
1. Introduction
Cold pools (CPs) are volumes of atmospheric air that are cooled by evaporation of precipitation. The resultant 
denser air experiences negative buoyancy (Markowski & Richardson, 2011), resulting from convective down-
drafts, or microbursts (Lundgren et al., 1992). At Earth’s surface, CPs spread horizontally as density currents 
(Drager & van den Heever, 2017; Droegemeier & Wilhelmson, 1985; Zuidema et al., 2017). While expanding 
radially along the surface, CPs can be characterized as consisting of (a) a head, which can measure hundreds 
to several thousand meters vertically and (b) a shallower interior, which is separated from the head by a wake 
region (Benjamin, 1968; Cafaro & Rooney, 2018; Droegemeier & Wilhelmson, 1987; Fiévet et al., 2023; Kneller 
et al., 1999; Kruse et al., 2022; Markowski & Richardson, 2011; Meyer & Haerter, 2020; Simpson, 1980).

Substantial mechanistic significance has been attributed to the thin surface of horizontal convergence between 
the CP head and the ambient atmosphere, often referred to as CP gust front. On the one hand, this CP gust front 
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thunderstorm clusters, in particular mesoscale convective systems and extreme rainfall events. Unfortunately, 
the observational detection of CPs on a large scale has been hampered by the lack of relevant near-surface data. 
Unlike numerical studies, where fields, such as virtual temperature or wind, are available at high resolution 
and frequently used to detect CPs, observational studies mainly identify CPs based on surface time series, 
for example, from weather stations or research vessels—thus limiting studies to a regional scope. To expand 
to a global scope, we here develop and evaluate a methodology for CP detection that relies exclusively on 
data with (a) global availability and (b) high spatiotemporal resolution. We trained convolutional neural 
networks to segment CPs in high-resolution cloud-resolving simulation output by deliberately restricting 
ourselves to only cloud top temperature and rainfall fields. Apart from simulations, such data are readily 
available from geostationary satellites that fulfill both (a) and (b). The networks employ a U-Net architecture, 
popular with image segmentation, where spatial correlations at various scales must be learned. Despite the 
restriction imposed, the trained networks systematically identify CP pixels. Looking ahead, our methodology 
aims to reliably detect CPs over tropical land from space-borne sensors on a global scale. As it also provides 
information on the spatial extent and the relative positioning of CPs over time, our method may unveil the role 
of CPs in convective organization.

Plain Language Summary Cold pools come about when rain evaporates underneath thunderstorm 
rain cells. Such cold pools are colder and thus denser than the surrounding air, which makes them flow over 
the surface. The associated gust fronts can often be felt when observing thunderstorm clouds in nature, as 
strong, but relatively short-lasting, winds occurring near the thunderstorm downpour. Such cold pools can bring 
about clumps of thunderstorms, which can deliver large quantities of rainfall within areas of approximately 
100 km across. Thus, detecting cold pools on these and larger scales is important, but so far difficult due to the 
challenge of observing the air currents underneath clouds from satellite. We here present a method that may 
be able to do just that, namely detecting cold pools from above, by identifying signatures left behind in cloud 
patterns, for example, arc-like shapes along the gust front. We demonstrate the algorithms capabilities using 
high-resolution simulation data, where we are able to “know” the true result. We use an artificial intelligence 
framework to carry out this statistical task. We suggest that our method should be applicable to satellite data 
and thus give new insight into cloud organization at large scales.
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features pronounced vertical wind speed. On the other, the initial negative-buoyancy anomaly near the CP’s 
gust front is gradually reduced as the CP spreads, a possible consequence of enhanced surface latent and sensi-
ble heat fluxes (Drager et al., 2020; Tompkins, 2001; Torri & Kuang, 2016). Thus, in the course of the lateral 
expansion, buoyant ambient air can be lifted (Drager & van den Heever, 2017), resulting in further condensation 
and convection. “Communication” between cells (Simpson, 1980) can thus be encoded by such mechanical and 
thermodynamic effects.

Although the relative contributions of the thermodynamic versus the dynamic effect are still under debate 
(Fuglestvedt & Haerter, 2020; Romps & Jeevanjee, 2016; Torri et al., 2015) and can depend on the environmen-
tal and boundary conditions (Feng et al., 2015), there is substantial consensus that CPs can trigger new clouds in 
their vicinity and modify the subcloud moisture distribution (Böing et al., 2012; Drager & van den Heever, 2017; 
Haerter et al., 2020; Jensen et al., 2022; Schlemmer & Hohenegger, 2016).

Due to their ability to influence the organization (Böing, 2016; Haerter et al., 2019; Schlemmer & Hohenegger, 2016), 
the maintenance of squall line structures (Rotunno et al., 1988; Schumacher & Rasmussen, 2020), and potential 
intensification of thunderstorms (Houze & Betts, 1981; Zipser et al., 1981), CP characteristics have been investi-
gated in past decades, often within numerical studies: virtual temperature (Tv) anomalies have been used to track 
CPs in cloud-resolving simulations by patch detection (Schlemmer & Hohenegger, 2016) or by unsupervised 
image segmentation (Gentine et al., 2016). Drager and van den Heever (2017) compared the utility of different 
variables for CP identification in simulations. Torri and Kuang (2019) used a Lagrangian tracking to investigate 
CP collisions. Focusing on the dynamical gust front, Fournier and Haerter (2019) and Henneberg et al. (2020) 
introduced tracking algorithms targeting the thin (dynamic) convergence rings surrounding each CP.

Over continental regions in the tropical climate and during midlatitude summer, CP dynamics has been impli-
cated in the evolution of so-called mesoscale convective systems (MCS; Jensen et al., 2022), which are extended 
clusters, 𝐴𝐴 (100 km) , of thunderstorms cells (Houze,  2004; Schumacher & Johnson,  2008; Schumacher & 
Rasmussen, 2020) and have been found to contribute to the majority of tropical rainfall and dominate potential 
increases in extremes (Tan et al., 2015). Despite their climatic relevance, tropical MCS are still nearly impossible 
to forecast by simulations (Fritsch & Carbone, 2004; Sukovich et al., 2014).

At smaller spatiotemporal scales, idealized simulations allow for detailed analysis of specific mechanisms as they 
provide near-continuous output data for many variables—making CP detection and tracking feasible. Yet, numer-
ical studies still depend on the model and resolution chosen, so that findings do not immediately carry over to the 
real world. Since traditional general circulation models are too coarse to resolve CP processes (Feng et al., 2015; 
Fiévet et al., 2022), CP mechanisms are mostly studied in high-resolution simulations within limited domain sizes 
or, less commonly, by including specific parameterizations (Grandpeix & Lafore, 2010; Rio et al., 2009). In both 
cases, the validity of the outcome is limited by the underlying modeling assumptions.

Observational CP studies are usually hampered by the lack of spatially resolved near-surface data. Using point-
like near-surface station observations at subhourly temporal resolution, the spread of a given CP can however 
be detected as a rapid temperature drop in the time series (de Szoeke et al., 2017; Kirsch et al., 2021; Kruse 
et al., 2022; Vogel et al., 2021; Zuidema et al., 2017). At times, perhaps as a result of strong surface sensible heat 
fluxes (Knippertz et al., 2007), a dew point temperature increase, rather than a temperature drop, is found to be a 
robust characteristic of CP gust fronts, for example, in arid regions (Emmel et al., 2010; Redl et al., 2015). Also 
combinations with dynamic features, such as changes in wind speed have been employed (Emmel et al., 2010; 
Redl et al., 2015). While Emmel et al. (2010) ultimately validated each event subjectively with infrared satellite 
imagery, Redl et al. (2015) implemented a criterion based on satellite microwave data. Making use of the dust 
signature in brightness temperature differences, Caton Harrison et al. (2021) devised an algorithm to automat-
ically identify and track Saharan CP outflows based on gradients of the corresponding brightness temperature 
difference fields. In a validation based on 35 manually identified CP outflows, the approach achieved a detection 
rate of 74.2% (26/35). Also “thin line” echoes associated with the CP leading edge in radar imagery have been 
used in manual CP detections (Borque et al., 2020; Brandes, 1977; Engerer et al., 2008; Wakimoto, 1982).

CP detection over the ocean has occasionally benefited from the imprint that CPs leave on the sea surface 
(Atlas,  1994). During the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–
Land Survey Regional Experiment (VOCALS-REx) in the Southeast Pacific, Wilbanks et al. (2015) applied an 
air density increase criterion to detect stratocumulus-topped boundary layer CPs from in situ ship measurements. 
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Garg et al. (2020) introduced a method based on wind gradients from space-borne scatterometers to detect CP 
regions over tropical oceans. To validate their method, they employed in situ air temperature measurements 
from buoys and a simulation. As part of the Elucidating the Role of Cloud–Circulation Coupling in Climate 
(EUREC4A) field campaign (Stevens et al., 2021), Touzé-Peiffer et al. (2022) developed a method for detecting 
CPs over tropical oceans based on the mixed-layer height in atmospheric soundings.

Detecting CPs over continents at a spatially extended scale can be more cumbersome. Reaching real-world CP 
detection results for the continental areas is however the only realistic benchmark for CP representation in numer-
ical models, and thus the proper dynamics of MCS. To approach automatized and global-scale CP detection over 
land surfaces, we developed an algorithm using convolutional neural networks (CNNs) which relies only on 
quantities that are observable from geostationary satellite imagery. The algorithm was trained and tested using 
data from idealized cloud-resolving simulations, where all field variables are available over the entire domain. 
The chosen configurations correspond to an atmosphere over tropical land surfaces. To our knowledge, this is the 
first approach for detecting CPs over land on a global scale based on satellite data. Our algorithm may allow for 
new insight into the role of CPs in convective organization and the formation of weather extremes.

2. Methods
CNNs, which gradually coarsen a field of input data through filtering operations, are widely used for classifi-
cation and segmentation problems. Upon each filtering step, spatial correlations at larger and larger scales are 
distinguished. Whereas CNNs for classification problems group the entire input data field into a set of classifiers, 
CNNs for segmentation problems return to the resolution of the input to mark each pixel as being of one of several 
categories. For the problem at hand, we wish to mark each pixel in the 2D plane as either belonging to a CP or 
not—thus the segmentation technique is appropriate.

2.1. Simulation Data

In order to simplify the generation of labeled data sets, the network training and testing is conducted using data 
from numerical simulations. To this end, the cloud-resolving three-dimensional atmosphere simulator System for 
Atmospheric Modeling (SAM; Khairoutdinov & Randall, 2003), version 6.11, is used. It resolves the Euler equa-
tions in the anelastic approximation on a staggered mesh. Convective fluxes are evaluated using a fifth-order finite 
difference scheme from Yamaguchi et al. (2011) and turbulent dissipation is modeled by an eddy-viscosity-based 
closure. Moist thermodynamics is resolved by transporting liquid and ice water static energy, total precipitating 
and nonprecipitating water mass fractions, and uses a bulk single-moment microphysics closure scheme.

The configuration chosen for this study corresponds to an atmosphere over an idealized moist tropical land 
surface. It is similar to the configuration studied by Jensen et al.  (2022) which exhibited strong and complex 
CP activity and is therefore suited to design and test our detection method. Parts of the underlying simulation 
output were used in Hoeller, Fiévet, and Haerter (2023) to devise a detection and tracking method for CPs in 
cloud-resolving simulation data. The computational domain has a size of Lx = Ly = 240 km in the horizontal 
directions and extends vertically to a maximum altitude of Lz = 26 km. It is discretized by an orthogonal mesh 
of horizontal resolution Δx = Δy = 200 m and vertical resolution Δz increasing from Δz(z = 25 m) = 50 m to 
Δz(z = 25 km) = 1,000 m over 100 levels. In the following, we use nx, ny ∈ [0, N], as integers labeling the indices 
of the horizontal model grid, with N = 1,200 the total number of grid points in either horizontal dimension. The 
lateral boundary conditions are set to be periodic. Relevant two-dimensional simulated fields are sampled instan-
taneously every Δt = 10 min. We often denote the discrete time t = tn ≡ nΔt, measured from the beginning of the 
simulation, by the integer time step n.

Surface heat fluxes are evaluated using Monin-Obukhov similarity theory with a saturated humidity (moist 
surface) condition and a prescribed diurnally varying temperature T, with an average of T0 = 298 K. The temper-
ature amplitude ΔT, defined as half the diurnal temperature range between maximum and minimum, is chosen to 
represent plausible ranges measured for tropical land (Sharifnezhadazizi et al., 2019). The effect of the surface 
forcing is to trigger idealized diurnally varying convective activity typical of tropical land surfaces: moist convec-
tion tends to develop and self-organize during the afternoon hours—giving rise to a complex organizational 
pattern. The nocturnal cooling reduces convective activity and precipitation rates typically reach a domain-wide 
minimum during the early morning hours of the subsequent model day. In order to work with a diverse set of 
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atmospheric conditions, four different configurations are considered, where ΔT  ∈  {2, 4}  K and wind shear 
is either switched off or set to a temporally and spatially averaged vertical profile over tropical Africa (LAT: 
5.5°–16°N, LON: −20°–10°E) obtained from ERA5 reanalysis data for July 2016. The vertical profile consists 
in a piecewise linear profile with zero velocity below z = 1 km, linearly increasing speeds from 0 to 16 m s −1 up 
to 19 km altitude and 16 m s −1 beyond. Depending on their ΔT, we term the configurations either “diu2K” or 
“diu4K.” Configurations with wind shear further obtain the addition “wind,” that is, “diu2K wind” denotes the 
setup with ΔT = 2 K and wind shear.

2.1.1. Ground Truth Labeling

Labeled data sets are derived from simulation output based on a CP detection and tracking algorithm (CoolD-
eTA) devised by Hoeller, Fiévet, and Haerter (2023). CoolDeTA applies a k-means algorithm to the sum of the 
normalized lowest domain level fields of virtual temperature and horizontal wind speed to classify each pixel in 
the two-dimensional field as either “potential CP” or “no CP” without defining a fixed threshold. We note that, in 
the following, only such potential CP areas can contain actual CPs. Individual CP instances are differentiated and 
labeled based on a watershed algorithm. The starting points for the flooding of the watershed algorithm are the 
downdraft centers within spatially contiguous rain patches with a surface rain intensity, rint, exceeding a threshold 
of rint ≥ r0. Like Hoeller, Fiévet, and Haerter (2023), we apply r0 = 2 mm h −1. Additionally, the flooding starts in 
the centers of tracked CP instances from the previous time step, if there are any. To detect only robust CP instances, 
we keep rain patches and potential CP areas only when their area A ≥ A0 with A0 = 3 km 2, as opposed to the 2 km 2 
threshold used by Hoeller, Fiévet, and Haerter (2023). Valid rain patches with a downdraft center, which is located 
in an area classified as “no CP” by the k-means algorithm, will not be labeled as CPs. The same is true for potential 
CP areas which do not coincide with the center of a downdraft or a tracked CP instance from the previous time step.

Providing the fields of virtual temperature, Tv, and both horizontal and vertical wind speed in the lowest domain 
level, as well as rint, CoolDeTA can identify, label, and track each CP instance individually while storing addi-
tional information. To use the simplest possible case in the present study, we here keep the labels derived based 
on CoolDeTA binary, comprising the two classes “CP” and “no CP.”

2.1.2. Input Variables

Regarding the potential input for the neural network, SAM outputs several variables which are accessible from 
space-borne data. The present study focuses on the cloud top temperature, TCT, and rint. For TCT, we employ the 
standard output of SAM where TCT equals the cloud top temperature for cloudy domain columns and the surface 
temperature otherwise. TCT and rint are readily available from infrared emissions and an increasing number of 
precipitation products. Depending on the region of interest and problem-specific requirements in terms of spatial 
and temporal resolution, as well as accuracy, these precipitation products can be multisatellite products with 
global coverage such as IMERG (Huffman et al., 2015) or even products based on ground-based weather radars.

2.1.3. Training and Test Sets

For each of the four simulation setups, output is available for 7.5 simulation days in total. The first 3 days are 
considered as spin-up phase (Hoeller, Fiévet, & Haerter, 2023). After these spin-up days, we employ the simu-
lation output of day 4 for network training and validation. While we train networks based on the training set, 
the validation set is used to monitor the progress of the training on separate data which has not been trained on. 
As is common in supervised learning, we randomly split the data by assigning each instance with a probability 
of 75% to the training set and with 25% to the validation set. Throughout the entire training, including different 
network trainings, we keep the obtained allocation fixed to facilitate the comparison between networks. Yet, the 
order of  the training data is randomly shuffled every training epoch, that is, every time the training set is passed 
through a neural network.

When all network trainings are completed, the final performance is evaluated based on a test set (Willemink 
et al., 2020) consisting of simulation output of day 6, that is, the test set is not considered at any earlier stage. 
Although the observed CPs, and the complex pattern formed by their interaction, are unique for each simulation 
day, the offset of 1 day between the test set and the training and validation set guarantees fully independent sets 
w.r.t. the distribution of relevant quantities such as humidity.

To ensure sufficient variation between consecutive time steps of the data sets, we consider only every second 
time step of the corresponding simulation output for the training and validation set, and every fourth time step 
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for the test set. This is particularly important for the test set to prevent any distortion of the final results due to 
correlated data.

In order to reduce the computational cost and accelerate network training, we subdivided every N × N pixel 
output field, termed “image,” into 100 subregions, which we refer to as “patches,” of np × np pixels each. As our 
downsampling requires the integer np to be a power of 2 (see Section 2.2) and to compromise between computa-
tional effort and prediction skill, we chose np = 128 as the linear dimension of each two-dimensional patch. To 
accomplish this, each original output image is padded from nx = 1,200 to nx,pad ≡ 1,280 in compliance with the 
periodic lateral boundary conditions.

Eventually, each network prediction requires an input and a corresponding ground truth to optimize and/or eval-
uate the network performance. While the ground truth corresponds to an np × np pixel patch of the output images 
with derived labels, the input consists of stacked patches corresponding to TCT and rint. To compensate for lacking 
context information at patch boundaries, the input patch is np/2 pixels larger than the underlying ground truth 
patch on either side, resulting in an input patch size of 2np × 2np pixels (Figure 1). Although the additional np/2 
pixels on each side are thus ranging into the adjacent ground truth patch, this overlap does not distort the results 
as the final network prediction only comprises the underlying central np × np pixel patch.

To ensure a robust training process and reliable results, we manually checked the ground truth labeling of every 
patch in the data set. We omitted patches if they (a) contained at least 1, but less than 25 pixels (i.e., 1 km 2) of class 
“CP,” (b) were in the center of a larger convective system with a gust front significantly beyond the boundaries of 
the input patch, (c) were poorly labeled by the CP detection algorithm, or (d) featured ambiguous scenes where 
an unequivocal verification of the labeling is not possible. For the evaluation of both (c) and (d), the dynamical 
gust front, that is, 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 + 2𝜎𝜎𝐴𝐴 served as main indicator: clear offsets between gust front and boundaries of 
ground truth CPs were interpreted as poor labeling, discontinuous, and thus dissipating gust fronts as ambiguous 
cases. Omitted patches were excluded from the data set. We did not modify the individual pixels which belong 
to a certain CP instance. Only if a certain CP instance in an otherwise accurately labeled patch was a complete 
artifact, we set all pixels of that CP instance in the patch to “no CP” and kept the corrected patch in the data set.

As simulation setups affect the cloud and rainfall patterns associated with CPs, we considered patches from 
simulations with different environmental conditions. Yet, both simulations with imposed wind profiles feature 

Figure 1. Defining patches for neural network input and ground truth. (a) Time step 497, that is, 80 min before Tmax on 
simulation day 4, of “diu4K wind,” showing near-surface virtual temperature anomaly, ΔTv, with superimposed dynamical 
gust front, that is, 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴 + 2𝜎𝜎𝐴𝐴 (red scatter). The superimposed grid represents the individual np × np pixel patches, processed 
by the neural network. (b) Analogous to (a) but for surface rain intensity, rint. Patches that were omitted from the data set are 
hatched. (c) Analogous to (a) but for cloud top temperature, TCT. (d) Ground truth labeling showing cold pool (CP) areas as 
black regions; a single patch is enlarged for clarity. (e) Highlighted patch, including padding, for rint. (f) Analogous to (e) but 
for TCT.
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prevailing easterly winds. To allow the network to capture underlying 
patterns independent of the wind direction, we rotate each patch of the two 
simulations with wind by 90°, 180°, and 270° and add the resulting patches 
to the data sets. Extending data sets with slightly modified copies of the data 
based on operations such as rotations or translations is a common approach 
to increase the amount and diversity of data and is called data augmentation 
(Chlap et al., 2021; Shorten & Khoshgoftaar, 2019).

Data imbalances due to the underrepresentation of classes or features in the 
training set are a common issue of learning algorithms (He & Garcia, 2009). 
Taking the reduced convective activity due to nocturnal cooling into account, 
the majority of patches does not contain any CP pixels in the ground truth data 
and features only the class “no CP.” We compensated for this by randomly 
removing a certain number of these patches (Shi et al., 2021). By experiment, 
we selected the number of patches with only class “no CP” to be 4% of the 
training and validation set. The other extreme are patches with class “CP” 
only. Surface temperature oscillations promote the sudden organization of 
CPs into convective systems (Haerter et al., 2020; Jensen et al., 2022). Since 
the surface areas of these convective systems often exceed the patch size, 

a great number of patches have class “CP” only. However, omitting patches in the center of larger convective 
systems according to (b) already lowered the number of patches with class “CP” only to ≈5.5% resulting in a 
sufficiently balanced training and validation set distribution (Figure 3a) with mean class “CP” fractions of 0.26 
(diu2K), 0.31 (diu2K wind), 0.38 (diu4K), and 0.52 (diu4K wind). We chose not to balance the distribution of the 
test set in order to not affect the results in any way.

The resulting data set for training and validation comprises 4,208 patches with 984 different CP instances. Each 
CP instance represents a certain CP event as labeled by CoolDeTA. Depending on both their lifetime and their 
spatial extent, individual CP instances can be present in multiple patches in the data set. Thus, the number of CP 
instances is higher for diu2K (420) and diu4K (389) compared to the two setups with wind shear, diu2K wind 
(107) and diu4K wind (68), which feature less, but often larger and more persistent CP events. The number of 
CP instances provides an indication of the CP variety within the data set. It should be noted though that CPs and 
their patterns are often affected by complex interaction processes. Although a specific CP event might undergo 
significant changes during its lifetime and even merge with other CP events, it would still be counted as one CP 
instance by CoolDeTA. Accordingly, we consider the provided numbers of CP instances a rather conservative 
estimate of the CP variety in the data set. The test set comprises 7,226 patches with 183 CP instances. With 44 
CP instances in diu2K, 31 in diu2K wind, 77 in diu4K, and 31 in diu4K wind, they are more uniformly distributed 
among the different simulations. We attribute this also to the fact that we considered only every fourth time step 
for the test set, thus excluding some short-lived CP instances. Since the test set was not balanced, 6,684 of the 
7,226 patches contain only class “no CP.”

2.1.4. Senegal Case Study

In addition to the network training and testing, we also conducted a numerical simulation over West Africa to 
validate the method under more realistic conditions. For this case study, we used the nonhydrostatic Advanced 
Research Weather Research and Forecasting (WRF) model version 4.3 (Skamarock et  al.,  2021) for a 24-hr 
numerical simulation on 4 August 2022 over Senegal in West Africa (Figure 2). The date was chosen primarily for 
the high frequency of convective systems during this period, as well as the occurrence of smaller-scale convection 
in other parts of the study domain. To obtain numerical simulation data at a relatively high grid resolution, in this 
case 333 m, a nesting approach was necessary. We therefore created four domains with grid spacing of 9, 3, 1, and 
0.333 km with a one-way nesting strategy. Only data from the 0.333 km domain simulation are used in this study.

National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction Global Fore-
casting Model (GFS) forecasts, with a 0.25° horizontal grid spacing, were employed for the initial and boundary 
conditions in the 9 km outer domain, provided at 3 hourly intervals. Fifty-five vertical levels were chosen, such 
that their vertical spacing decreases closer to the surface. To represent surface fluxes, we used the Noah Land 
Surface Model scheme with soil temperature and moisture at four layers. The 3–0.333 km domains were run with 
explicit convection. In the 9 km domain, we used the Kain-Fritsch convection scheme with a mass-flux approach. 

Figure 2. Weather Research and Forecasting (WRF)-nested domains for 
Senegal case study. Map of Africa showing the regional/outer domain 
(dashed), denoted as D1 at 9 km horizontal resolution. D2, D3, and D4 denote 
the nested domain boundaries at horizontal resolutions 3, 1, and 0.333 km, 
respectively. The red domain is the primary region used in this case study.
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Finally, we applied the large-eddy simulation approach to represent the planetary boundary layer (PBL) in the 
333 m domain, while the Yonsei University PBL scheme was employed for the other domains.

2.2. Network Architecture

As mentioned, instead of predicting one specific label per provided input image (classification), the detection 
of CPs requires an output, such as “CP” or “no CP,” for every pixel of the image (segmentation). A common 
architecture used for segmentation is the U-Net (Ronneberger et al., 2015), a CNN that consists of an encoder 
path and a decoder path. In the encoder path, input images are downsampled after every block, allowing the 
network to learn features at larger scales. A common downsampling method, where the output is generated from 
the input by considering only the maximum value of a moving window of size s × s and which we also apply 
in the present study with s = 2, is max pooling. By reducing the resolution of the image in each downsampling 
step,  typically by a factor of 2 as we do here, the network can learn features at different scales. To be able to 
capture the underlying correlations, the number of filter layers is doubled with every downsampling step. In the 
decoder path, on the other hand, the images are upsampled again via transposed convolution or interpolation to 
finally enable pixel-wise predictions. After each upsampling step, concatenated filter layers of the same depth 
encoder block provide additional information. The employed U-Net architecture for the simplified case with three 
vertical blocks (nb = 3) is depicted in Figure 3b.

Figure 3. Training statistics and U-Net architecture. (a) Distribution of the data set used for network training and validation 
w.r.t. the fraction of class “CP” in each patch. (b) U-Net architecture for cold pool segmentation, here for the case with 
three filtering blocks (nb = 3). The number of input channels nc represents the number of different variables provided to the 
network as input. In the case of pseudo-3D models, the number of input channels, nc = number of variables × number of 
utilized time steps, nt. The number of output channels comprises the two classes “CP” and “no CP.” (c) Loss, 𝐴𝐴  , as a function 
of the epoch, et, for the 2D, p3D3t, and p3D5t neural networks. Dashed lines represent running averages of training loss for 
all training runs of a respective neural network type. Thin colored are running averages of validation loss for all training runs 
of a respective neural network type additionally averaged over a centered window of three et; different symbols correspond to 
the validation loss of the different training runs. Note: As the mean variance of the training loss for the three neural network 
types is only between 2.5 × 10 −6 (2D) and 6.1 × 10 −6 (p3D3t), markers for the training loss of different training runs are not 
visualized.
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Apart from nb and the starting number of filter layers nf, neural networks and U-Nets in particular offer a vari-
ety of modeling choices, termed hyperparameters, to tune. After an exploration phase, in which we identified 
hyperparameters significant for our network along with promising orders of magnitude based on training and 
validation performances, we investigated the following seven hyperparameters in more detail: nb, ultimately 
chosen as nb = 6; nf, ultimately chosen as nf = 64; the activation function, ultimately chosen as LeakyReLU; 
the normalization strategy, ultimately chosen as batch normalization; the loss function, ultimately chosen as 
combination of cross entropy loss and dice loss; the learning rate lr, ultimately chosen as exponentially decaying 
function 𝐴𝐴 𝐴𝐴r = 10−5 × 𝛾𝛾

𝑒𝑒t with et as the training epoch and γ = 0.9; and the batch size sb, ultimately chosen as sb = 8. 
Activation functions are nonlinear functions and a fundamental part of CNNs. Following convolutional layers in 
the convolution block (cf., Figure 3b), activation functions enable the network to capture complex patterns. Typi-
cally, convolution blocks are completed by normalization steps, which can support an efficient learning process 
(Ioffe & Szegedy, 2015). While the loss function is the function to be minimized during training, lr controls the 
corresponding optimization step size. The number of instances considered per optimization step is the batch size. 
Typically, training batch sizes are greater one to reduce the risk of getting stuck in local minima.

In order to determine the most promising network configuration w.r.t. the seven hyperparameters, we conducted 
a number of experiments based on the training and validation set. Instead of analyzing all possible combinations 
of configurations, we limited the number of experiments by structuring them in two stages. Starting from a first 
guess reference configuration for which all seven hyperparameters were defined pragmatically, the first stage 
consists of multiple levels, each containing experiments for a group of hyperparameters with all their combina-
tions. After each level, the reference configuration is updated based on the best candidates of those hyperparam-
eters. Due to their close relation, we grouped lr with sb (Group 1), activation function with normalization strategy 
and loss function (Group 2), and nb with nf (Group 3). Whereas the hyperparameters in Group 1 are essential for 
robust learning and thus investigated first, the hyperparameters in Group 3 are examined last as larger numbers 
of nb and nf, which were expected to be advantageous, would slow down the remaining experiments significantly.

Since some hyperparameters could have candidates with similarly good performance so that the best candidate 
might thus change for other configurations, we performed a second stage of experiments with all combinations of 
these candidates plus some fine-tuned ones.

Depending on the convolution kernel, CNNs can be categorized into 2D and 3D CNNs. Conventional end-to-end 
2D CNNs receive 2D input, which may consist of multiple channels, for example, 2D fields of different variables, 
apply 2D convolutions, that is, convolutions with 2D kernel matrix, and generate a corresponding 2D output, 
whereas 3D CNNs analogously process 3D data. At the expense of significantly higher computational cost, 3D 
CNNs are thus able to learn correlations in a third dimension based on the 3D convolution kernel. As we are 
interested in 2D segmentations and the simplest model possible, we selected the 2D version. However, since CPs 
are density currents and exhibit gust fronts typically emanating radially from a precipitation cell center, expan-
sion over time constitutes one of the main CP features (Benjamin, 1968). In order to include this time-dependent 
component and potentially enable the network to learn the correlations between consecutive time steps, we also 
implement the so-called pseudo-3D approach. The term “pseudo-3D,” as introduced by Vu et al. (2020), repre-
sents a model class that is intermediate between conventional 2D CNNs and 3D CNNs. In pseudo-3D models, 
the information of the third dimension (here time) is inserted as additional input channels to the network, there-
fore without modifying the network’s 2D architecture. As a consequence, the total number of input channels of 
pseudo-3D models depends not only on the number of input variables provided, but on the product of the numbers 
of input variables and utilized time steps. Thus, pseudo-3D models might potentially benefit from time-dependent 
information without being as computationally expensive as end-to-end 3D models (Vu et al., 2020). In the present 
study, we investigate the pseudo-3D model with three (p3D3t) and five time steps (p3D5t). Time steps are thereby 
centered about the time step for which a prediction is to be made.

2.3. Loss and Evaluation Metrics

The selection of an appropriate loss function depends on the specific problem at hand. All loss functions use the 
pixel-wise network prediction U = [U (0), U (1)], consisting of the two output channels U (0), 𝐴𝐴 𝐴𝐴

(1) ∈ ℝ
𝑛𝑛p×𝑛𝑛p , where 

indexes “0” and “1” indicate the “no CP” and “CP” channels, respectively, and compare U with the correspond-
ing ground truth derived by CoolDeTA, denoted 𝐴𝐴 𝐴𝐴 ∈ ℕ

𝑛𝑛p×𝑛𝑛p , where Vkl ∈ {0, 1}, indicating “no CP” and “CP,” 
respectively.
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We examined several loss functions during the experiments. For this purpose, we rescaled each pixel 𝐴𝐴 𝐴𝐴
(𝑗𝑗)

𝑘𝑘𝑘𝑘
 in U to 

the range [0,1] so that the “probabilities” of both the “no CP” and “CP” channel sum up to one. We term the result 
of this so-called “softmax” function u. The corresponding function is written as

𝑢𝑢
(𝑗𝑗)

𝑘𝑘𝑘𝑘
≡

𝑒𝑒
𝑈𝑈
(𝑗𝑗)

𝑘𝑘𝑘𝑘

𝑒𝑒
𝑈𝑈
(0)

𝑘𝑘𝑘𝑘 + 𝑒𝑒
𝑈𝑈
(1)

𝑘𝑘𝑘𝑘

, for 𝑗𝑗 ∈ {0, 1}. (1)

In order to compare u to the ground truth, we split V analogously to the prediction via one-hot encoding into two 
slices of binary data v = [v (0), v (1)], that is, 𝐴𝐴 𝐴𝐴

(0)

𝑘𝑘𝑘𝑘
= 1 − 𝑉𝑉𝑘𝑘𝑘𝑘 and 𝐴𝐴 𝐴𝐴

(1)

𝑘𝑘𝑘𝑘
= 𝑉𝑉𝑘𝑘𝑘𝑘 . As loss functions, we employed a cross 

entropy loss which is often used as default in image segmentation and defined as

CE(𝑢𝑢𝑢 𝑢𝑢) =

∑

𝑗𝑗𝑢𝑗𝑗𝑢𝑗𝑗

−𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
log

(

𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗

)

∑

𝑚𝑚𝑢𝑚𝑚𝑢𝑚𝑚
𝑢𝑢
(𝑚𝑚)

𝑚𝑚𝑚𝑚

𝑢 (2)

a soft Dice coefficient loss, defined as

Dice(𝑢𝑢𝑢 𝑢𝑢) = 1 −

2
∑

𝑗𝑗𝑢𝑗𝑗𝑢𝑗𝑗
𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
+ 𝜖𝜖

∑

𝑗𝑗𝑢𝑗𝑗𝑢𝑗𝑗
𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
+
∑

𝑗𝑗𝑢𝑗𝑗𝑢𝑗𝑗
𝑢𝑢
(𝑗𝑗)

𝑗𝑗𝑗𝑗
+ 𝜖𝜖

𝑢 (3)

where ϵ = 1 is a constant preventing divisions by zero (Jadon, 2020), and a combination of both

(𝑢𝑢𝑢 𝑢𝑢) = 𝛼𝛼Dice(𝑢𝑢𝑢 𝑢𝑢) + (1 − 𝛼𝛼)CE(𝑢𝑢𝑢 𝑢𝑢)𝑢 (4)

with α = 0.5. Whereas 𝐴𝐴 Dice can deal with imbalanced data sets (Milletari et al., 2016) and focuses on how good 
the predicted CPs overlap the ground truth CPs, 𝐴𝐴 CE evaluates the difference between the probability distributions 
of u and v. For our problem, we chose 𝐴𝐴  as loss function as it combines the strengths of both 𝐴𝐴 Dice and 𝐴𝐴 CE and 
outperformed both these functions during the experiments.

For the evaluation of the trained networks, we distinguish between patches containing only one of the two classes 
for the corresponding ground truth data and patches with at least one pixel of both classes. In the former case, 
the only evaluation metric will be pixel accuracy, PA, which evaluates the fraction of predictions that are correct, 
defined as

PA =
TP + TN

TP + TN + FP + FN
. (5)

In Equation 5, TP and TN indicate true positive and true negative predictions, respectively, whereas FP and FN 
denote false positive and false negative predictions, respectively.

In case the ground truth patch contains at least one pixel of both classes, we additionally calculate the intersection 
over union, IOU,

IOU =
TP

TP + FP + FN
. (6)

The IOU score is a measure of how well the specific objects of prediction and ground truth overlap one another, 
ranging from zero, where no overlap is found, to unity, for perfect overlap. Furthermore, we consider Precision 
and Recall, defined as

Precision =
TP

TP + FP
, (7)

and

Recall =
TP

TP + FN
. (8)

As IOU both Precision and Recall range from zero, where no “CP” pixel was correctly identified, to unity, for a 
perfect prediction. However, shedding light on different components of the prediction, they help to understand 
potential sources of good and bad performances.

 21698996, 2024, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

040126 by L
eibniz-Z

entrum
 Fuer M

arine T
ropenforschung (Z

m
t) G

m
bh, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Atmospheres

HOELLER ET AL.

10.1029/2023JD040126

10 of 18

To enable a more application-oriented perspective on the performance of the 
three models, we define cold pool objects (CPOs) as spatially four-connected 
regions of ≥25 “CP” pixels (≥1 km 2) and evaluate both the probability of 
detection, POD, and the false alarm ratio, FAR, defined as

POD =
𝐷𝐷

𝐷𝐷 +𝑀𝑀
, (9)

and

FAR =
FA

FA +𝐷𝐷
, (10)

with the numbers of successfully detected CPOs, D, missed CPOs, M, and 
false alarm, FA. The minimum CPO size of 25 “CP” pixels ensures that 
only robust predictions are considered. Ground truth CPOs are considered 
detected if (a) predicted CPOs overlap at least 50% of their area and (b) at 
least 50% of the area of the predicted CPOs falls inside ground truth CPOs. 
Condition (b) makes sure that only skilled predictions with CPO areas in 
the correct order of magnitude are considered successful detections. As the 
smallest ground truth CPO in the test set comprises 59 pixels, the defined 
minimum size does not affect the CPO detection. Undetected ground truth 
CPOs are considered missed CPOs. Predicted CPOs which do not coincide 
with any “CP” pixel of the ground truth are considered false alarms.

2.4. Network Validation

We plot the training and validation losses for the 2D and both pseudo-3D models as a function of the epoch, et 
(Figure 3c). et describes how many times the entire training set has been passed through the neural network. The 
loss measures the quality of the prediction, where a value of zero means perfect prediction. Instead of defining a 
fixed et, we stop the training if the validation loss has not improved for 10 consecutive et. Taking into account the 
stochasticity involved in the training process, we conducted three runs for each model. As might be expected, the 
training loss decreases monotonically with the data employed for learning, that is, et, and reaches a value close to 
zero for our maximum et of 22–24. Notably, for intermediate et, both pseudo-3D neural networks perform better 
than the 2D counterpart, whereas for the final et, the three are essentially indistinguishable.

However, a good value of training loss does not necessarily imply optimal validation loss, a measure of prediction 
quality for a previously unseen data set. Indeed, we find that intermediate et (≈10) yield lowest validation loss for 
all three cases, such that a global minimum occurs. This type of optimum at intermediate et is typical of neural 
networks and is often interpreted as large et constituting a form of overfitting w.r.t. the training data—yielding 
less than optimal behavior for the unknown validation data. Yet, the minimum is characterized by an asymmetric 
increase of validation loss, where somewhat larger et lead to only small increases in validation loss. Further, we 
again find quantitative improvements in validation loss for the pseudo-3D cases, which systematically reach 
lower values of loss than 2D.

3. Results
For the final evaluation of the trained neural networks, we now employ the test set, that is, the data for day 6 of 
each simulation. We ensure that the results obtained are on the conservative side, by considering only the worst 
run with the greatest final validation loss for each model. We conclude this chapter with a case study, where we 
shed light on potential sources of misclassifications through realistic examples from a simulation over Senegal.

3.1. Test Set Performance

We quantify the utility of our segmentation method by applying typical performance metrics (Table 1). A key 
measure is pixel accuracy (PA), which is generally high (mean PA ≳ 94%) for all models, with the pseudo-3D 
models performing slightly better than the 2D model. The intersection over union (IOU) score denotes the fidelity 

Patches Model PA (%) IOU Precision Recall

Both classes 2D 93.8 0.71 0.84 0.83

p3D3t 94.8 0.75 0.83 0.88

p3D5t 94.5 0.74 0.84 0.87

Only no CP 2D 99.8

p3D3t 99.9

p3D5t 99.9

Only CP 2D 92.0

p3D3t 94.1

p3D5t 85.9

Note. Presented are mean performances for pixel accuracy (PA), intersection 
over union (IOU) score, Precision, and Recall for patches with at least one 
pixel of both classes “CP” and “no CP” in the ground truth (both classes) and 
PA for patches with only pixel of class “no CP” (only no CP) or “CP” (only 
CP) in the ground truth.

Table 1 
Mean Test Performances of Different Models
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of spatial overlap of ground truth CPs and neural network-predicted CPs and is thereby sensitive to the underlying 
CP areas, yielding lower values than PA for all models. Again the pseudo-3D models achieve higher mean IOU 
scores of 0.75 (p3D3t) and 0.74 (p3D5t) compared with 0.71 for the 2D model. As mean Precision is almost 
equally high for all models (Table 1), the difference in IOU is mainly driven by the higher mean Recall of the 
pseudo-3D models, that is, they miss less “CP” pixels than the 2D model.

In order to investigate the sensitivity of the network performances w.r.t. the CP fraction in the patch, we group 
PA and IOU score into quartiles of CP fraction. For all these quartiles, PA is high (PA ≳ 0.95) for all models 
(Figure  4a). Yet, systematic differences exist: Generally, PA is greatest for small CP fraction and somewhat 
decreases for intermediate fractions, where it then seems to saturate. This behavior is expected, since (a) the 
majority of the training and validation set patches contained only small fractions of class “CP,” slightly bias-
ing the neural networks toward “no CP” predictions and (b) regions without “CP” pixels often feature neither 
precipitation, nor clouds, simplifying the network prediction. Overall, PA is somewhat greater for the pseudo-3D 
models, however, this benefit is nearly lost for small CP fractions, a finding we attribute to the potential noise at 
the early stages of CP expansion: in p3D3t and p3D5t, where additional time steps are included, data taken before 
the onset of the CP might contribute to the training—thus obscuring the signal of actual CP expansion.

The IOU score (Figure 4b) can be substantially lower for the smallest CP fraction quartile, with some improve-
ment for the pseudo-3D models. This loss for small CP fraction is however not surprising to us, as for small 
CP fraction there will often be only few pixels in a patch which actually qualify as CP pixels and small spatial 
displacements of these pixels in the predicted data can already lead to a drastic reduction of the IOU. Refined 
measures could be designed that still assign a score to a minimally displaced CP pixel. However, physically 
relevant CPs, for example, in terms of collision effects (Fiévet et al., 2023; Meyer & Haerter, 2020) and intense 
precipitation (Jensen et al., 2022) tend to cover larger patch fractions and the IOU score is systematically high—
again with best performances for the pseudo-3D models.

We now turn to test patches which contain only “no CP” or “CP” pixels in the ground truth. For the former case, 
PA yields near-perfect accuracy (Table 1). Thus, the models show high fidelity in capturing cases where CPs are 
not present, most likely due to the absence of precipitating clouds in a majority of the patches. PA is however 
substantially reduced in the latter case (Table 1). The reduction in PA is especially pronounced for p3D5t, thus the 
model where five time steps were used. We attribute this loss of accuracy to the temporal mixing of patches with 
and without CP pixels, whereby the lack of CP pixels at earlier stages may skew the results.

In Figures 4c and 4d, we evaluate the percentage of successfully detected CPOs, POD (see Section 2.3), as a function 
of CPO area. The results are quite clear: larger CPOs are detected at quite high fidelity (≳90%), whereas the fidelity 

Figure 4. Selected test performances of different models. (a) Distributions of pixel accuracy for each neural network, 
grouped into quartiles of cold pool (CP) fraction with ranges, as indicated along the vertical axis. Colored bars represent the 
interquartile range IQR = Q3 − Q1 of the three tested models, with the first quartile Q1 and the third quartile Q3, along with 
the corresponding median (vertical dash). Whiskers range from Q1 − 1.5 × IQR (minimum) to Q3 + 1.5 × IQR (maximum). 
Outliers w.r.t. this range are not visualized. (b) Analogous to (a) but for the intersection over union (IOU) score. Note that for 
both metrics a value of unity reflects a perfect prediction. (c) Distribution of spatially contiguous test set cold pool objects 
(CPOs) w.r.t. their CPO area. (d) Percentage of successfully detected CPOs from (c), POD, for varying CPO area. Note the 
shared horizontal axis between (c, d) and the overlapping markers for the largest two CPO area intervals in (d).
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for the smallest area class is lower (Figure 4d). Again, a clear improvement in 
detection cannot be achieved for either of the three models, even though a slight 
improvement is seen for pseudo-3D models for the intermediate area classes.

Table 2 shows both POD and the false alarm ratio (FAR) for each simula-
tion. Whereas POD is similarly good for all models, the pseudo-3D networks 
feature higher and thus worse FAR of 0.21 (p3D3t) and 0.25 (p3D5t), 
compared to 0.17 of the 2D network. In case of the p3D5t model, this 
means on average one spuriously predicted CPO for every three successfully 
detected CPOs. However, as the mean validation losses of the p3D5t training 
runs are lowest in comparison to the other models (Figure 3c), this should 
not be a problematic characteristic for p3D5t, but is most likely caused by an 
unfavorable epoch to stop the training run. Apart from lower detection rates 
for CPOs from “diu2K,” which are mainly attributed to a high proportion of 
CPOs in the smallest area class, the performance of the networks seems to be 
relatively independent w.r.t. the simulation setup.

As the morphology of patterns is so diverse and quantification of spatial pattern 
overlap always requires to make choices as to the metrics used, we also provide 

a qualitative discussion on typical cases now. We visualize several predictions based on the test set and present 2D 
fields of rainfall intensity (rint), cloud top temperature (TCT), and virtual temperature anomaly (ΔTv) as well as the 
ground truth segmentation and predictions of the three neural network models side by side (Figure 5). The cases 
selected represent a range of circumstances: in some cases, cloud patterns are rather obvious and yield reasonable 
segmentation for all models (Figure 5a). Only in a few cases, some models miss CPOs completely (Figure 5b). As 
in the presented example, these CPOs are generally rather small and weak, and often associated with cloud-free gust 
fronts. Where different aspects overlap temporally, such as cirrus from previous convection obscuring the present 
scene (Figure 5c), all models may struggle with proper segmentation. In fact, cirrus clouds are a major source of 
false positives, as all models  associate very cold TCT with CPs. However, whether cirrus clouds eventually lead to 
false positives depends also on their pattern. For the pseudo-3D models, simultaneous advection seems to increase 
the probability of false positives. Although cases with advection pose additional challenges, all models perform 
well for large CPs with large cloud-free areas, for example, Figure 5d. Yet, for cases in which the parent convection 
partly dissipated (Figure 5e) or dissipates (Figure 5f) pseudo-3D models give results which are physically more 
accurate w.r.t. the plausibility of the gust front. The same seems to be true for scenes with advected parent convec-
tion (Figure 5g)—likely due to the fact that parts of the gust front are obscured when only using single patches, but 
revealed when taking a sequence  of time steps into account. As a general outcome, all models perform reasonably 
well on the test cases described, yet, the distinction between 2D and pseudo-3D quality metrics is not as clear cut and 
should be assessed dependent on the scientific questions in focus.

3.2. Case Study: Detecting Cold Pools Over Senegal

As we trained the neural networks solely with data from idealized simulations, they are not intended for direct 
application to observational data. However, to gain a better understanding of potential challenges associated with 
transitioning to more realistic data, we now apply the neural networks to segment CPs in the case study data 
from Senegal (see Section 2.1). Due to its location in the transition zone from tropical savannah to arid steppe, 
sea breezes from the Atlantic Ocean, and orographic effects of the Northern Guinea Highlands, the region of the 
case study features complex cloud and rainfall patterns and is thus well-suited for a realistic trial. Contrary to the 
evaluation of the test set predictions, we here refrain from analyzing any quantitative metrics based on ground 
truth images. This way, we avoid omitting any patches and can thus test the network performance over the entire 
simulation domain, including patches with ambiguous scenes.

To obtain the predictions for the entire domain, we subdivided the simulation domain into patches of np × np 
pixels, which the networks can process, and recombined the network-generated segmentations. Unlike in the 
network test, we use the neural networks of all three training runs for the prediction of each model: Only if all 
three networks of a certain model segment a pixel as “CP,” it is predicted as “CP.” Otherwise, it is predicted as 
“no CP.” Hereby, we can identify consistent features w.r.t. false negatives and positives, which were learned by a 
certain model during all training runs.

Simulation
Total 
CPOs

2D p3D3t p3D5t

POD FAR POD FAR POD FAR

diu2K 35 0.71 0.24 0.71 0.32 0.83 0.29

diu2K wind 180 0.88 0.15 0.86 0.22 0.87 0.23

diu4K 83 0.90 0.04 0.92 0.04 0.93 0.09

diu4K wind 292 0.80 0.21 0.83 0.23 0.78 0.30

All 590 0.84 0.17 0.84 0.21 0.83 0.25

Note. For each neural network, the probability of detection, POD, and the false 
alarm ratio, FAR, are shown. The test set patches and thus also the contained 
cold pool objects (CPOs) to be detected are identical for all networks. Note 
that only patches with at least one CPO in the ground truth were evaluated 
here.

Table 2 
Detection Performance on the Test Set for the Different Simulations
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In Figure 6, we present examples of the network predictions for the entire domain along with the corresponding 
2D fields of rint, TCT, and ΔTv. The patches processed by the networks are indicated by the superimposed grid. 
The selected cases represent CPs in different stages of their life cycle at different times of the day. In most of 
these cases, all neural networks detect the CPs and their gust fronts reasonably well. When the CP is small enough 
so that the networks can track its gust front (Figures 6a and 6e), the networks are even able to identify most of 
the associated CP region correctly, although parts of the gust front are obscured by deeper clouds (Figures 6a 
and 6e) or rain-free (Figure 6e). In later stages of the life cycle, when the CP is large compared to the patch size, 
the networks may struggle to properly detect CP regions where the gust front is already too far beyond the patch 

Figure 5. Examples of cold pool predictions based on the test set. Two-dimensional fields of surface rain intensity, rint, cloud top temperature, TCT, and near-surface 
virtual temperature anomaly, ΔTv, for various examples, along with ground truth segmentations based on CoolDeTA, as well as predictions of the 2D and pseudo-3D 
neural networks. For comparison, black contours in rint, TCT, and ΔTv indicate the boundary of the corresponding ground truth. (a) Morning cold pool (CP; time step 
740) from “diu2K.” (b) Analogous to (a) but for time step 744. For clarity, rint, TCT, and ΔTv are plotted with their additional overlap while ground truth and predictions 
are only shown for the np × np pixel patch indicated by the gray frame. (c) CP from “diu2K” which developed during the afternoon (time step 780) at the boundary 
of a recently dissipated convective system, represented by high-altitude cirrus remnants. (d) Parts of an eastward propagating gust front of a convective system from 
“diu2K wind” (time step 772) with large cloud-free areas (≳300 km 2) and new emerging rain cells. (e) Afternoon scene (time step 772) from “diu4K” with parts of an 
early stage CP in the north of the upper left patch and parts of a convective system which consists of CPs at different stages. (f) Gust front of a convective system from 
“diu4K” (time step 780) with dissipating parent convection. (g) Northern part of a CP from “diu4K wind” (time step 780) where westward advected parent convection 
masks parts of its CP gust front. Note that superimposed grids represent the individual np × np pixel patches, processed by the neural networks.
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boundaries (Figures 6b and 6d). Yet, enlarging the networks’ field of view by lowering the resolution compen-
sates for this effect for all networks (Figure 6c).

However, the example cases also reveal challenges: The segmentations of (dissipating) CPs in later stages can 
be somewhat noisy (Figures 6d and 6e). This applies to both large convective systems (Figure 6d) and smaller 
systems (southeast in Figure 6e). For large systems, the limited field of view of the neural networks can again 
play a role when the gust front is located too far outside the patch boundaries. In this regard, particularly the 
2D networks tend to uniformly segment patches as only CP when the (cold) cloud cover is much larger than 
the patch (Figures 6a, 6b, and 6d), possibly due to less contextual information compared to the pseudo-3D 
networks with multiple input time steps. Concerning false positive classifications, organized low-level clouds 
seem to constitute a potential source (Figures 6a and 6e), especially when associated with rain. As a result, 
particularly the pseudo-3D networks struggle to distinguish the sea breeze coming from the west in Figure 6e 
from CPs.

4. Conclusion and Outlook
CPs likely play a key role in organizing the atmospheric convective cloud and precipitation field (Böing, 2016; 
Böing et  al.,  2012; Haerter,  2019; Haerter et  al.,  2019,  2020; Muller et  al.,  2022; Nissen & Haerter,  2021; 
Schlemmer & Hohenegger, 2016). Robust detection of CP processes leading to the formation of thunderstorm 
clusters could enable better understanding of how convective systems organize through the interaction of CPs, 
such as lifting and collision processes, and how heavy precipitation events associated with MCS emerge.

The present study demonstrates that CPs can be detected in simulation data via an artificial neural network by 
employing variables readily available from geostationary satellite observations, namely cloud top temperature and 
precipitation. Using these two variables only, our networks were able to detect CPs in data from cloud-resolving 
simulations with an overall mean accuracy between 93.8% (2D) and 94.8% (p3D3t) for patches with at least one 
pixel of both classes, ≥99.8% for patches without any pixel of class “CP,” and between 85.9% (p3D5t) and 94.1% 
(p3D3t) for patches with pixel of class “CP” only.

Figure 6. Examples of cold pool predictions for the case study. Two-dimensional fields of surface rain intensity, rint, cloud top temperature, TCT, and near-surface 
virtual temperature anomaly, ΔTv, for various examples, along with predictions of the 2D and pseudo-3D neural networks. (a) Early stage cold pool (CP) entering the 
northeastern part of the domain at 07:40 UTC. (b) The CP from (a) but in a mature stage at 11:10 UTC. (c) Analogous to (b) but with the resolution lowered by a factor 
of 3 by computing the mean values. (d) The CP from (a) but in a dissipating stage at 14:40 UTC. (e) Late evening scene (22:10 UTC) with two CPs entering the domain 
from the east and the south, a sea breeze coming from the west and the dissipating CP from (a–c) in the center. Note that superimposed grids represent the individual 
np × np pixel patches, processed by the neural networks.
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We conducted several experiments to identify the most promising architecture for our network. The computation-
ally most expensive architecture, using 6 blocks and 64 starting filters, performed best, as might be expected—
given the physical insight that CPs over tropical land are often linked to organized convective systems with spatial 
and temporal correlations at different scales. Whereas already the two-dimensional input fields gave satisfactory 
results, we find that taking into account three to five time steps does improve the performance further, compara-
ble to the improvements found in Vu et al. (2020) for some of their data sets. Including several time steps within 
the input channels is a computationally inexpensive means of mimicking a three-dimensional input data set.

The training and test data sets contain data from different simulation setups, which correspond to an atmosphere 
over an idealized moist tropical land surface. The comparison between the two diurnal forcings is important as 
results show qualitatively different cloud organization, such as the formation of pronounced convective systems 
for a larger diurnal range but more scattered, smaller CPs for a smaller range. Assessing large-scale wind effects 
is important, as it compares the prominent model idealization of no wind shear (Bretherton et al., 2005; Manabe 
et al., 1965; Tompkins & Craig, 1998) with the more realistic sheared case. In the Senegal case study, we addi-
tionally applied the trained neural networks to simulation output from a realistic simulation setup. Our overall 
finding is that the detection works well for all these cases.

While the trained neural networks reliably detected gust fronts obscured by higher clouds in most situations, we 
identified several potential sources of misclassification. Concerning false positives or spuriously predicted CPs, 
the most common sources are (cirrus) clouds with very cold TCT and organized low-level clouds, particularly in 
scenes with simultaneous advection and/or rain. When transitioning to actual satellite data, the former could be 
addressed by replacing the cloud top temperature input with satellite channels or products that also respond to 
cloud opacity. Focusing on false negatives, that is, missed CPs or CP pixels, one of the main sources are patches 
in the center of larger convective systems where the CP gust front is too far beyond the patch boundaries and 
thus out of the networks’ sight. Yet, we showed that enlarging the networks’ field of view by lowering the image 
resolution can compensate for this effect to some extent. Another source of false negatives are CP gust fronts 
without any signal in the cloud or rainfall field, that is, cloud-free gust fronts without any rain. However, unlike in 
our idealized simulations, CPs in more realistic simulations without a fixed surface temperature or even in satel-
lite data would be noticeable in such situations based on their colder air compared to their environment. When 
transitioning to such data, this characteristic could be learned by the neural networks and used for the detection 
of CPs in cases with clear sky gust fronts.

Looking ahead, the obvious next step is to apply the method to actual satellite data. To make full use of the avail-
able satellite channels and address the identified sources of misclassification, this step will most likely involve 
new network training based on real observations. Likely, several new challenges will need to be addressed, such 
as the lower spatial resolution of the available data. The lower resolution may require us to focus on CPs that have 
already evolved into larger-scale structures, thus increasing the minimum detectable CP size. Yet, by training the 
neural networks with some of the multiple available satellite channels instead of the cloud top temperature input 
used so far, the neural network performance may benefit from additional information about the atmosphere, such 
as water vapor content, cloud phase, and cloud particle size and make use of potential patterns hidden so far.

To avoid inconsistencies between the neural network inputs w.r.t. their spatial and temporal resolutions, the 
selected satellite channels could be combined with a precipitation product based on calibrated infrared images. 
Such precipitation products are derived by calibrating infrared images from geostationary satellites with rain rates 
from low Earth orbiting passive microwave satellite sensors. While not applicable for low rain rates, a precipita-
tion product based on calibrated infrared images might provide a sufficient estimate to detect CPs, particularly 
over tropical land. Considering the case-dependent accuracy of these products as well as potential errors asso-
ciated with spatial and temporal interpolations when using IMERG data, it might be worth testing the neural 
networks without precipitation input in future studies based on satellite data.

Ultimately, being able to extract self-organization effects from observational data will enable us to improve 
cloud-resolving models that still struggle to capture organizational effects with high fidelity. For this purpose, the 
network training should additionally focus on minimizing the number of spuriously predicted CPs, for example, 
by adding more examples of organized and/or precipitating clouds to the training set that do not produce any CPs. 
By enlarging the variety of CPs in the data set, also the applicability of the method could be extended. One way 
forward could be to advance CP interaction parameterizations in coarser-scale models.
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