv =d (N N) N P 2)
dar 0 Mmax kn+ N ,

dpP N

— = —— | P—dP. 3
dr Mmax (kN+N> (3)

3.1.2 Implementation

To meaningfully structure our model within the XSO frame-
work, we separate the model into state variables, forcing, and
fluxes. For state variables, we have nutrients (N, Eq. 2) and
phytoplankton (P, Eq. 3). The only forcing is the external
nutrient concentration (Ng, Eq. 2). Three fluxes can be de-
fined: (a) the inflow of the external medium (Eq. 2), (b) P
growing on N (Egs. 1, 2 and 3), and (c) the outflow of both
N and P (Egs. 2 and 3). The model is implemented using
these six separate model components, as shown in Fig. 3.

To explore the basic model dynamics, we choose standard
parameter values (Table 1). Initial values for N and P are set
at 1 and 0.1 uMN, respectively. The model is run for 100d
with a time step of 0.1d.

In order to run the model with periodic forcing,
we simply exchange the forcing component from

Geosci. Model Dev., 17, 1175-1195, 2024
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Figure 3. Schematic representation of the chemostat model using the XSO framework and included in the Phydra library. Model setup
with constant forcing (a) and with sinusoidal forcing (b). Structures in solid black are hard-coded into components. Labels of the different
components are supplied at model creation. Gray boxes and the resulting links between components (shown as thick colored arrows and
dashed lines) are defined at model setup via the supplied labels and parameters. The asterisks in the flux function input arguments reference
the variables, forcing, and parameters defined within the same component; these local variables can be used in all functions (e.g., fluxes or
forcing setup functions) within that same component.

Table 1. List of variables and parameters considered for the NP chemostat model. In addition to values and units, we report the variable
names to compare with Fig. 3.

Description Symbol  Variable Value Units
Nitrogen concentration N N t(0)=1 uUMN
Phytoplankton concentration P P t(0)=0.1 pMN
External nitrogen concentration Ny N_O 0.1 UMN
Maximum growth rate MUmax mu_max 1 d-!
Dilution rate d rate 0.1 d-!
Half-saturation constant kN halfsat 0.7 UMN
Sinusoidal mean m mean 1 UMNd™ 1
Sinusoidal period P period 24 d
Sinusoidal amplitude a amplitude 0.5 uMNd—!

Geosci. Model Dev., 17, 1175-1195, 2024 https://doi.org/10.5194/gmd-17-1175-2024
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Figure 4. Model outputs for the two chemostat scenarios: (a) con-
stant forcing and (b) sinusoidal forcing. In both cases, the concen-
trations of nutrient (N, purple) and phytoplankton (P, green) are
shown through time.

ConstantForcing to SinusoidalForcing
(see Fig. 3). This specific component requires two
more input parameters, but otherwise the model
creation and setup remain the same. We can up-
date the model object by simply exchanging the
SinusoidalForcing component for the N_inflow
component via the model.update_processes ()
method and updating the corresponding parameters via the
model_setup.update_vars () functions supplied
by the Xarray-simlab framework that XSO extends. Such
functionality allows straightforward modification and testing
of model structures.

3.1.3 Results

Figure 4 shows the results of two cases considered. Under
constant forcing, the model quickly reaches a steady state, as
nutrient supply and the resulting phytoplankton growth bal-
ance with the loss of nutrients and phytoplankton due to the
constant outflow. The periodically variable forcing creates
oscillations in P centered around 0.9 uMN. In this highly
simplified model, the results show the typical time shift be-
tween nutrients and phytoplankton, i.e., the time lag between
the point in time when all nutrients in the culture are con-
sumed and the peak in phytoplankton concentration.

By producing expected results with a very simple model
setup, this first application represents a basic proof of concept
of our framework and library.

https://doi.org/10.5194/gmd-17-1175-2024
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Figure 5. Schematic of model application 2: the nutrient—
phytoplankton—zooplankton—detritus (NPZD) slab model. The
model structure is adapted from Anderson et al. (2015). Boxes with
black and white labels respectively represent state variables and
external forcing. Arrows indicate fluxes between state variables.
Filled colored arrows represent exchanges between state variables
and forcings, and open arrows represent fluxes that are lost from the
model system. The upper layer box contains the ecosystem model,
with state variables for nutrient, phytoplankton, zooplankton, and
detritus. The oscillating blue line represents the seasonally variable
mixed layer depth (MLD) that defines the boundary between the
upper layer and the abiotic deep ocean.

3.2 Model application 2:
nutrient—phytoplankton-zooplankton—detritus
(NPZD) model

The classic nutrient—phytoplankton—zooplankton—detritus
(NPZD) model is embedded in a slab-ocean physical set-
ting (e.g., Evans and Parslow, 1985; Fasham et al., 1990).
“Slab” refers to a simplified zero-dimensional model of the
oceanic upper mixed layer in which depth varies seasonally.
This model structure provides an efficient physical setting
for more complicated ecosystem descriptions and is used
for both research and teaching purposes. This application is
adapted from the EMPOWER model, as presented by An-
derson et al. (2015). See Fig. 5 for a schematic of the model
structure.

In the model, phytoplankton growth is driven by temper-
ature, light, and nutrients. Phytoplankton are consumed by
zooplankton, which are in turn subject to a higher-order mor-
tality (such as predation by higher trophic levels). Phyto-
plankton and zooplankton mortality and grazing by-products

Geosci. Model Dev., 17, 1175-1195, 2024
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fuel a detrital pool that is remineralized in the upper ocean.
Changes in the depth of the upper mixed layer have effects on
all components. Nutrients are exchanged between the upper
ocean and deep ocean across the mixed layer boundary. Frac-
tions of phytoplankton, zooplankton, and detritus are lost due
to mixing, with detritus additionally sinking out of the mixed
layer at a constant rate.

Many NPZD-type models have been published over the
years, with a variety of formulations for the functional re-
sponses of the ecosystem components. Anderson et al. (2015)
showcase multiple alternative formulations, particularly fo-
cusing on the treatment of light in the model. We partially
follow their analysis by considering two different light atten-
uation algorithms in our modular implementation with the
XSO framework.

3.2.1 Description

The model expresses quantities in units of UM N, with state
variables for dissolved nutrients (N), phytoplankton (P), zoo-
plankton (Z), and detritus (D). The water column is repre-
sented by two vertically stacked layers. One is the upper
layer, containing the ecosystem, and the other is a biologi-
cally inert deep box. All symbols, parameter values, and units
are reported in Table 2. For a more detailed presentation of
model structure and formulation, we refer the reader to the
original publication (Anderson et al., 2015).

The model is driven by external forcing describing the
depth of the upper mixed layer H (m), the average tempera-
ture of the upper mixed layer 7' (°C), photosynthetically ac-
tive radiation (PAR) at the ocean surface I (Wm~2), and nu-
trient concentration in the deep layer Ny (UM N).

The deeper layer supplies nutrients to the upper layer.
Fractions of all state variables are lost into the deeper layer
due to mixing. The rate of mixing is described by K (d~'):

_h++/c
- H

K ; “
where k (md~!) represents constant diffusive mixing. Vari-
able mixing is a function of the change in mixed layer depth
(MLD) over time h = dd—lf. The function 2T (md~") defines
the differential effects of entrainment and detrainment due to
the changes in MLD as At =max(0, 7). When the mixed
layer shallows, 2 does not modify K based on the assump-
tion that detrainment of mass and the increase in concentra-
tion due to the reduced volume of the mixed layer are bal-
anced (Evans and Parslow, 1985). We note that, for com-
parability, we follow the EMPOWER model in their treat-
ment of motile entities (Z) as having the same mixing term
as non-motile entities (N, P, and D) (Anderson et al., 2015).
Traditionally, motile entities are treated differently (see, e.g.,
Fasham et al., 1990).

Dissolved nutrients in the mixed layer (N, UM N) are sup-
plied via mixing, the fraction of zooplankton excretion, and
remineralization of detritus. Mixing of nutrients is a positive
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term, adding to N according to the sign of the gradient be-
tween Ng and N. The general direction of the nutrient flux
is from a variable and nutrient-rich bottom layer to the up-
per layer. This nutrient flux supports phytoplankton growth,
which is the only loss term for N.

dN

ke K(No—N)+p(1—€)(Gp+Gp)+mp D—pp P (5)
The growth rate of phytoplankton up is the product of the

temperature-dependent maximum growth rate up®*(7T) and

the growth dependencies on light (y!) and nutrients (y™) in

units of d~!.

pp = W)yt yN (6)

The temperature of the upper mixed layer 7' (in °C) is sup-
plied from external forcing. Under the assumption of bal-
anced growth, the maximum growth rate of phytoplankton
up®(T) in d~! is equivalent to the temperature-dependent
maximum photosynthetic rate Vi (T') ingC (gChl)~'h~!,
when converted by multiplying by 24h and consider-
ing a fixed carbon-to-chlorophyll ratio of 75 gC (gChl)~!
(Sathyendranath et al., 2009). The function is parameterized
via the maximum photosynthetic rate at 0 °C, represented as
Ve (0) (gC(g chl)~'h™1). The temperature dependence is
calculated via the Eppley curve (Eppley, 1972).

VX (T) = VP(0) 1.0667 )

Nutrient limitation of phytoplankton growth yN is de-
scribed by Monod kinetics:

N N

- 8
kN—i-N’ ®)

14
where kn (UM N) is the half-saturation constant.

The term y; represents growth dependence on light 7(z)
available to phytoplankton through the variable depth (z) of
the upper mixed layer. I decays exponentially with z (m).

1(2) = Iy et Fear 2 )

Iy is the photosynthetically active radiation (PAR), the ir-
radiance reaching the top of the ocean surface (i.e., at z = 0),
which is supplied from external forcing. The attenuation
coefficient kpar (m_l) is the sum of light attenuation due
to water, ky (0.04m™!), and due to the presence of phy-
toplankton (self-shading), accounted for by a term propor-
tional to the concentration of phytoplankton k.- P (with k. as
0.03 (UMNm)™ ).

kparR = kw + k¢ - P (10)

We use the Smith function to calculate the photosynthetic
rate (Anderson, 1993):
I Vmax
o IOWT (an
SO 421 22
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where Vp"™ is the maximum photosynthetic rate, o
(gC(gCh)~'h~1 (Wm™—2)~1) is the slope of the P—I curve,
and 7 (z) is irradiance as a function of the upper mixed layer
depth (z2); see Eq. (9).

The light limitation on phytoplankton growth y! is then
calculated by integrating Vp through the upper mixed layer
(ie.,fromz=0to z= H).

In order to test various levels of model complexity, we also
consider light attenuation according to a three-layer model
of the upper mixed layer (Anderson, 1993). This alternative
formulation calculates multiple kpar ;, with i = 1 for the top
5m, i =2 for the depth range 5-23 m, and i = 3 for depths
below 23 m. The changing spectral properties of water are
taken into account by polynomial coefficients (bg ; to bs ;):

kpar.i = bo.; +b1,;C'/? + by ;C + b3, C3?
+b4,;C* +bs,;C72, (12)

where C represents the chlorophyll concentration (converted
as described above from UM N via 6.y, and the Redfield ra-
tio). The values of the polynomial coefficients are adapted
from Anderson et al. (2015) and shown in Table Al in the
Appendix.

Non-grazing mortality of phytoplankton is described by
the sum of linear mp (d~!) and quadratic mpy (UM N)~1d—1)
terms (Yool et al., 2011). The former accounts for natural
mortality and excretion. The latter describes higher-order
loss processes, including, for example, viral infection. All
non-grazing phytoplankton loss terms fuel the detritus pool.

dp

E:,upP—mpP—mszz—Gp—KP (13)

Zooplankton graze upon phytoplankton and detritus. The
grazing function is a sigmoidal (or Holling type 3) grazing
response (Anderson et al., 2015):

Gp=12< oeP )z (14)
(kz)>+¢pD+@pP )

where ¢p = ¢p P and ¢p = ¢p D.

This formulation describes the total biomass of phyto-
plankton that is grazed Gp (UM N). Parameter Iz (d~") is the
maximum ingestion rate of the food source, in this case both
phytoplankton and detritus. The density-dependent grazing
preference parameters pp and ¢p (both dimensionless) do
not represent a discrete fraction of the amount grazed in the
diet relative to the environment. Instead, this amount is rep-
resented by the ratio of gp and ¢p.

Grazing on detritus is defined as

Gp=1Iz ( #nD ) z (15)
(kz)?>+¢pD +¢pP )

Zooplankton food ingestion is not directly converted into
biomass. The total biomass grazed (Gp + Gp) is fractionated
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into zooplankton growth (to Z), excretion of dissolved nu-
trients (to N), and egestion of fecal matter and particles (to
D). Zooplankton growth is a product of total biomass grazed
(Gp) and the gross growth efficiency (GGE) of zooplankton.
The two parameters defining GGE in this model are absorp-
tion efficiency 8 and net production efficiency ¢ (both di-
mensionless). Adsorption efficiency B describes the fraction
of Gp that is absorbed in the gut, of which the fraction € is
actually assimilated into biomass (to Z: S€) and the rest is
excreted as dissolved nutrient (to N: 8(1 —€)). GGE is the
product of € and B, for which values between 0.2 and 0.3
have been observed for a wide range of zooplankton (Straile,
1997). The fraction of Gp egested to D (e.g., as fecal pellets)
is calculated via 1 — 8. See Anderson et al. (2015) for a more
detailed discussion of this grazing formulation.

Similar to phytoplankton mortality, a linear mortality fac-
tor mz (d~!) represents natural mortality and excretion of
zooplankton and fuels the detritus pool. A quadratic fac-
tor mzy (UM N)~1d~1) describes higher-order predation on
zooplankton, for example from fish, which is removed from
the system.

i—f:ﬂ e(Gp+Gp)—mz Z—mzp Z*—K Z (16)

The detritus concentration in the upper layer (D) is fueled
by mortality of phytoplankton, linear zooplankton mortality,
and zooplankton egestion (e.g., fecal pellets). The loss terms
are remineralization, grazing, mixing, and additional sink-
ing. Detritus is remineralized into N at a constant rate mp
(d~1). Similar to P and Z, a fraction of D is lost due to mix-
ing through the term K. In addition to K, a portion of detritus
is lost due to gravitational sinking at a rate vp (m d~1).

dD
< =" P+mpy P2+myz Z+(1—B)(Gp+ Gp)

vp
_GD_mDD_KD_ED (17
3.2.2 Implementation

The ecological description of our model system is adapted
from the EMPOWER model; however, the technical im-
plementation using the XSO framework is quite different
from the procedural R script of Anderson et al. (2015). In-
stead of using hard-coded flags to choose different ecologi-
cal formulations, the XSO component structure provides an
object-oriented modular interface. The XSO framework de-
fines functions irrespective of the specific time step used
for evaluation and logically separates the model formulation
from the solving algorithm in the XSO back end. This allows
formulating the model without the rather complicated nested
for-loop structure evaluating each time step in the original R
implementation.

The fluxes and interdependencies between the calculations
in this application require a more elaborate component struc-
ture. As for the previous model application, we first separate
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the model into state variables, forcing, and fluxes. State vari-
ables include nutrients (N, Eq. 5), phytoplankton (P, Eq. 13),
zooplankton (Z, Eq. 16), and detritus (D, Eq. 17). Forcing to
the model are the upper mixed layer depth (H), nutrient con-
centration below the upper mixed layer (Ny), temperature in
the upper mixed layer (7'), and irradiance at surface (/y). The
model defines 10 unique fluxes: phytoplankton growth, zoo-
plankton grazing, nutrient upwelling, mixing, sinking, rem-
ineralization, and four mortality terms.

In implementing this model within the XSO framework,
we aim to find a balance between component refactoring
and structural simplicity. Our goal is to allow every ecolog-
ically relevant term to be exchangeable, while making full
use of the flexible dimensionality features. This resulted in
the structure presented in Fig. 6.

To highlight one aspect of our implementation, each fac-
tor affecting phytoplankton growth is defined by an individ-
ual component. The “group to argument” feature of the XSO
framework allows such a setup to remain highly modular,
since the output of each flux with the appropriate label is
utilized in the product of growth-limiting terms. Similarly,
the component calculating the mixing coefficient K is com-
puted only once and passed along to two other components,
one to calculate nutrient upwelling and the other to calculate
mixing loss fluxes of phytoplankton, zooplankton, and detri-
tus. A user could readily add more growth-limiting terms via
new components or exchange the component calculating K
without necessitating any changes to the rest of the model or
workflow.

Following Anderson et al. (2015), we compare model per-
formance in four locations representing named ocean sta-
tions: BIOTRANS, India, Papa, and KERFIX. We present
the parameters in Table 2, which were optimized for the
specific locations by Anderson et al. Two of the stations
are located in the temperate North Atlantic, BIOTRANS
(47° N, 20° W) and India (60° N, 20° W), both of which ex-
hibit a characteristic phytoplankton spring bloom, followed
by a phase of low nutrient availability during summer. The
other two stations, Papa in the North Pacific (50° N, 145° W)
and KERFIX in the Southern Ocean (50°40'S, 68°25'E),
represent high-nutrient, low-chlorophyll (HNLC) environ-
ments with a much less pronounced seasonal cycle. The
contrasting environments are clearly discernible from the
forcing data (see Fig. 7). In each location, the NPZD slab
model is forced by the four corresponding environmental
factors. The forcing for the mixed layer depth (H) is taken
from an updated version of the [IFREMER MLD climatology
(De Boyer Montégut et al., 2004), calculated using a fixed
density threshold criterion of 0.03 kg~! m? from 10 m depth
value (De Boyer Montégut, 2023). The nutrient concentra-
tion below the mixed layer (V) is calculated from a combi-
nation of the MLD climatology and depth-resolved climatol-
ogy for nitrate in the World Ocean Atlas (WOA) 2018 (Gar-
cia et al., 2019). The temperature of the mixed layer (T') was
calculated using the MLD climatology and the temperature
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data from WOA 2018 (Locarnini et al., 2019). The monthly
climatological data are interpolated to match the number of
model time steps. Anderson et al. (2015) used a linear in-
terpolation, and, for comparability, we adopted the same ap-
proach. The forcing for irradiance at the surface (/p) is cal-
culated via a light submodel that employs trigonometric and
astronomical equations to calculate light at a given location,
with latitude and cloud fraction as input parameters (for exact
formulation, please see Appendix A; Anderson et al., 2015).

To highlight another technical aspect, we use the batch di-
mension feature of the XSO model setup function to eval-
uate the model for all four stations in unison. This feature
allows us to define a new dimension at model setup and to
supply a list of values for parameters of that dimension. In
our case, this additional dimension defines the four stations
via the specific forcing and the parameters V35", a, Iz, and
mz, which are location-specific (see Table 2). At runtime,
the model is solved for each set of parameters in the sup-
plied lists and outputs are returned in a single Xarray dataset.
The model outputs for each station can be easily retrieved
via the supplied batch dimension label. This feature is also
very useful for exploring parameter ranges (e.g., for sensitiv-
ity analysis).

We additionally show a modification of the model: Ander-
son et al. (2015) included a detailed discussion of the treat-
ment of light in a slab model. From the formulations pre-
sented in the original paper, we consider two implementa-
tions. These are the simple Beer’s law, which parameterizes
light attenuation with a single attenuation coefficient for the
whole upper mixed layer (see Eq. 10), and the more elabo-
rate piecewise description, which evaluates light attenuation
in three discrete depth intervals within the upper mixed layer,
with specific polynomial coefficients for each interval (see
Eq. 12). Model results for both formulations are presented in
the following section.

3.2.3 Results

Model outputs for the four stations are shown in Fig. 8.
Following Anderson et al. (2015), the output of the state
variables N and P is compared to climatological data from
the locations. For N, the model output is compared to
the concentration of nitrate within the upper mixed layer,
which is calculated from a combination of WOA 2018 ni-
trate data (Garcia et al.,, 2019) and IFREMER MLD cli-
matology (De Boyer Montégut et al., 2004). Phytoplank-
ton concentration (P) is compared to converted chlorophyll
data extracted for the locations from MODIS Aqua cli-
matology retrieved up until August 2022 (NASA Goddard
Space Flight Center, 2018). In order to simplify the presenta-
tion, all units are given as concentration of nitrogen (UM N).
The chlorophyll concentration data are converted by a con-
stant factor 6cp (75 gC (gChl)~!) and the Redfield ratio of
6.625mol C (molN)~! as assumed C : N of phytoplankton.
We use climatology data because we do not presume to be
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Figure 6. Schematic representation of how the NPZD slab-ocean model is implemented with the XSO framework and included in the Phydra
library. To simplify visualization, we show only the XSO components with their labels and links. Each component contains various variables,
forcings, or parameters. Solid arrows indicate the flow of fluxes between state variables. Dashed arrows indicate fluxes passed along as group
variables. Dashed lines connecting processes indicate variables and forcings referenced in another component via their label.

Table 2. Parameters considered for the NPZD model applied to four ocean stations.

Description Parameter BIOTRANS India  Papa KERFIX  Units

Max. rate of photosynthesis at 0°C V14X (0) 2.5 25 125 125 gC(gChh~!h~!
Initial slope of P—I curve o 0.15 015 0.075 0.075 gC(gChl)~'h~! (Wm=2)~!
Half-saturation constant for N uptake  ky 0.85 0.85 0.85 0.85 uMN

Linear P mortality mp 0.015 0.015 0.015 0.015 d!

Quadratic P mortality mpo 0.025 0.025 0.025 0.025 (UM N)_ld_l

Z max. ingestion rate Iz 1.0 1.0 1.25 20 d7!

Z half-saturation for intake kz 0.6 0.6 0.6 0.6 uMN

Grazing preference: P op 0.67 0.67 0.67 0.67  dimensionless
Grazing preference: D ¢D 0.33 0.33 0.33 0.33  dimensionless

Z absorption efficiency Bz 0.69 0.69 0.69 0.69  dimensionless

Z net production efficiency knz 0.75 0.75 0.75 0.75  dimensionless
Linear Z mortality my 0.02 00  0.02 0.02 d!

Quadratic Z mortality myn 034 034 034 034 @MN)~1g-!

D linear sinking rate D 6.43 6.43 6.43 6.43 md~!

D remineralization rate mp 0.06 0.06 0.06 0.06 d-!

Constant diffusive mixing K 0.13 0.13 0.13 0.13 md~!
Carbon-to-chlorophyll ratio Ochl 75 75 75 75 gC(gChlh)™ 1

Parameters considered for the NPZD model applied to the four stations. These are optimized parameters, adapted from Anderson et al. (2015), which we employ to recreate
their results. For consistency within this paper, we modified the mathematical symbols.
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Figure 7. Forcing corresponding to the four locations considered for the NPZD model application. Mixed layer depth (H), nitrate below the
mixed layer (Ng), temperature averaged through the upper mixed layer (7'), and irradiance at the surface (/). Forcing data are calculated
from the IFREMER MLD climatology and WOA 2018 data. The mixed layer depth (MLD) is extracted from a global MLD climatology
(De Boyer Montégut, 2023) and used to extract the temperature of the mixed layer from WOA 2018 climatology data (Garcia et al., 2019).
The blue dots indicate data extracted from monthly climatology, and the gray dots are calculated values from these data. Nutrient forcing N
is a function of depth for locations BIOTRANS and India and is a constant value for Papa and KERFIX. Irradiance is calculated as a function

of latitude, following Anderson et al. (2015).

able to replicate particular biomass peaks of certain years
with climatological forcing. The climatological data follow
the general pattern shown in the chlorophyll data used as ver-
ification data in the original paper, which were taken from a
specific representative year.

The climatological data show a marked seasonal cycle vis-
ible with a clear spring phytoplankton bloom for stations
BIOTRANS and India, as expected, given their location in
the temperate North Atlantic. Stations Papa and KERFIX
show less pronounced cycles but still some seasonal varia-
tion, with generally higher phytoplankton and zooplankton
concentrations in summer (in their respective hemisphere).
Zooplankton and detritus dynamics clearly follow phyto-
plankton concentrations, as expected. In general, the model
output agrees relatively well with our verification data, with
the optimized parameters from Anderson et al. (2015). In ac-
cordance with their results, the change in light attenuation
treatment has a pronounced effect on nutrient dynamics, as
well as some effect on phytoplankton growth. The model re-
sults obtained with light attenuated according to the three-
layer formulation show better agreement with the data, par-
ticularly for station Papa. Nutrient drawdown during growth
periods is consistently lower when compared to the simple
Beer’s law. This is caused by a greater effect of phytoplank-

Geosci. Model Dev., 17, 1175-1195, 2024

ton concentration on the resulting kpar (light attenuation fac-
tor).

These results show that our framework can accurately
recreate the results of published marine ecosystem modeling
studies within a flexible and modular environment, which al-
lows further experimentation and testing of different model
structures.

3.3 Model application 3: size-based
nutrient—phytoplankton—zooplankton (NPZ) model

Our third model application is a size-structured plankton
community model in an idealized physical setting, similar
to a chemostat. The presented model is an adaptation of the
ASTroCAT model, developed by Neil Banas (Banas, 2011).
ASTroCAT was developed as a tool to investigate complex
trophic interactions between phytoplankton and zooplankton
in a simplified setting, resolving a diverse plankton commu-
nity via a size spectrum. Cell or organism size is used in this
model as a “master trait”, defining the parameters of specific
plankton types via allometric functions, taken from the lit-
erature (Litchman and Klausmeier, 2008). This allows for a
functional and quantifiable model to investigate mechanisms
affecting and sustaining phytoplankton diversity.
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Figure 8. Results of the NPZD model (application 2) for locations (a) BIOTRANS, (b) India, (c¢) Papa, and (d) KERFIX. We show the final
year of a 5-year run, allowing for model spin-up. Model output is shown for two model variants in relation to the light attenuation algorithm
used, with everything else being kept equal (see parameters in Table 2). The dashed lines show model outputs using the simple Beer’s law
for light attenuation (calculated over the entire mixed layer). The solid lines are outputs from the model variant that resolves light attenuation
over three discrete depth layers. The data for nitrogen in the upper mixed layer (gray dots) are extracted from WOA 2018 using IFREMER
MLD climatology. Phytoplankton nitrogen biomass (gray dots) is calculated via 6. and Redfield ratios from MODIS Aqua chlorophyll
monthly climatologies for the specific locations. For some months, no satellite data are available for stations Papa, India, and KERFIX.

Banas considered model dynamics under variable forc-
ing or with stochastic grazing parameters. Here, we focus
on the basic parameter setup under constant forcing. While
trophic interactions between phytoplankton and zooplankton
size classes are highly resolved, other ecological processes
are neglected (e.g., there are no detrital or regeneration path-
ways).

This model lends itself well to highlighting the flexibil-
ity of the XSO framework. A state variable defined within
a component can be defined with a dimension label so that
it can represent an array of state variables of flexible size,
as long as dimension labels match across components in the
same model. The size of the state variable array depends on
the number of values supplied at model setup. The built-
in vectorization allows the model to compute correctly and
efficiently, even with large numbers of state variables. We
showcase this feature by running the model with 2 to 50 size
classes and comparing bulk phytoplankton biomass between
runs. The only modification necessary is varying the number
of values supplied at model setup.
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3.3.1 Description

The model expresses quantities in units of UM N. The physi-
cal setting is analogous to a chemostat with constant nutrient
inflow counterbalanced by permanent losses. There is no ex-
plicit outflow process implemented, but mortality and eges-
tion fluxes are simply lost from the system.

The model describes size-structured communities of phy-
toplankton and zooplankton, whose sizes are expressed in
terms of equivalent spherical diameter (ESD). Following Ba-
nas (2011), we run our initial simulations with 40 size classes
of equally log-spaced P (1 to 20 um) and 40 size classes of Z
(2.1 to 460 ym). Additionally, we perform an experiment in
which the number of size classes within these ranges is var-
ied from 2 to 50. The model can be defined with any number
of size classes within meaningful boundaries of allometric
relationships. Size classes are denoted by the subscript i for
phytoplankton and j for zooplankton.

Model nutrient N (UM N) is resupplied from an external
source, with concentration No (UM N) and delivered at a con-
stant rate f (d~1). In addition, a fraction of grazed biomass
that is not assimilated by Z (UM N) is returned to the nutri-
ent pool. The only loss term for N is phytoplankton nutrient
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Figure 9. Schematic of the size-resolved N P;Z; trophic model.
Model structure and parameterization are adapted from Banas
(2011). Boxes with black and white labels respectively represent
state variables and external forcing. Arrows indicate fluxes between
state variables. The blue boundary contains the ecosystem model,
with state variables for a nutrient and multiple size classes of phy-
toplankton and zooplankton. Filled colored arrows represent ex-
changes between state variables, and open black arrows represent
fluxes that are lost from the model system.

uptake.
o = No+(—e—fo) D> G
Jj i
= e ¥ P (18)
i

Each phytoplankton size class P; (UM N) grows according
to Monod kinetics:
N N

YK+ NT

19)

where yiN is the limitation on phytoplankton growth due to
nutrients, ky (UMN) is the size-dependent half-saturation
constant, and N is the ambient nutrient concentration.

Phytoplankton loss due to natural mortality and excretion
is described with the factor mp that is scaled by the maximum
intrinsic growth rate pf . (d7!) so that mpul . yields the
specific mortality rate for each size class.

dp; : . i
d_ll = M;nax ViN P; —mp anax P — ZGi)j (20)
J
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The grazing of the zooplankton size class Z; (WM N) on
the phytoplankton size class P; is calculated by

ij - Pi

Gl=1] —2 1 7,
P2 b+ P

2D
where Ié (d71) is the size-dependent maximum ingestion
rate, kz (UMN) is the half-saturation constant, and ¢;; (di-
mensionless) is the relative preference of Z; for P;.

Prey preference is assumed to vary with phytoplankton
size iP (um) in a lognormal distribution around an optimal

prey size for each grazer sizeépt (um):

lo sizely) — 1o sizej
o) = exp [_( g1o(size’p) —log;o( opt))i|’ 22)

Asizep

where Asizep is the prey size tolerance parameter
(logoESD (um)) that controls the width of the Gaussian dis-
tribution.

Zooplankton growth is calculated as the product between
total biomass grazed (Gp) and gross growth efficiency (¢),
for which values between 0.2 and 0.3 have been observed for
a wide range of zooplankton (Straile, 1997). A fraction fe,
of grazed biomass is assumed to be quickly excreted to N
and another fraction (¢) that would feed into a detrital pool is
permanently lost from the system. Following Banas (2011),
the grazing fractions are split equally so that € = fe, = 1/3.

Zooplankton experience quadratic losses according to the
parameter mzp, scaled by the total sum of Z;. This term de-
scribes higher-order mortality and predation on zooplankton
and is permanently removed from the system.

dz: .
d—t’ = ZG;,J —mz Zj Zz,- (23)
i J

3.3.2 Implementation

Parameters were adapted from Banas (2011); see Table 3 for
all parameter values used and allometric relationships.

We separate the model into state variables, forcing, and
fluxes. State variables are nutrients (N, Eq. 18), multiple
size classes of phytoplankton (P;, Eq. 20), and multiple size
classes of zooplankton (Z, Eq. 23). The only forcing is the
external nutrient input (Np). At least five fluxes (of vari-
able dimensionality based on the number of zooplankton and
phytoplankton) can be defined: the inflow of the external
medium, P; growing on N, Z; grazing on P;, and mortal-
ity terms for P; and Z ;. The model is implemented using 10
XSO components (Fig. 10). We simplify the schematic by
only showing the components with their respective labels.

The original ASTroCAT model was implemented with an
interactive graphical user interface showing animations of
model outputs. Our implementation in the XSO framework
lacks this but provides some technical updates, with the ma-
jor differences being the modular component structure and
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Figure 10. Schematic representation of how model application 3 is implemented in the XSO framework and included in the Phydra library.
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Table 3. Parameters and allometric functions used for the size-based NPZ model.

Description Parameter  Value Units
Flow rate of external nutrient f 1 d-!
External nutrient concentration No 1 UMN
Prey half-saturation constant’ kz 3 UMN
Prey size tolerance® Asizep 0.25 logjop um
Mortality fraction of i}, for P; mp 0.1 dimensionless
Zooplankton growth efficiency € 0.33 dimensionless
Fraction of grazing egested feg 0.33 dimensionless
Zooplankton quadratic mortality mzo 1 uM N—1g-!
Maxi 1 i (s TP

aximum growth rate of P, Mmax 2.6d T d
Nutrient half-saturation constant of Pl.2 k{\l 0.1uMN (S]lf;l]’) UMN
Maximum ingestion rate of Z3 1 TRTE AN

aximum ingestion rate of Z; 7 Thm
Opti ize of Z4 ize] 065 um( )

ptimum prey size of Z; size OSpm| T um

Parameters adapted from Banas (2011). Original sources: 1 Tang (1995), 2 Eppley et al. (1969), 3 Hansen et al. (1997),

4 Hansen et al. (1994).

the use of vectorization (instead of for-loops) to define func-
tions computing the fluxes acting on arrays of size classes.
Banas (2011) presented a detailed analysis of model output
for variable metrics of ecosystem complexity. We recreated
only one part of the original analyses, with a simple com-
parison of model dynamics for a variable number of phyto-
plankton and zooplankton size classes. The number of state
variables can be varied at model setup by supplying a list of

https://doi.org/10.5194/gmd-17-1175-2024

initial values with the desired dimensions. We ran the model
for the range of 2 to 50 size classes.

3.3.3 Results

Running the model with 40 size classes of phytoplankton and
zooplankton recreates the dynamics originally presented by
Banas (2011). See Fig. 11 for the time evolution of N, P;, and
Zj over a 10-year run. The size-resolved food web shows os-
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cillatory changes in biomass with periods from days to years,
despite the much faster growth rates in the model. There ap-
pear to be trade-offs between size classes, driven by the se-
lective grazing interactions between zooplankton and phyto-
plankton. This, however, does not lead to chaotic behavior,
but instead tends towards a stable state after 5 years of model
run. Interestingly, the general dynamics and the stable state
are highly clustered into some size classes. As Banas (2011)
discussed, this “banding” seems to be a direct result of the
prey preferences. A general conclusion one can draw is that
selective grazing interactions can be a strong factor in struc-
turing plankton communities.

To investigate the effect of the number of resolved size
classes on the model output, we conduct comparative model
runs varying the number of phytoplankton and zooplankton
between 2 and 50. Figure 12 shows the effect on bulk phy-
toplankton biomass when running the model with a variable
number of size classes. A lower number of size classes (2—
10) show highly variable outputs. Bulk dynamics seem to sta-
bilize for numbers of size classes above 10. However, there
are still deviations between runs in relation to the average
phytoplankton biomass when more than 10 size classes are
considered. The increased size resolution seems to reduce
the perturbations dependent on initial model conditions, con-
firming the patterns observed by Baird and Suthers (2010).

4 Discussion

We argue that codes of plankton community models are of-
ten built to be run, but not to be shared, reused, and mod-
ified, which is in part an issue related to the programming
languages and tools used to create them. This is in contrast
to current computational tools for data analysis (for example,
as developed by the Python or R programming communities)
that focus on modularity, usability, and clear documentation
in an open-source, collaborative context.

The XSO framework in its current version allows build-
ing models quickly and dynamically from components and
provides a user interface to set up and run a model that is
stored as a fully documented Xarray dataset. The Phydra li-
brary provides a set of components, models, and example ap-
plications that showcase the usability of the framework and
provide a common library for marine ecosystem modeling
applications. The first release of the Phydra library, presented
here, contains implementations of two published plankton
ecosystem models, the EMPOWER model by Anderson et al.
(2015) and the ASTroCAT model by Banas (2011).

4.1 Structuring complex marine ecosystem models in a
flexible framework

There has been an increasing move towards developing and

using frameworks that systematize or simplify at least one
specific aspect of model development (e.g., FABM for model
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Figure 11. Nutrient concentration and plankton biomass under
steady nutrient forcing obtained with model runs resolving 40 phy-
toplankton and zooplankton size classes. Size classes are log-spaced
in the range of 1 to 20 um for phytoplankton and 2.16 to 420 um for
zooplankton. (a) Nutrient concentration over time. (b) Phytoplank-
ton biomass by size class over 10 years of model time evolution.
(¢) Zooplankton biomass over the same period.

coupling; Bruggeman and Bolding, 2014). However, their us-
age is quite scattered in the scientific community (Janssen
et al., 2015). The design choices of a modeling framework
have a profound effect on both the flexibility and usability,
with an inherent trade-off between these two aspects. In de-
veloping the Phydra library, we went through many itera-
tions, with the logical conclusion being the separation of the
framework and library aspects.

Our goal in developing the framework was to allow users
to build models without restricting the level of complexity, in
particular in relation to the dimensionality, number of state
variables, and model processes. This was implemented in
the framework by providing variable types, which directly
correspond to the basic mathematical components of models
based on ordinary differential equations (e.g., state variables,
parameters, forcing, and partial equations). Every aspect of
the model needs to be defined at the level of variable types.
Model components can be flexibly constructed from the pro-
vided set of variable types and wrap a logical component of
the model as users see fit. State variables, forcing, and param-
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eters need to be initialized in one component but can be refer-
enced across the model. The system of differential equations
is constructed from the fluxes contained in the model com-
ponents via the supplied labels at model setup. These design
choices make the effort required to construct models propor-
tional to the desired model complexity, and components can
be easily modified to more complex formulations. In order to
provide a template for utilizing this flexible framework, we
present fully implemented models in the Phydra library. We
hope that this will foster experimentation and intercompari-
son of model performance at different levels of complexity.

In addition to flexible model construction, we wanted to
provide an interface for iterative modification and prototyp-
ing. An ecosystem model tracks chemical compounds and
ecosystem components via state variables. These state vari-
ables can define completely different components of a model
or represent functional groups. In the third model application,
we presented such a case by defining an array of variables
for phytoplankton and zooplankton via size-based allometric
functions. This flexible dimensionality of model components
was designed with the current issues in marine ecosystem
modeling in mind. The effects of different levels of complex-
ity in the number and definition of phytoplankton functional
types (PFTs), for example, is not routinely tested in marine
ecosystem models (Franks, 2009). Phydra provides a frame-
work that allows for easy testing through flexible modifica-
tion of such model complexity at model setup.
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The choice of programming language has an important
effect on the resulting framework. In contrast to available
tools that allow building models based on differential equa-
tions from a set of customizable building blocks through a
graphical interface (e.g., Stella, PowerSim, Ecopath) or other
frameworks that utilize a custom scripting language (e.g., via
YAML files), the Phydra and XSO front end and back end
are fully implemented in a single programming language:
Python. This might require a higher initial effort for users un-
familiar with Python, but we argue that the effort is worth it
given the wealth of functionality provided by the Python sci-
entific ecosystem and the support of the large community of
programmers and developers. The XSO model development
workflow is similar to writing standard Python codes, with
the added benefit of having at hand a set of modular Python
objects and attributes that automatically handle model inputs
and outputs and that allow computationally constructing and
running models.

Since the XSO framework is fully implemented in Python,
functional model components have to follow a basic struc-
ture but are otherwise flexible. The functions defining forc-
ings and fluxes within components in XSO are not restric-
tive in their Python syntax and can make use of external
Python packages, as long as the value that is finally supplied
at model runtime is compatible with the chosen solver back
end. Since XSO itself is a wrapper of Xarray-simlab without
hiding its underlying functionality, XSO further expands the
possibilities for custom applications and further development
of the Xarray-simlab framework. The relative complexity of
the back-end framework should not dissuade users less inter-
ested in technical customization, as the Phydra library pro-
vides fully functional pre-configured components and model
objects that provide a blueprint for the development of ma-
rine ecosystem models using XSO.

The software presented here was specifically designed to
support collaborative model development. Scientists working
with computational models do not always build the models
themselves. Often, scientists use existing models and focus
the work on parameterization and analysis of results obtained
with model applications in specific locations. This type of
use is specifically supported in our software because we
equipped the Phydra library with pre-built model objects and
components. A user can start working with models without
detailed knowledge of the underlying framework and learn
the basic workflow before progressing to building custom
models using the XSO framework. Additionally, more ad-
vanced users can easily share custom components or model
objects via the respective Python objects. This particular fea-
ture of design also makes our software suitable for teaching.

4.2 Current limitations of XSO and Phydra
The presented software packages are in the early stages of

development and as such have limited functionality. This
first version of the XSO framework supports mathemati-
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cal models based on ordinary differential equations. In the
first release, the framework functionality and library con-
tents are focused on zero-dimensional physical settings for
marine plankton models. The first version of XSO imple-
ments two numerical solvers. These are (1) a simple step-
wise solver and (2) an adaptive step-size solver optimized
for solving a system of ODEs (solve_ivp from the SciPy
package). The simple step-wise solver is the only back end
that currently supports multi-model parallelism when execut-
ing multiple sets of parameters via the batch dimensionality
feature. None of the implemented solvers currently support
single model parallelism and are thus not optimized for very
large models (i.e., more than 200 state variables). There are
also limits to the flexibility of the framework, particularly for
reusing components between models, since the dimensional-
ity of a flux or state variable is hard-coded in the component
and cannot be altered after creating a model object.

4.3 Current usage and future developments

XSO is available via the package installer for Python (pip).
Detailed instructions about installation and resolution of de-
pendencies can be found in the online documentation (Post,
2023b). Since Python and the dependencies of Phydra are
constantly being developed, we provide instructions there on
how to install a fully compatible virtual environment with the
Conda manager separated from a user’s standard Python in-
stallation (Post, 2023a). For interactive coding and prototyp-
ing of models using Phydra, we recommend using the Jupyter
notebook environment that is available via Conda. For more
complex and larger model runs on servers or clusters, Python
scripts are preferable.

The Xarray-simlab package that provides the basis for
the XSO framework is a relatively young project but has
found robust usage in, for example, the Fastscape package
(Bovy, 2021), which is being continuously developed and
used. Since XSO provides a flexible wrapper around Xarray-
simlab and the XSO solver back end is implemented in an
adaptable object-oriented manner, further developments can
proceed without necessarily impacting already implemented
models.

Since the XSO framework is embedded in the larger
Python scientific ecosystem, there are many possibilities to
provide advanced functionality on top of the basic model de-
velopment workflow currently supported. Amongst our fore-
most development goals are developing the solving back
end further to support larger models and possibly multidi-
mensional physical settings. The solver back end could be
adapted to use highly optimized solvers, such as the Mobius
framework (Norling et al., 2021). Another important aspect
would be simplifying the process of parameter optimization
and sensitivity analysis. We are also working on methods
for model introspection, such as graphically representing the
model structure and exporting the system of equations.
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The Phydra library of components and model objects
could be expanded beyond the three applications presented
here and would allow easy comparability and reproducibility
of specific model applications, as demonstrated here.

5 Conclusions

We presented two new Python packages that provide a flexi-
ble tool set for plankton community models based on differ-
ential equations. Phydra is a library of pre-built models and
their individual building blocks (i.e., components), which can
be combined or modified to create custom configurations.
The XSO package, which is the technical foundation of Phy-
dra, provides a user interface and modeling framework for
building and solving computational models based on differ-
ential equations. The XSO framework grants users granular
control over state variables, parameters, forcing, and math-
ematical functions, while allowing each model component
to remain interchangeable. Additionally, Phydra utilizes the
Xarray dataset format for structuring model input and output,
including metadata, allowing for easy storage, sharing, and
analysis of data. The Phydra library in the initial release con-
tains three model applications of variable ecosystem com-
plexity, from a simple chemostat model to a size-resolved
plankton model. These three applications are contained in the
Phydra library via their respective model components and as
fully assembled model objects. Additionally, all scripts used
to create the presented results are available in fully docu-
mented Jupyter notebooks.

The Phydra library can be a reference and learning re-
source for scientists interested in marine ecosystem model-
ing, a starting point for scientific exploration, and a valuable
tool for teaching. The model development effort is propor-
tional to the desired complexity of the model application, so
users can quickly implement simple models. Further devel-
oping such a fully integrated environment for marine ecosys-
tem modeling will require a diverse community of users and
developers. We believe the programming language Python
provides strong enough functionalities and a wide enough
user base. Hence, Phydra and XSO can contribute to the on-
going efforts of developing more robust, transparent, and re-
producible models, moving away from static and inflexible
codes to a model development process that is inherently col-
laborative.
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Appendix A

Table A1l. Coefficients for use in the three-layer light attenuation
model for the NPZD model application.

First layer (0-5 m) Second layer (5-23m)  Third layer (> 23 m)
bo,1 =0.13096 bo,2 = 0.041025 bp 3 =0.021517
by,1 =0.030969 by 2 =0.036211 b1,3 =0.050150
by 1 =0.042644 by » =0.062297 by 3 =0.058900

b3 = —0.013738
by,1 =0.0024617
bs.1 = —0.00018059

b3,5 = —0.030098
by.n = 0.0062597
bs.» = —0.00051944

b3.3 = —0.040539
by, 3 = 0.0087586
bs 3 = —0.00049476

Originally presented in Anderson (1993).

Code and data availability. Xarray-simlab-ODE (XSO) and Phy-
dra are fully open-source and available under a BSD-3 li-
cense on GitHub. The XSO framework is available via Post
(2023b) with the DOI https://doi.org/10.5281/zenodo.8178616, and
the Phydra library is available via Post (2023a) with the DOI
https://doi.org/10.5281/zenodo.8178694. The XSO framework de-
velopment version, as well as stable releases of the code, can
be accessed and contributed to via https://github.com/ben1post/
xarray-simlab-ode (last access: 23 July 2023). The Phydra library
is similarly available at https://github.com/ben1post/phydra (last ac-
cess: 23 July 2023). The data and code for all model runs and fig-
ures shown in this paper are publicly available via Jupyter note-
books in the “notebooks” subfolder of the Phydra repository (https:
//github.com/ben1post/phydra/tree/master/notebooks, last access:
23 July 2023).
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