
Citation: Hossain, A.; Senff, P.;

Glaser, M. Lessons for Coastal

Applications of IMTA as a Way

towards Sustainable Development: A

Review. Appl. Sci. 2022, 12, 11920.

https://doi.org/10.3390/

app122311920

Academic Editors: Tiago Verdelhos

and Ana Cristina Rocha

Received: 20 July 2022

Accepted: 6 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Lessons for Coastal Applications of IMTA as a Way towards
Sustainable Development: A Review
Amir Hossain 1,* , Paula Senff 2,3 and Marion Glaser 4,5

1 International Studies in Aquatic Tropical Ecology (ISATEC), University of Bremen, Bibliothekstraße 1,
28359 Bremen, Germany

2 National Research Institute for Agriculture, Food and the Environment, Research Unit Animal and
Functionality of Animal Products, University of Lorraine, F-54000 Nancy, France

3 CIRAD, UMR ISEM, F-34398 Montpellier, France
4 Social-Ecological Systems Analysis (SES) Work Group, Leibniz Centre for Tropical Marine Research (ZMT),

28359 Bremen, Germany
5 Institute of Geography, University of Bremen, 28359 Bremen, Germany
* Correspondence: amhnstu@gmail.com

Abstract: Integrated multi-trophic aquaculture (IMTA) systems integrate the cultivation of species
from different trophic levels. Uneaten feed, solid wastes, and dissolved nutrients are turned into har-
vestable and healthy food, making IMTA a driver for ecologically sustainable aquaculture. Its wider
sustainability potentials arise from social, environmental, and economic sustainability enhancement
options. Biological and economic outcomes are promising, while social equity and acceptance remain
to be further investigated in the context of the long-term viability of aquaculture. Sustainable coastal
and marine aquaculture development requires a holistic approach that involves social/cultural, eco-
nomic, as well as environmental sustainability. This article examines IMTA as a pathway to socially,
environmentally, and economically sustainable development. We collate evidence that shows that
IMTA can minimize the negative environmental effects of aquaculture, assist local economies, and
boost competitiveness and long-term economic viability. Available analyses of socio-economic and
cost-effectiveness reveal positive prospects for IMTA systems, through product diversification, faster
production cycles, and IMTA product prices and show a divergence between financial returns at the
level of the entrepreneurial unit and economic returns at the macro level, which inhibits the uptake
of IMTA. We conclude that the lack of governance analysis or inappropriateness of institutional
development, in terms of aquaculture governance and management laws and regulations, is at
the core of the hitherto weak engagement with IMTA. Unsuitable policies, regulations, and public
and private sector decision policies and implementation, underlined by the scarcity of analyses of
aquaculture governance institutions, are part of the reason for this. The evidence we have aggregated
indicates that the relative scarcity of commercially successful coastal IMTA undertakings is not so
much an intrinsic feature of the IMTA approach but is likely to have been generated by missing or
inappropriate governance structures and procedures in the coastal realm.

Keywords: IMTA; coastal aquaculture; sustainable aquaculture; social development

1. Introduction

Aquaculture is the food-producing sector with the highest annual growth rate [1].
Production has increased steadily over the past three decades and will likely continue to do
so in the future to ensure the needs of a more populous and affluent world [1]. Aquaculture
is widely recognized as an important strategy for food security and poverty eradication [2],
addressing at least seven of the 17 United Nations Sustainable Development Goals (UN
SDGs) [3], and it plays an important role in ensuring human food security and nutrition in
the future, as wild fisheries fail to meet the demand for aquatic products [4]. Fish contributes
to around 20% of total animal protein intake [5] and is one of the cheapest sources of animal
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protein. Over recent decades, the contribution of aquaculture to global fish output has
increased, reaching 82.1 million tons (46%) of the estimated 179 million tons of global
production in 2020, and this is expected to rise to 53% by 2030 [4]. This is mostly due to
the commercialization of farm-raised aquatic animals such as shrimp, salmon, bivalves,
tilapia, and catfish [6]. With the growing scarcity of freshwater, aquaculture growth may
increasingly occur in marine and coastal environments. Ongoing environmental change
processes, global population growth, and fisheries and food availability trends also imply a
steadily increasing role for coastal aquaculture across the globe. This has raised concerns
about environmental consequences and conflicts of aquaculture with other coastal uses
in Europe, North America, Australia, and Asia [6]. At the same time, the available space
for coastal aquaculture is altering: by 2080, sea level rise is expected to have turned
approximately twenty percent of coastal wetlands into marine spaces [7].

The use and wastage of aquaculture feeds can negatively affect surrounding ecosys-
tems. Feed waste and faecal production contribute to significant organic matter and
nutrient loadings in marine and coastal ecosystems. Feed wastage can reach up to 38%,
and this is one of the most significant sources of pollution [8,9]. Several countries have also
imposed restrictions on the practice of chemotherapeutic agents and reduced the use of
feed additives, such as antibiotics and oil, in aquaculture feeds [10,11], rendering classical
single cultivar aquaculture less viable. Nonetheless, current aquaculture practices cause
the eutrophication of coastal and other aquatic systems [12]. It is important to increase the
understanding of how intensive and single species (monocultural) aquaculture generates
deleterious environmental and social impacts. This has raised interest in ecosystem-based
aquaculture such as integrated multi-trophic aquaculture (IMTA) [13,14].

IMTA integrates aquatic organisms from various trophic levels in order to mimic
ecosystem functions (Figure 1) [15–19]. Waste material from production in higher trophic
layers (i.e., of finfish and crustaceans) serves as food for organisms cultivated at lower
trophic levels that transform the otherwise wasted and polluting resources into valuable
products. Waste is thus minimized or eliminated and the overall productivity of the food
system boosted [20–22]. It has been argued that IMTA is capable of supporting ecologically,
environmentally, and socially viable aquaculture with economic viability [23]. By using
the by-products of some cultivars to produce further useable or marketable plants and
animals, it may support ecological sustainability through biomitigation, economic security
through product diversification and risk mitigation, societal acceptance through better
management, and social sustainability through a wider spread of aquaculture benefits
than what is possible through conventional aquaculture. The main potentials of IMTA are
thus environmental neutrality, economic viability, and social sustainability [24], although
MTA can improve the long-term viability of aquaculture by generating environmental,
economic, and social benefits. All this notwithstanding, implementation over the past
decades has been low [16,25]. The objective of this paper is to collect the widely dispersed
studies that analyse the sustainability potentials resulting from the combination of social,
environmental, and economic potentials related to IMTA.
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Figure 1. An integrated multi-trophic aquaculture (IMTA) facility: combination of fed aquaculture
(e.g., finfish) and organic extractive fish farming (e.g., shellfish, seaweed), takes advantage of par-
ticulate organic matter via extractive cultivars (e.g., seaweed) that absorb the benefits of dissolved
inorganic nutrient enrichment (Redrawn from IMPAQT H2020 Project) [26].

2. Methods

This study is based on a literature analysis. Published literature was identified in a
literature search performed with Google Scholar web search using the “Publish or Perish”
software (version: 7.33.3388.7819) [27]. The specific keywords used were “IMTA”; “coastal
aquaculture”; “sustainable aquaculture”; “social development”. These were separately
inserted and searched. We extracted 187 relevant papers, discarded irrelevant ones by
perusing the abstracts and read 57 of the papers initially found in the search related to
these keywords. With “snowball system”, additional literature identified upon reading
this first batch of publications was also included, as well as related publications known to
the authors.

3. Sustainability Potentials of IMTA

The interconnected spheres of sustainability (Figure 2) are well known. They include
the social, economic, and environmental [28]. This concept can be applied to IMTA and
other forms of resource management [29]. For over two decades it has been suggested
that IMTA can render production more sustainable by reducing the environmental effects
of intensive aquaculture operations, and by generating financial benefits to aquaculture
producers through product diversification, faster production cycles, and higher prices for
IMTA products [13,24,30–32].

As discussed above, IMTA appears to be an appropriate method for developing eco-
nomically viable and socially beneficial coastal aquaculture. Despite some successful pilot
work (Table 1), IMTA development has hardly incentivized the commercial engagement
of private sector actors, however, with China as the main exception. In the following, we
present currently available evidence to explain why this might be the case.
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Table 1. Examples of integrated or other ecosystem-based aquaculture developments (Source: [33,34]).

Region/Countries Aquaculture Ecosystems References

Asia (China, Thailand. Cambodia, Vietnam, Indonesia) Integrated aquaculture benefits millions of rural people. [35]

Asia (China)
Bioremediation and an increase in total yields of up to
fifty percent can be achieved with IMTA, which
combines fish, shellfish, and seaweed.

[36]

Canada
Cooke Aquaculture, the largest salmon aquaculture
company in eastern Canada, embraced integrated
multi-trophic aquaculture.

[20,30,37]

South Africa Numerous abalone farms using seaweed to filter
effluent water and substitute commercial feed. [33]

3.1. Environmental Sustainability

Population growth increases demand for food, but global resources cannot indefinitely
satisfy this demand [38]. Environmental sustainability is concerned with pollution control,
the wise and effective use of natural resources, ecosystem integrity and the carrying ca-
pacity of the natural environment [39]. One of the most harmful environmental effects of
coastal aquaculture is the release of polluted effluents containing uneaten feed and faeces.
By increasing nutrients in the water, particularly nitrogen and phosphorus, a phenomenon
also denominated as “organic enrichment”, it degrades receiving water bodies and sed-
iments [40]. IMTA may turn aquaculture more sustainable by removing nitrogen and
phosphorus from the water column, thus mitigating eutrophication and lowering biological
degradation risks [41]. Improved coastal aquaculture waste management also reduces the
risk of disease transmission and allows for higher quality production by improving water
quality. The treatment of wastes from aquaculture requires the development of sustainable
coastal aquaculture. The utilization of IMTA systems and the microbial nitrification and
denitrification that occurs in sediments play an important role here [40,41].
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Assimilative biofiltration by algae increases the environmental capacity for nutri-
ent assimilation. Macroalgae are an efficient instrument for bioremediation because they
can absorb anthropogenic nutrients [40]. Seaweeds are best suited for biofiltration since
they have the highest productivity of all plants, as well as high economic potential [21].
An Atlantic Coast IMTA study that focuses on algae (Rhodophyta) with fish (turbot
Scophthalmus maximus, and sea bass Dicentrarchus labrax), also identified algae as great
candidates for biofiltering and wastewater reduction [24]. Research has also been con-
ducted on Gracilaria bursa-pastoris, Gracilaria gracilis, Chondrus crispus, Palmaria palmata,
Porphyra dioica, Asparagopsis armata, Gracilariopsis longissima, Ulva rotundata (Rhodophyta),
and Ulva intestinalis (Chlorophyta) as biofiltration in IMTA approaches. Experimental stud-
ies have continued on the integration of algae with sea bass and turbot [42,43]. Gracilaria
bursa pastoris had the best yields and nitrogen absorption efficiency of the three species
examined (Gracilaria bursa pastoris, Chondrus crispus, and Palmaria palmata), and was thus
recommended as the best choice for integration with sea bass or turbot [43]. Ulva rotundata,
Ulva intestinalis, and Gracilaria gracilis were co-cultivated with sea bass and found to be
effective biofilters of phosphate (PO4

3−) and ammonium (NH4
+) from waste waters [44].

3.2. Economic Sustainability

Economic sustainability requires the use, recycling, and protection of human and
material resources in ways which create sustainable values over the longer term [45].
Economic sustainability also calls for a production system that meets consumption needs
without jeopardizing future requirements [46]. Human life on Earth is nourished and
perpetuated by utilizing the limited natural resources available [47]. The profit component
of sustainability is concerned with achieving economic growth, resource efficiency, and the
financial viability of businesses [48].

Blue mussel (Mytilus edulis) near commercial salmon farms in the Bay of Fundy,
Canada, developed 20 percent faster than those at reference locations further away, indi-
cating that harvested mussel production is higher in an integrated aquaculture system
than in a monocultural one [49]. Evidence from the BIOFAQs project on the west coast
of Scotland supports this. Here, mussel growth was considerably higher at a site within
10 m of a salmon farm than at a control site 500 m away [50]. The mussel lines acted as
in situ biofilters, and increased growth of the mussels was linked to the use of organic
waste from the salmon farm. Economic research has focused on the diversity of benefits for
growers, consumers, and society that result from the implementation of IMTA systems [51].
A study of South African abalone farming shows that IMTA can stabilize seafood supply
by increasing product diversity and reducing market risks from price volatility, as well as
increase job diversity by providing high-pay jobs for trained personnel while offering lower-
pay jobs for untrained people in peripheral locations [37]. Invertebrates, seaweeds, and
detritivorous fish may be economically beneficial in terms of supplying local consumption
needs, while high-value fish and shrimp are exported for foreign currency. Implementing
IMTA improves waste assimilation capabilities at farm level and in the wider environment.
This may be a main reason why IMTA today is practised most widely in China [52,53].

3.3. Social Sustainability

Social sustainability has been conceptualized to include equity, empowerment, access,
involvement, cultural identity, and institutional stability [54]. It has also been related to
poverty reduction and deemed essential to help achieve a meaningful life by focusing on
sound health care, nutrition, education, peace, and stability around the globe [55,56]. Social
sustainability has also been related to human rights, gender equity, public engagement and
participation, and the rule of law in promoting peace and social stability for sustainable
development [57,58]. A conceptual framework for elaborating context-specific working
definitions of the social dimension in ecosystem management comprises seven criteria:
(1) population and resource use; (2) poverty, basic needs and well-being; (3) equity and
justice; (4) social and human capital; (5) participation, management and governance;
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(6) resilience, vulnerability, and adaptive capacity; and (7) collaborative learning and
reflexivity [59,60]. The Sustainable Europe Research Institute [61] proposes that social
sustainability is “a distinct feature of sustainable development that is equally as vital as the
economic or environmental dimensions”, but that it is still underappreciated by scientists
and policymakers alike. In economic and environmental systems, flows and cycles tend
to be readily observable. In contrast, social interactions can be more intangible and more
difficult to model [62,63]. Sustainable development in agriculture, forestry, fisheries and
also in aquaculture conserves land, water, plant, and animal resources while remaining
environmentally non-degrading, technically feasible, economically successful, and socially
equitable and benign and socially acceptable [64]. Aquaculture is a diversified industry
and its effects, particularly on the environment, vary with species, farming methods, local
environmental conditions, and socioeconomic context [65].

Fish farms employ 18.7 million people worldwide, and this number rises three- to
four-fold when secondary and post-harvest jobs are factored in [66]. Each employed
person supports up to four dependents [67]. Aquaculture is thus a major contributor to
global welfare, providing jobs and the potential for positive social change. It can result in
enormous societal advantages in terms of food production, infrastructural development,
and employment possibilities (e.g., India, Bangladesh) [68]. However, there is still a lot
of contextual heterogeneity among communities when it comes to aquaculture [68], and
many key concerns remain unsolved. Finfish aquaculture appears to have a greater positive
impact than rope mussel farming; however, the latter can hold important cultural values
and contributes to place-based understanding, connecting people with place and identity,
and thus, it plays a critical role in the preservation of the working waterfront identity [69].

Most knowledge of aquaculture’s social effects is produced in the Global South. In in-
dustrialized Global North countries, aquaculture generates employment and infrastructure,
particularly in rural areas. Here, aquaculture suffers from a lack of high-paying employ-
ment opportunities and workers willing to accept low-paying menial positions. There have
been only a few sociological studies conducted on aquaculture in the Global North [70],
while research continues to focus on economic and societal conflicts surrounding resource
utilization and environmental concerns in the Global South. This has promoted regulatory
responses that are becoming more rigorous and expensive [71,72]. The concept of “social
license”, defined as “the needs and expectations on a business by neighborhoods, environ-
mental groups, community members”, is gaining importance in democratic countries of
the Global North [73]. Studies on the social and economic impacts of aquaculture that are
conducted with a broad range of stakeholders contribute to better understanding of and,
consequently, a higher level of trust in aquaculture activities across the globe [74].

Aquaculture has negative social impacts if it contracts or collapses, for instance,
because of disease outbreaks, food safety issues, or natural disasters [75]. As coastal
aquaculture expands, new expertise is needed to comprehend environmental and social
implications and develop new cultivation techniques on the basis of integrated system
understanding [76]. A contextualized systems perspective [77] is needed to identify the
diverse sustainability implications of an intervention such as IMTA [78]. A recent study on
Canadian customers’ views of IMTA products identifies “double needs” among consumers:
firstly, to consume the purchased product; secondly, for the production and consumption
of the purchased product to safeguard the natural environment. The same study finds that
consumers were more interested in the “usefulness” of IMTA products than in their price or
quality [79,80]. Environmentalism (understood as environmental concern and ‘perceived
consumer effectiveness’ (PCE) [79], refers to how confident a consumer is that they can
obtain the results they want and value [81]). This “perceived social welfare” was found
to affect purchasing behaviour. This study supports a better understanding of consumer
attitudes toward environmentally friendly aquaculture products by examining the effect of
perceived social welfare as an independent, explanatory variable.
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4. Candidate Species for Coastal IMTA

Various marine organisms at lower trophic levels have been tested alongside fed
species in IMTA (Table 2) as extractive species and/or additional crops. All elements of cul-
tivation have commercial value as well as significant roles in re-utilizing and bio-mitigation
services. Diversifying aquaculture is recommended for the sake of lowering economic
risk, increasing sustainability, and enhancing competitiveness. In an ecological context,
diversification can also include cultivating species from different trophic levels, such as
seaweeds, shellfish, crabs, echinoderms, worms, polychaetes, sponges and macroalgae,
and bacteria that have been chosen for their complementary roles in the ecosystem [82–84].
The environmental, biological, physical, chemical, social, and economic contexts in which
IMTA systems are deployed inform the numerous possible variants that might be built on
the basis of IMTA as the central/overarching subject.

Table 2. Examples of species at low trophic levels investigated as extractive or additional species
alongside fed species in IMTA experiments.

Extractive/Additional Species Fed Species Reference

Algae

Gracilaria chouae Sparus macrocephalus (black sea bream) [85]
Laminaria saccharina Salmo salar (Atlantic salmon)
Gracilaria sp. Feneropenaeus indicus [6]
Gracilaria sp. fish (not specified) [83]
Kappaphycus alvarezii Rachycentron canadum (cobia) [6]
Chaetomorpha linum
Gracilaria bursa-pastoris

Dicentrarchus labrax (European sea bass)
Sparus aurata (sea bream) [82]

Bivalves

Mytilus edulis (blue mussel) Salmo salar (Atlantic salmon) [86]

Mytilus galloprovincialis Dicentrarchus labrax (sea bass)
Sparus aurata (sea bream) [87]

Mytilus galloprovincialis fish (not specified) [84]

Echinoderms

Apostichopus japonics (sea cucumber) Red sea bream [88]
Apostichopus japonics (sea cucumber) fish (not specified) [83]
Parastichopus californicus (sea cucumber) Anoplopoma fimbria (sable fish) [89]
Cucumaria frondose (sea cucumber) Salmo salar (Atlantic salmon) [90]
Australostichopus mollis (sea cucumber) Perna canaliculus (green-lipped mussel) [91]

Decapods

Homarus gammarus (European lobster) Salmo salar (Atlantic salmon) [92]

Polychaetes

Sabella spallanzanii Dicentrarchus labrax (European sea bass) [93]

Sabella spallanzanii Dicentrarchus labrax (European sea bass)
Sparus aurata (sea bream) [82]

Marphysa sp. (mud polychaete) fish (not specified) [94]

Sponges

Hymeniacidon perlevis fish (not specified) [84]

Sarcotragus spinosulus Dicentrarchus labrax (European sea bass)
Sparus aurata (sea bream) [82]

Halisarca caerulea fish (not specified) [83]

Fish

Mugil cephalus (grey mullet) Sparus aurata (gilthead sea bream) [95]
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5. Economic Value and Financial Viability of Coastal IMTA
5.1. Species-Specific IMTA

Sea cucumber (Cucumaria frondosa) aquaculture has grown in popularity in a context
of rising demand and declining wild fisheries, aided by technological advance in the
production of sea cucumbers [96,97]. As detritus feeders that consume organic matter
in the sediment, and as key surface sediment processors, sea cucumbers are interesting
for IMTA [88,91]. Various species have shown potential when cultivated in the water
column underneath fish cages [88], in cages with sea urchins [98], in abalone tanks [99],
and in hanging scallop lantern nets [36]. The integration of sea cucumbers into existing
aquaculture facilities could deliver significant economic and environmental benefits if
appropriate culture methods are taken and if the sustainable development of the industry
is supported by supporting legislative frameworks [100].

A number of studies indicate that when cultivated with salmon, shellfish (e.g., oysters
and mussels) show significantly increased growth rates [86,101,102]. Regulatory services
from bivalves in IMTA are also considerable [103]. If current trends continue [24], opportu-
nities for developing novel IMTA configurations with a central role for bivalves are likely
to be developed in China.

Seaweed has a big market as food, phycocolloids, feed supplements, agrichemicals, nu-
traceuticals, and pharmaceuticals, with a value of USD 6.4B from sales of nearly 23.8 million
tons in 2012 alone [104,105]. Diversifying the culture system and implementing fish/shrimp
in combination with extractive algae implies not only ecological but economic gains [21].
In 2013, China consumed 193,705 tons of its domestic sea cucumber production, while only
a few hundred tons were exported. A. japonicus is a highly valued species in certain parts
of Asia that is traded worldwide.

Using a mass balance framework [106], it was found that a ton of salmon produces
about 50 kg of nitrogen, which is released into the environment in the salmon production
cycle, providing nutrients for ten tons of seaweed or five tons of mussels [107]. If we
define productivity not in terms of per unit of feed (biotic depletion), but in terms of
per unit of fish meal or fish oil from wild fish stocks, the recycling of otherwise wasted
nitrogen into the marine proteins and lipids needed to feed fish offers opportunities to
increase productivity in a way that may be economically meaningful to the farmer. Such
reintegration of nitrogen into fish feed offers opportunities to increase productivity [19].
The 10 tons of algae produced per ton of fish can generate 164 kg of protein and 9 kg of
marine lipids [108], and these components could be recycled as fish feed [19]. While this
reduces the impact of aquaculture on the environment, it also offers so far underexplored
potential for increasing the economic viability of aquaculture enterprises [19].

Using a discounted cash flow method financial returns were projected for: (i) conven-
tional Atlantic salmon monoculture; (ii) Atlantic salmon IMTA with Mytilus edulis (blue
mussel) and IMTA with Saccharina latissimi (kelp); and (iii) blue mussel, kelp, Atlantic
salmon, and green sea urchin (Strongylocentrotus droebachiensis) as a benthic component
below the net pens. The three-species IMTA was found to be significantly more profitable
than the Atlantic salmon monoculture and the four-species IMTA. The four-species IMTA
produced lower NPV than salmon monoculture, unless IMTA salmon and mussels were
priced 10% higher. When a 10% price premium for IMTA salmon and mussels was in-
cluded, both the three- and four-species generated a significantly higher NPV than salmon
monoculture [37,109]. Given that the studies below indicate that price premiums on IMTA
products have a bright future, it is plausible to regard the NPV projections with a 10% price
premium as more reliable.

Related research on the economic viability of IMTA models that incorporate shellfish
and/or algae into traditional methods of salmon monoculture also finds potential for
increased farm revenues and positive social and environmental outcomes [69,110]. Salmon
is at the core of the most widely used and studied IMTA systems, but the viability of other
key IMTA species has also been assessed. An analysis of the financial returns generated
by an integrated shrimp–oyster IMTA system that also included a seahorse production
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component finds that the benefit per dollar spent was approximately USD 20, with an
internal rate of return of 131 percent [111]. Such results appear promising.

Farm-level financial returns within a specific regulatory context, rather than overall
economic benefits from IMTA, are likely to be the central driver for the entrepreneurial
decision of whether to implement IMTA. Most economic research therefore examines the
viability of IMTA at the level of the farm. One study constructs a mathematical model on
spreadsheet program (Quattro Pro, Borland, Inc.) of an integrated salmon–seaweed system
and assesses the financial profitability of growing seaweed near salmon culture operations.
The researchers examine two seaweed species, Saccharina latissima and Nereocystis luetkeana,
cultivated in different parts of the farm, either between rows of salmon cages or 30 m from
the back of the farm. Both species are reported as financially profitable when co-cultivated
with salmon at most locations [112].

IMTA has been found able to boost individual income in favourable market conditions
and to provide economic resilience in challenging times [32,37]. Research to date has
focused on markets across North America and Canada, with European markets receiving
attention more recently. Consumers looking for IMTA products in Eastern Canada took food
safety into consideration and viewed IMTA items as safe; around half of those surveyed in
one study indicated their readiness to pay an additional 10% for IMTA-labeled products [24].
It was also observed that mussels produced in IMTA systems may benefit from a price
premium, which people in the New York market are willing to pay [113].

5.2. Region- and Country-Specific IMTA
5.2.1. China

MTA application is moving forward in Canada, the USA, France, Spain, Italy, and
Chile [52]. While most IMTA systems so far have remained experimental, cases of commer-
cial implementation of IMTA exist in China. In China, The Zhangzidao Fishery Group Co.,
Ltd. has been granted permission to cultivate scallops (Patinopecten yessoensis), arkshell
(Scapharca broughtonii), sea cucumber (Apostichopus japonicus), and abalone (Haliotis discus
hannai) on up to 40,000 hectares. The business has operated for over a decade, with a
reported harvest of 28,000 tonnes in 2005, which was valued at over USD 60M and rendered
a reported USD 18M of net profit [24]. This company is now considering seaweed farming
and the creation of artificial reefs in offshore areas to improve ecological conditions and the
operation’s long-term viability. In Sungo Bay (China), a company operates on an industrial
scale, producing Laminaria japonica kelp with Chlamys farreri, abalone (H. discushannai), and
blue mussel (Mytilus edulis). Several studies evaluate the environmental costs and benefits
of Chinese aquaculture. It was examined how IMTA systems affected four ecosystem
services: food security, oxygen production, climate regulation, and water treatment [114].
Using a standard cost-benefit assessment (CBA) approach, the authors find that mariculture
in Sanggou Bay had a broadly positive impact on ecosystem outcomes, which account
for the majority of the profits and costs associated with mariculture activities (including
both economic and ecological contribution and loss). For instance, increasing the value of
food production shows economic benefit, while decreasing the value of some ecosystem
services results in environmental degradation. Importantly, a comprehensive assessment
shows that IMTA is more economically and environmentally sustainable than two mono-
culture techniques for the same region; hence, they recommend it for open-water systems
in China [31].

5.2.2. Others Region

In the Mediterranean, the combination of mariculture with ecological restoration
suggests inshore IMTA practices and the combination of mussel farming with artificial
reefs in the open sea [115]. Polychaetes, sponges, and macroalgae co-cultured in a southern
Italian in-shore mariculture plant were the subject of the above-cited recent study on one
of the first attempts at IMTA in the Mediterranean region [82]. In Canada, (Fundy Bay),
IMTA combines kelp Saccharina latissima and Alaria esculenta with Atlantic salmon and
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blue mussel. Higher kelp and mussel growth rates were found with positive implications
for the profitability of this enterprise [116]. In South Africa, several commercial abalone
farms have successfully applied Ulva macroalgae to absorb ammonia from effluent water
in recirculating or flow-through systems. The algae can subsequently be fed back to the
abalone to supplement formulated feed [33].

A recent study considers a productive area of 2000 m2 as representing a typical
small-scale multi-trophic production system enterprise in Southeast Brazil and evaluates
its economic viability with economic indicators for two monotrophic crops, Perna perna
(mussels) and Rachycentron canadum (cobias). Profitability is assessed with the Internal
Rate of Return (IRR), Payback Period (PP), and Net Present Value (NPV). IRR is used for
financial analysis to estimate the profitability of potential investments. PP is the number of
years required to recover the original cash investment. NPV compares the initial capital
investment of a project to the present value of all the cash flows it will generate in the future.
Investment assessments with a 10-year time horizon are undertaken using scenarios which
assume 20% and 40% of cobia juvenile unit prices, average feed price, cobia commercial
price, mussel commercial price, cobia productivity, and mussel productivity. In all scenarios,
multi-trophic systems were more economically viable than the other evaluated scenarios.
IMTA systems’ greater resilience also makes them more appealing to entrepreneurs than
monocultures, since diversified production is less exposed to overall failure [117].

On the southern coast of Brazil, the economic viability of IMTA (Perna perna) mussel,
Nodipecten nodosus scallop, and Kappaphycus alvarezii algae) was assessed for a small-scale
family production system of 0.4 ha. All key indicators showed positive values: Investment,
operational expenses, and profitability; the financial indicators of Gross Revenue (GR) and
Operating Profit (OP); the profitability indicators of Gross Margin (GM) and Profitability
Index (PI), (“Gross Revenue (GR)” (which is total revenue before any deductions for
expenses or losses); “Operating Profit (OP)” (which is the total amount of money made by
the business in a given time period, before interest and taxes are removed); an finally also
the “Profitability Index (PI)” which indicates the relationship between a proposed project’s
expenses and benefits). The payback period in the worst evaluated scenario was 4.24 years,
and even this was still classed as a low-risk investment. Returns were always higher than
the nominal discount rate of 6%. All this showed the IMTA project to be economically
viable. The economic evaluation of the first experience of a small-scale commercial IMTA
system in Southeast Brazil was thus positive, IMTA was shown to be able to support social
and economic improvement in that region [118].

Another early study [119] in Latin America, analysed Gracilaria chilensis with salmon
farming in an integrated salmon–seaweed production process throughout southern Chile.
Seaweed production provided 34,000 USD/year of farm gross income, which is approxi-
mately USD 0.28 per kilogram of fish. The study concludes that this IMTA system brought
large economic benefits to Chile’s salmon farming industry, as well as clear environmental
benefits. When combined with the finfish farming of cobia Rachycentron canadum along
India’s east coast, the use of IMTA in open sea cage farming resulted in a 50 percent increase
in seaweed output, Kappaphycus alvarezii [6].

Similarly, an evaluation of the financial viability of a salmon–mussel production sys-
tem on the Scottish coast was based on information from Scottish mussels and salmon
culture farms without seaweed. Researchers evaluated the Net Present Value (NPV) of
three different cultivation systems over a period of twenty years using the capital budget-
ing approach. These cultivation systems were salmon monoculture, mussel monoculture,
and integrated salmon-mussel farming. The measured NPV for the USD 2.63M for the
integrated salmon-mussel system was higher than the combined NPVs for both the salmon
monoculture system (USD 1.7M) and the mussel monoculture system (USD 0.650M), as-
suming that the mussel production rate for the integrated system was 20% higher. The
higher profitability of the integrated system was susceptible to changes in product prices.
Even assuming that mussel prices remain constant, a 2% annual decline in salmon prices
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would more than offset the benefits of integration and make polyculture an unattractive
investment [32].

Related results from a study of 80 farmers on the profitability of shrimp culture with
tilapia on the North Central coast of Vietnam indicates that farmers using this integrated
polyculture technique realized higher economic gains and lower feed and pond preparation
expenses than those using non-integrative practices. Farmers also perceived that the
integration of shrimp and tilapia improved their adaptive capacity in the face of weather-
related shocks [120].

Available research on the economic value and financial viability at the farm level has,
for a considerable period, indicated good wider economic and farm-level potentials for
integrated aquaculture, and for IMTA in particular.

6. Bioremediation by Extractive/Additional Species

Bioremediation through integrated, ecosystem-based aquaculture is an important
potential of integrated cultivation [6]. In recent years, water quality difficulties created by
aquaculture wastes have received much interest [21,40,121]. On its own, the application of
biofilters (sea cucumber bivalves) to mitigate effluents can increase economic benefits. In
integrated aquaculture, waste nutrients are not a burden but a resource for the supplemen-
tary cultivation of products that also act as biofilters. Verongiida marine demosponges are
a material science and marine pharmacological gold mine [122]. Sustainable approaches
to construction can use Verongiida demosponges’ biomaterial, and there is anti-cancer
therapeutic potential. The co-cultivation of Verongiida (Aplysina aerophoba) in IMTA systems
could thus be a viable option to improve both ecological sustainability and profit at the
farm level [123,124].

Bivalves are a top candidate as extractive species in IMTA [125]. They catch waste
particles from agricultural effluent and extract waste products from a higher trophic level
(e.g., bacteria, phytoplankton). Grown together, Gracilaria sp. and Feneropenaeus indicus at
different stocking densities showed that the seaweed removes nutrients from shrimp farm
waste. 600g of seaweed removed 25% of ammonia, 22% of nitrate, and 14% of phosphate
from 200g of shrimp waste at a 3:1 ratio of Gracilaria sp. and Feneropenaeus indicus [6].
Bivalves are biocontrollers of sludge for fish farms and other sources of eutrophication. The
capacity of Diplodon chilensis freshwater mussel to mitigate chlorophyll a, phosphate, and
ammonia in salmon tanks has been demonstrated [126]. Cucumaria frondosa exhibits a high
absorption efficiency (>80%) when exposed to higher organic particulate matter, such as
salmon food and faeces, so that it is an effective organic extractive species for IMTA systems.
Bivalve cultivation can, therefore, be combined with fish farming to reduce the negative
effects on the environment, while simultaneously offering a commercially successful crop
for farmers [86].

Bivalves such as mussels, oysters, and clams as bio-filters in estuaries have shown a
positive effect on nutrient-rich effluents. In IMTA, the cultivation of bivalves (Crassostrea
madrasensis) and finfish (Etroplus suratensis) effectively controlled eutrophication [127,128].
The filter-feeding oysters enhanced the water quality in the farming region, consequently
lowering eutrophication. In this farming technique, the best ratio of fish to oysters reported
for co-cultivation was 1:0.5 [127,128].

A study on the integrated cultivation of macroalgae (Saccharina latisima) and mussels
(Mytilus galloprovincialis) in the Sea of Galicia, Spain found that it was more productive
than individual crops, and therefore IMTA systems could serve to diversify aquaculture
and reduce environmental impact. Mussels’ metabolism produces organic and inorganic
waste. Mollusc-excreted ammonia helps algae thrive and improves water quality [129].

In order to develop such bioremediation systems, it is essential to choose suitable
seaweed species. In IMTA, seaweeds can mitigate the environmental impact of nitrogen-rich
effluents on coastal ecosystems. The seasonal distribution and productivity of seaweeds
are influenced by water temperature and photoperiod [130]. In a study in Korea, (Zagalchi,
Busan) [130], identify, Codium fragile as an ideal candidate for summer IMTA because it
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grows during late summer and early fall and thus should be able to absorb substantial
amounts of nutrients from fed aquaculture when water temperatures are warmer.

Another study argues that it is difficult to analyse the bio-mitigation effect of extractive
species in open-water studies because the Initial Biomass Ratio (IBR) of the extractive to
target species is too small. This makes it difficult to conduct experiments. It is necessary to
conduct an IMTA experiment on a large scale that is optimally designed and in which the
Initial Biomass Ratio (IBR) of the extractive species to the target species [121].

7. Social Sustainability, Social License, and Aquaculture Governance

Social license, the approval of aquaculture plans by affected communities, is an impor-
tant element of the social sustainability of aquaculture, and it holds untapped potential for
holistically sustainable aquaculture. Public acceptance of IMTA depends on perceptions
of the economic or social benefits and harms associated with the activity [131]. A posi-
tive association between improved environmental performance, increased social license,
and better access to aquaculture licenses was shown in Norway, where the government
established 45 ‘green aquaculture’ licenses in 2013 [132]. Denmark has legislation to reduce
environmental emissions from aquaculture, which encourages IMTA development [107].
However, these are small beginnings.

A more recent study in Norway confirms that IMTA can reduce the negative environ-
mental effects of salmon aquaculture, but importantly, this first interdisciplinary study on
IMTA in the region also finds that Norwegian aquaculture governance, i.e., the country‘s
rules and laws prevent this. To assess the future of IMTA in Norway, this study conducted a
workshop in which participants conceptualized IMTA for the Norwegian salmon industry.
The results show that IMTA would improve public perceptions of salmon aquaculture,
create skilled jobs in coastal communities, and provide the industry with new sustainable
sources of marine ingredients for feed. Participants also identified that IMTA proponents
face opposition from policymakers, from a public concerned about the environmental
impact of salmon farming, from coastal communities that have the power to regulate
access to marine territories, and from a powerful aquaculture industry that is focused on
salmon production only. Agenda setting with policy and lawmakers and public opinion
outreach work are clearly identified as central future tasks on the path towards viable IMTA
implementation [133].

Exploring this further, a set of open-ended interviews with 34 farmers and scientists
from 12 European countries who all had extensive IMTA experience identified nine types of
barriers to IMTA: Biological, Conflicts, Environmental, Interest, Legislation, Market, Opera-
tional, Research & Development, and Vandalism. While the relative importance of factors
varied across Europe, highlighting the need for country and site-specific measures [134],
factors such as conflicts, legislation, markets, operational, and even vandalism indicate
that aquaculture governance is a major field of needed engagement if IMTA is to realize its
clearly documented economic and ecological potentials.

In their early global review on IMTA in temperate marine waters Barrington and
coauthors [24], also discuss the social perception of IMTA as a new idea in aquaculture;
finding that many people believed that IMTA was able to reduce salmon farming’s environ-
mental impact, increase financial benefits to communities, and enhance the productivity
and long-term viability of enterprises. A total of 90% of the general public and 89% of aqua-
culture industry-related respondents in this 12-year-old study thought that IMTA might
be a profitable venture. It was also found that 82% of the public and 79% of the industry
believed that existing salmon monoculture methods had a moderate to negative impact
on the community while IMTA was anticipated to be less harmful [37]. Positive public
views of IMTA and the demonstrated willingness to pay extra for IMTA products in key
markets bodes well for IMTA profit margins and should enable IMTA application. Given
appropriate legislation and equity-oriented product labelling (i.e., appropriate aquaculture
governance), IMTA should also be able to promote social development.
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In practice, and despite clear evidence that it increases system output and promotes
environmental, economic, and social sustainability, IMTA has entered the commercial realm
only in a few cases. A 2021 survey of 47 countries finds that for farmers who reported
using integrated multi-trophic aquaculture (IMTA), it may enhance resilience to multiple
stressors by providing different market options during the COVID-19 pandemic [135].
Some authors also argue that public perceptions of IMTA are positive so that it might serve
to facilitate operating permits from the government and communication with NGOs and
local communities [136].

8. Conclusions

Sustainable coastal development requires a holistic strategy that considers social, cul-
tural, economic, environmental and governance aspects [137,138]. This means a balance
between good environmental quality, which provides ecosystem services, inclusive social
development, and an economic system that prioritizes human well-being in a just and
participatory governance framework over limitless growth [137,139,140]. IMTA has been
repeatedly shown to be an economically viable and socially beneficial approach to coastal
aquaculture. As monoculture is hampered by high input costs (such as electricity, medicine,
and feed), environmental challenges (such as worsening waste and water quality), and
social and economic concerns (such as vulnerability to shocks and loss of low-cost local pro-
tein sources), these IMTA potentials become ever more valuable. Aquaculture governance
is a subject of increasing importance [72]. As recent work indicates, however, the study
and practice of aquaculture governance [141,142] as yet does little to support an integrated,
ecosystem-based, profitable, socially equitable and accepted cultivation of marine species.
Research to date indicates that the divergence between possible financial returns at the
level of the entrepreneurial unit and economic returns at the macro level inhibits the uptake
of IMTA. It may be argued that this needs to be a key target of governance development.
When the indications are that laws, rules and norms are missing or inappropriate, the lack
of governance analysis is at the core of the hitherto weak engagement with IMTA. Site
selection, licensing, and regulation decisions have been found arbitrary and significantly
affected by politics and local leaders. Governance decisions such as subsidies, implementa-
tion, and licensing are often focused on single species, a revision of governance approaches
here may turn out to be critical to the broader adoption of the growing number of successful
IMTA pilots into commercial practice. Transdisciplinary and actionable knowledge on gov-
ernance is needed to support governments in responding to the aforementioned challenges
with incentives that facilitate implementation and reward the wider sustainability effects of
IMTA operations.
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