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Abstract: A dual nutrition mode (i.e., mixotrophy) can be advantageous for alien species in a new
environment. In Cearà (Brazil), the symbiotic jellyfish Cassiopea andromeda is rapidly spreading
under diverse environmental conditions across natural and human-altered coastal habitats, such
as mangroves and shrimp farms. Here we report on the trophic ecology of the alien upside-down
jellyfish sampled in these two contrasting coastal habitats during the dry (July–October) and rainy
(January–April) seasons, investigated by means of organic biomarkers (lipids, carbohydrates) and
bulk tissue stable isotope (δ15N and δ13C) analyses. Total lipid content of jellyfish gonads was
generally higher in shrimp farms, whereas no significant difference in carbohydrate concentration
was found in jellyfish tissues from the two different habitats. Similarly, there were no significant
differences in the δ15N values of jellyfish tissues from the two contrasting habitats, whereas the
δ13C values were higher in jellyfish from shrimp farms. Overall, the higher carbon-enriched value
in aquaculture ponds supports the hypothesis of differences of available food sources compared
to the natural mangrove habitats, where food availability exhibits a stronger seasonality. In fact,
aquaculture ponds are characterized by human-driven regular food supply, leading to more stable
trophic conditions and to enhanced growth, lipid production, and gonadal output of C. andromeda
jellyfish. This investigation may contribute to predicting how Cassiopea mixotrophy may contribute
to explaining its differential success in different habitats.

Keywords: biochemical tracers; lipids; carbohydrates; stable isotopes; non-indigenous species

1. Introduction

Anthropogenic pressures, such as overfishing, eutrophication, aquaculture, alien
species introduction, and urbanization as well as climate change, have been proposed as
multiple interacting drivers of increasing jellyfish populations worldwide [1]. Jellyfish out-
breaks gain even more attention when considering invasive species and their ecological and
socioeconomic impacts [2]. Invasiveness is the sum of synergic traits such as environmental
tolerance, trophic plasticity, and life history strategies, and has been considered one of the
most relevant aspects of ecosystem transformation during the last decades [2,3]. Under-
standing the trophic ecology of invasive organisms is thus essential to understanding their
potential impact on the coastal ecosystems and, hence, having quantitative information for
actions for their control or exploitation. The upside-down jellyfish Cassiopea andromeda [4] is
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commonly found in shallow-water ecosystems, such as mangroves, coral reefs, and seagrass
beds as well as in aquaculture facilities, and displays frequent population outbreaks [5–7].
In addition, it has been increasingly recorded as a non-indigenous, outbreak-forming
species across different countries [8–11]. C. andromeda has a relatively sessile behavior
(epibenthic jellyfish), resting upside-down on the benthos to expose its endosymbionts to
the light in calm waters. It is characterized by a mutualistic association with dinoflagellate
microalgae (Symbiodiniaceae), which are able to adapt to different light conditions and
provide the jellyfish with carbohydrates and lipids of photosynthetic origin, in return for
a sheltered area with a regular supply of inorganic molecules [12–14]. The possibility of
relying on different energy inputs (i.e., photosynthates from symbionts and heterotrophic
input) allows C. andromeda to adapt to different environmental conditions with cascading
consequences on primary productivity, nutrient cycling, and local food webs as observed
in other symbiotic jellyfish species [15]. The study of animal diet (heterotrophic input) has
been widely applied to understand the metazoan trophic interactions in food webs [16–20].
Many studies investigating the trophic position of several jellyfish species rely on direct
approaches such as gut content [21]. However, this methodology delivers inaccurate or in-
complete information, and discerning between autotrophic and heterotrophic energy inputs
outside controlled experimental conditions (i.e., aquaria) is certainly a major issue [22–27].
Indirect combined approaches, such as stable isotopes, C:N ratios, lipid, carbohydrate, and
fatty acid analyses, may help to disentangle the puzzle of direct diet and food capture rate
observations, as these tools may integrate seasonal energy inputs as well as differences
between different habitats or ecozones [28], and may also be used to discern the dominance
of autotrophic or heterotrophic inputs in mixotrophic species [18,29]. This may be the
case with C. andromeda. A combination of biomarkers (δ13C and δ15N, fatty acids, and
lipid–carbohydrate storage) has been already used to understand the trophic position and
the nutritional condition of both Semaeostomeae and Rhizostomeae jellyfish species such
as Aurelia aurita, Stomolophus meleagris, and Cyanea nozakii [30]; Chrysaora melanaster [31];
Catostylus mosaicus [27]; Pelagia noctiluca [19,32,33]; and Mastigias papua [15]. It has thus been
demonstrated to be a reliable and robust approach, especially in the understanding of jelly-
fish invasiveness potential under contrasting coastal habitats or environmental conditions.
As elsewhere in the world, Brazilian mangroves are increasingly impacted by construction
of harbors, city expansion, or multiple economic activities such as shrimp farms, causing a
deep impact on biodiversity and the population dynamics of wild organisms [34–36]. The
shrimp farm expansion on the Brazilian coast has oversimplified the functioning of the
ecosystem, mainly impacting mangroves which have been eradicated to build up controlled
ponds for shrimp aquaculture [35]. These ponds are deeply transformed, with much higher
nutrient and particulate organic matter concentration compared to the mangrove areas [34].
Recently, C. andromeda was found to possess different invasiveness and physiological po-
tentials in natural (mangrove) and artificial (aquaculture shrimp facility) habitats [7,10]. A
greater number of jellyfish was found in the mangroves during the dry season (July: n = 546;
October: n = 158) compared to the shrimp farms (July: n = 207; October: n = 119). However,
while the abundance of C. andromeda was nearly stable in shrimp farms in both seasons,
jellyfish in the mangroves disappeared during the rainy season. Moreover, C. andromeda in
shrimp farms were three times larger (24.7± 5.8 cm) than those found in mangrove habitats
(8.2± 3.4 cm) [37]. In the present study, we investigated the trophic ecology of C. andromeda
in the two contrasting habitats (mangroves and shrimp farms), using a combination of
analyses of macromolecules (lipids, carbohydrates, and total fatty acids) and stable isotopes
(δ15N and δ13C), with the final aim of understanding how its nutritional condition is linked
to its differing invasion success and population stability in the two environments.

2. Materials and Methods
2.1. Study Area

The study was carried out on the coast of Ceará state (Figure 1), Southwestern At-
lantic (Brazil). In this area, the estuarine surface temperature is high, with a low inter-
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annual variability (27 to 34 ◦C) [37]. It is known as a semi-arid tropical region, where
rainfall is scarce (500–1000 mm/per year) [38], with two distinct and well-defined peri-
ods: a rainy season (first half of the year, January–June) in which 90% of the precipitation
occurs, while only 10% of the annual precipitation comes during the dry season (sec-
ond half of the year, July-December) [39]. In the dry period—due to a combination of
low rainfall, high insolation, high water residence time, and higher evaporation rates of
low-latitude, shallow-water estuaries—the hypersaline condition (salinity higher than
the sea) (e.g., >37 ppt) is an extreme and seasonal environmental feature [40]. The sam-
pling was carried out in two localities 20 km apart from each other (Figure 1). In the
first study area (Acaraú—2◦49′59.12′′ S/40◦7′17.07′′ W), the jellyfish C. andromeda were
sampled inside the water canals of a shrimp farm (Sf) (Figure 1C). In the second area
(Itarema—2◦53′2.92′′ S/39◦54′41.95′′ W), the jellyfish were sampled in a semi-enclosed,
shallow-water estuary about 0.5–1 m depth, characterized by mangrove forests (M) and
with no influence of shrimp farm activities (Figure 1D). Environmental parameters (temper-
ature, salinity, and pH) as well as total nitrogen (TN) and phosphorous (TP) were measured
for the two habitats [37] and are reported in Table 1. Sampling was carried out in July and
October 2018 (dry period) and in January and April 2019 (rainy period).
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Figure 1. Study area in the Cearà State (northeastern Brazil, SW Atlantic) (A) with highlights
indicating sampling stations (B) in a shrimp farm (Acaraù) (C) and a mangrove-estuarine ecosystem
(Itarema) (D).

Table 1. Environmental parameters adapted from [37].

Temperature ◦C pH Salinity TN (µM) TP (µM)

Shrimp farm 27.8–31.5 7.9–8.4 31.6–46.2 13–42 0.3–1.8
Mangroves 30.4–34 7.9–8.3 24.4–46.9 42–64 1.8–2.8
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2.2. Sample Collection and Preservation

Five C. andromeda specimens were collected for each survey (July 2018; October 2018;
January 2019; April 2019) from the shrimp farm. In mangrove stations, the jellyfish pop-
ulation is subject to seasonality and thus specimens were found only in the dry period
(n = 5 per survey). Measurements of the umbrella diameter were made using a caliper
before body parts were separated to be used for biochemical analyses. The C. andromeda
specimens used for this study ranged between 8 and 20 cm in diameter in both locations
and during the different sampling times. All sampled specimens were then separated into
oral arms, umbrella, and gonads for the study of biomarkers (carbohydrates, lipids, organic
matter, FA) and for stable isotope (SI) analysis (Table 2). Immediately after excision, all
body parts were frozen (−20 ◦C). After the freezing process, samples were lyophilized and
ground into a fine powder using an agate mortar and pestle (ideal for smashing frozen
samples) for biomarker analysis.

Table 2. Summary of analysis performed on the upside-down jellyfish C. andromeda in contrasting
coastal environments (shrimp farm and mangroves). N = number of samples; J = July; O = October;
Ja = January; A = April; SF = shrimp farm; M = mangroves; U = umbrella; OA = oral arms; G = gonad.
* For the last sampling date in the Sf we used only three samples for the gonads.

Analysis Total N N Replicates/Treatment Month and Area Body Part

Stable isotopes 18 3 J (SF, M); O (SF, M); Ja (SF); A (SF) U
Organic matter 88 5 * J (SF, M); O (SF, M); Ja (SF); A (SF) U, OA, G
Carbohydrates 60 5 J (SF, M); O (SF, M); Ja (SF); A (SF) U, OA

Lipids 88 5 * J (SF, M); O (SF, M); Ja (SF); A (SF) U, OA, G
Fatty acids 10 5 O (SF, M) G

2.3. Biomarker Analysis
2.3.1. Organic Matter

Approximately ~7 mg of each sample (a total of 30 specimens considering the 3 dif-
ferent body parts; for the last sampling date in the Sf we used 3 samples for the gonads:
n = 88) was weighed as DW (after drying for 48 h at 60 ◦C) and was burned in a muffle
furnace for 5 h at 450 ◦C. Organic matter content (AFDW, i.e., ash-free dry weight) was
then calculated as the difference between the DW and the ash weight [41]. AFDW was
quantified for all the different body parts of all the specimens of the whole sampling period
(n = 88, Table 2). AFDW was used to normalize lipid and carbohydrate data [18].

2.3.2. Total Carbohydrate Content

Total carbohydrate content was determined in the oral arms and umbrellas, where
symbionts are mostly found. Oral arms and umbrellas (n = 5) were sampled for the
shrimp farm (4 sampling dates) and the mangroves (2 sampling dates) (n = 60, Table 2).
Approximately 6–7 mg of each sample DW was homogenized in 3 mL of distilled water
following [42], adapted for cnidarians by [43]. (D)-Glucose was used as a standard and
a calibration line was made prior to the sample’s analysis. Carbohydrate concentrations
were expressed in µg carbohydrates/mg AFDW.

2.3.3. Total Lipid Content

The total lipid content was quantified in five samples of gonads, oral arms and
umbrellas in two locations and on four sampling dates (n = 88, Table 2). For the last sampling
date in the Sf we used only three samples for the gonads. Total lipid content was quantified
following [18] for jellyfish. Approximately 20 mg of umbrellas, ~10 mg of oral arms and
5 mg of gonads DW were weighed with a precision balance. The tissue was ground
and the powder was resuspended in 3 mL of chloroform:methanol (2:1) following [44]
(colorimetry) transformed by [45]. A calibration line was made using cholesterol as a
standard and the final reaction was performed using vanillin. Measurements were analyzed
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with a spectrophotometer (UV mini1240, Shimadzu, Kyoto, Japan). The lipid content was
expressed in µg lipid/mg AFDW. The total fatty acids (FA) of jellyfish from the two habitats
were analyzed only in the last sampling time (October) in which both populations were
present due to a lack of DW from the July sampling; thus, the methodology and results are
reported in the Supplementary Materials.

2.3.4. C:N Ratios, δ15N and δ13C Composition

Both stable isotope (δ15N and δ13C) composition and the carbon/nitrogen (C:N) mass
ratio were assessed in three umbrella samples [46] collected at the shrimp farm and the
mangrove estuarine ecosystem on each sampling date (n = 18, Table 2). Approximately
1.8–2 mg of DW was introduced in tin capsules to run each sample separately, and anal-
yses were performed using the Elementar IsoPrime 100 isotope ratio–mass spectrometry
(IR–MS) instrument (IsoPrime Ltd., Cheadle Hulme, UK) coupled to an N–C–S elemental
analyzer (Elementar Vario Pyro Cube EA CNS; Elementar Analysensysteme GmbH, Hanau,
Germany). The elemental analyzer combustion tube was at 1020 ◦C and the reduction tube
was at 850 ◦C. Helium (He) was at 230 mL/min and O2 was at 35 mL/min. The CO2 sample
gas stream was diluted with additional helium and the CO2 and N2 reference gases at 8
and 4 bars, respectively. The reference materials were Sulfanilamide for determination of el-
emental composition, Glucose (BCR-657) and Polyethylene (IAEA-CH-7) for determination
of the stable carbon isotopic values (δ13C), and Potassium Nitrate (USGS32) and Ammo-
nium Sulfate (USGS25) for determination of the stable nitrogen isotopic values (δ15N).

The δ13C and δ15N values were calculated relative to Peedee Belemnite (PDB) and
Vienna Pee Dee Belemnite (VPDB) for carbon and atmospheric N2 (air), respectively, and
expressed in the δ notation as parts per mille (‰).

2.3.5. Statistical Analysis

Data were tested for normal distribution by the Shapiro–Wilks test using Statistica 7.0
software. The whole dataset did not follow a normal distribution so stable isotopes, total
carbohydrates and total lipids were analyzed using the nonparametric Mann–Whitney U
test and Kruskal–Wallis test (Statistica 7.0 software) and also Dunn’s post hoc test (Past
4.03). Plots were generated using the “ggplot2” package.

3. Results
3.1. Organic Matter

The gonads showed the highest AFDW content (>60%) in all the sampling dates com-
pared to the oral arms and umbrellas (Table 3). The AFDW from the gonads of C. andromeda jel-
lyfish were significantly different between the shrimp farm and the mangroves (Kruskal–Wallis
test: H = 14.46, p < 0.05). Dunn’s post hoc test (Supplementary Materials, Table S1) showed
that the differences between the two places occurred in July and October (2018).

Table 3. Organic matter content (%) in specimens from the shrimp farm (Sf) and mangroves (M) in
different body compartments (umbrella, oral arms and gonads) during the sampling periods. Data
represent mean ± SD.

Location Month Umbrella (%) Oral Arms (%) Gonads (%)

Sf Jul 39 ± 2 40 ± 3 78 ± 7
M Jul 39 ± 4 48 ± 2 63 ± 6
Sf Oct 46 ± 13 42 ± 7 77 ± 1
M Oct 52 ± 15 37 ± 7 79 ± 4
Sf Jan 28 ± 2 28 ± 5 79 ± 3
M Jan absent absent absent
Sf Apr 41 ± 4 44 ± 7 69 ± 1
M Apr absent absent absent
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3.2. Total Carbohydrate Content

Overall, the Kruskal–Wallis test (H = 31.46, p < 0.05) and Dunn’s post hoc test showed
some significant differences (Figure 2, Table S2). Considering each month independently,
in July, oral arm carbohydrate content was significantly different between the mangroves
and the shrimp farm (Figure 2; p < 0.05; Table S2). Carbohydrate concentrations in oral
arms did not differ significantly in the shrimp farm over the sampling period (Figure 2).
In October, tissue differences were observed in both the shrimp farm and the mangroves,
while in July this was true only in the mangroves. The jellyfish carbohydrate content of
umbrella tissue and oral arms in the mangroves exhibited significant differences between
July and October (Figure S1).
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Figure 2. Carbohydrate content (µg carbohydrates/mg AFDW) of C. andromeda (n = 60) in oral arm
tissues and umbrellas from shrimp farm (Sf) and mangroves (M) in Ceará State (Brazil, SW Atlantic).

3.3. Total Lipid Content

Throughout the surveys, there were significant differences in the lipid content of the
gonad and umbrella tissues between the shrimp farm and the mangroves (Kruskal–Wallis
test: Hgonads = 14.73 and Humbrella = 11.82, p < 0.05). The results of Dunn’s post hoc test are
reported in Tables S3 and S4. The total lipid content of the gonads was higher in the shrimp
farm during all the monitored period (Figure 3). In the umbrella tissues, the total lipid
content was higher in the shrimp farm only in July (Figure 3). No significant differences
were found in oral arm tissue throughout the sampling period.
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3.4. Stable Isotopes Analysis and C:N Ratio

The isotopic δ13C values from umbrellas of C. andromeda jellyfish were significantly
different between the shrimp farm and the mangroves (Kruskal–Wallis test: H = 14.59,
p < 0.05) and ranged between−18.90 and−15.92‰ in the shrimp farm and between−19.75
and −17.61‰ in the mangroves. The results of the Dunn’s post hoc test (Table S5) showed
differences between the two places in July and October (2018), with δ13C values significantly
higher in jellyfish from the shrimp farm than those from the mangroves (Figure 4). There
were no significant differences (Kruskal–Wallis test: H = 9.1, p > 0.05) between jellyfish
from the two study areas in the δ15N proportions throughout the seasonal cycle with values
ranging between 2.3 and 4.59‰ and between 2.41 and 4.55‰ in the shrimp farm and the
mangroves, respectively (Figures 4 and 5). Samples from different periods of the year and
different locations showed clear separation into clusters (Figure S1).
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jellyfish were found in the mangrove ecosystem.
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C:N ratios (Figure 5 were significantly different between the shrimp farm (5.36 ± 0.2)
and the mangroves (4.38 ± 0.09) in July. Over the sampling period they changed signifi-
cantly in the shrimp farm from 5.36 ± 0.2 to 3.81 ± 0.05.

4. Discussion

In the present study, we used different trophic biomarkers to investigate the trophic
ecology of the non-indigenous jellyfish Cassiopea andromeda, collected from an artificial
aquaculture pond and a natural mangrove–estuarine habitat.

4.1. Nutritional Condition of Cassiopea andromeda

Within the different body compartments, gonads showed the highest amount of or-
ganic matter (AFDW) in both habitats and the difference between the two habitats was
significant, with a higher lipid content in the shrimp farm. The environmental stabil-
ity of the shrimp farm habitat, in terms of regular food supply for the white shrimp
Litopenaeus vannamei, may be reflected by a nearly constant carbohydrate concentration
in C. andromeda tissues over the year. In fact, despite the more remarkable fluctuations
in salinity, nutrients, and temperature of the mangrove habitat [7,37], jellyfish tissues
from mangroves revealed carbohydrate levels comparable to those from the shrimp farm
medusae, except in July in the oral arms. This is the part of the jellyfish body with the
highest density of microalgal symbionts [47], where higher quantities of photosynthates
are produced and translocated to the host [24]. A higher level of translocation/production
activity due to less turbid waters in the mangroves may explain the higher carbohydrate
content in July. While carbohydrate content is nearly constant in all body compartments
in the shrimp farm, in the mangroves it undergoes seasonal variations. In the oral arms
it decreases from July to October, while in the umbrella we observe the opposite behav-
ior; it increases from July to October, suggesting either a different rate of photosynthetic
products in the two different tissues or a different allocation of resources that might be
used for growth. The same behavior was observed for lipids in mangrove jellyfish, sug-
gesting different energy allocation in different seasons. Compared to the specimens living
in mangroves, a higher lipid content was detected throughout the whole study in the
gonads of C. andromeda specimens from the shrimp farm. Individual jellyfish specimens
of larger size were found throughout the year in the artificial structures (canals) of the
shrimp farm, where the environmental conditions—forced by feed supply and aeration of
the shrimp aquaculture farm—are more stable compared to the natural mangrove habitat
ruled out by seasonal changes in environmental variables [37]. This is witnessed by the
size of C. andromeda specimens, which is much larger in the shrimp farm (up to 49.2 cm
of umbrella diameter) than in the mangroves (up to 26.7 cm in diameter) [37]. In shrimp
farms, stable environmental conditions secure continuity of jellyfish growth throughout
the year [7], paralleled by a high lipid storage in the gonads. The jellyfish disappeared
just after the rainy season in the mangroves, whereas a stable jellyfish population with
mature oocytes (as per [48]) was observed in the shrimp farm at the same time of the
year [7]. Jellyfish growth could be promoted by increased nutrient availability [3,49] and
the mixotrophic ability of Cassiopea spp. may modify benthic biogeochemical fluxes, acting
as a sink of inorganic nutrients and affecting sediment microbial processes and oxygen
consumption [50,51]. Surprisingly, [37] reported a higher amount of TN and TP in the
mangrove estuarine system, where jellyfish specimens may achieve, on average, a smaller
size. This may suggest that pulse inputs of high nutrient concentrations might not favorably
sustain regular, i.e., vigorous jellyfish growth; conversely, a controlled and constant nutrient
supply, such as on a shrimp farm, may be a better booster for jellyfish growth [49,52].

4.2. Trophic Strategy of Cassiopea andromeda

Cassiopea andromeda couples typical heterotrophic feeding based on zooplankton,
POM (particulate organic matter), DOM (dissolved organic matter) and detritus, with an
additional autotrophic energy supply from its endosymbiotic dinoflagellates [50,53,54]. In
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mixotrophic metazoans, stable isotope analysis and C:N ratios can contribute as nutritional
indicators to unravel the predominant trophic strategy, as well as the nutrient exchanges
between host and endosymbionts [15,55,56]. In our study, a significant difference was
observed between the two environments, with δ13C values lower in jellyfish tissues from
mangroves (July: Sf −19; M −20; October: Sf −16; M −18). This may be reflected by
the carbon local sources utilized. In fact, Brazilian mangroves are characterized by a
high quantity of nutrients and POM is primarily produced by mangrove detritus, which
represents the dominant carbon source [57]. The shrimp farm water is enriched with OM,
nutrients, and detritus due to the constant amount of feed necessary for the shrimps’ growth,
which is eventually broken down along the food chain [58,59]. Jellyfish in the shrimp farm
were more Carbon-enriched due to the different feed used for shrimp aquaculture in the
study site [60–62]. Moreover, across the October, January, and April samplings, C. andromeda
in the shrimp farm showed a general constancy in δ13C and δ15N values, underlying the
maintenance of stable and controlled environmental conditions by the occurrence of the
aquaculture facilities. However, regardless of the effort of the farm activities in buffering
drastic seasonal changes, the prevalence of the trophic mode is still related to seasonal
variations. As C:N ratios demonstrated, jellyfish in the shrimp farm seemed to move from
an autotrophic–mixotrophic strategy (C:N 5.36 ± 0.23) to a more heterotrophic one at the
end of the rainy season (C:N 3.81 ± 0.05). [15] reported a similar behavior in the symbiotic
M. papua, where jellyfish populations showed instead different autotrophy/heterotrophy
contributions based on the sampling location, in Palau [15].

The C. andromeda behavior may be due to a decrease in light intensity with the upcom-
ing rainy season [39], but a constant presence of POM and nutrients is guaranteed in the
shrimp farm. In specimens collected in mangroves, a shift in δ13C, from July (δ13C: −20‰)
to October (δ13C: −18‰) was observed, together with a small increase in the C:N ratio and
a significant decrease in δ15N values, suggesting a possible predominancy of autotrophy.
This might be explained by less turbid, i.e., more transparent waters, related to increased
light irradiance and enhanced photosynthesis of symbiotic dinoflagellates, thus increasing
the δ13C value of the symbiotic association [63,64].

4.3. Why Did Cassiopea andromeda Disappear in the Mangroves?

Based on the measurements of carbohydrates and lipids conducted in this research, it
appears that the steady availability of energy sources in various tissues enabled jellyfish in
the shrimp farm to maintain a consistent energy supply for their growth and reproduction.
We observed a higher proportion of saturated fatty acids in the shrimp farm jellyfish
(SFAs = 46%) compared to the mangrove system jellyfish (SFAs = 35%) while a higher
amount of polyunsaturated fatty acids (PUFAs) was found in the mangrove-related jellyfish.
This may suggest a better quality in the origin of the food present in the estuary (C3 plants).
However, due to the low number of samples, our data are not conclusive and additional
studies are needed. As a result of Cassiopea’s nutritional condition, the jellyfish population
is able to thrive and persist in this particular environment. On the contrary, jellyfish
disappeared from the mangrove habitat at the end of the rainy season; the high turbidity
of the water column during the concentrated rainfall of 2019 (546 mm/month, i.e., the
largest monthly rainfall in 11 years) [37] reduced the amount of incoming light available
for photosynthesis. Coupled with a drastic salinity decrease (24.4), high water turbidity
may affect the autotrophic potential of Cassiopea, overshooting its adaptability to light
conditions [14] and eventually leading to its seasonal disappearance from the natural
mangrove habitat.

5. Conclusions

Disentangling the relative contribution of autotrophy and heterotrophy may be chal-
lenging in a symbiotic jellyfish such as Cassiopea andromeda. Here, we shed light on the
differences in the nutrition mode in a natural vs. human-made environment. We show
that C. andromeda seems strongly controlled by the seasonal variability of abiotic factors in
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the mangrove system, notwithstanding its ecophysiological plasticity and its mixotrophic
potential. On the contrary, coastal systems modified for food production and subsidized by
man-controlled inputs of energy and organic matter, such as shrimp aquaculture farms,
may better support a stable jellyfish population. This suggests that human-controlled, mod-
ified coastal habitats may enforce the capability of C. andromeda to maintain populations
in exotic areas, using artificial marinas and other coastal habitats as stepping stones for a
worldwide bioinvasion.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w15142599/s1, Figure S1: Plot of δ15N versus δ13C values
of Cassiopea andromeda umbrella tissue; Table S1: Dunn’s post hoc of AFDW; Table S2: Dunn’s post
hoc of total carbohydrates; Table S3: Dunn’s post hoc of total lipids in gonads; Table S4: Dunn’s
post hoc of total lipid in umbrellas; Table S5: Dunn’s post hoc of isotope values; Table S6: List of
C. andromeda gonad fatty acids.
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