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A B S T R A C T

Uncertainties in environmental decisions are large, but resolving them is costly. We provide a framework
for value of information (VoI) analysis to identify key predictive uncertainties in a decision model. The
approach addresses characteristics that complicate this analysis in environmental management: dependencies
in the probability distributions of predictions, trade-offs between multiple objectives, and divergent stakeholder
perspectives. For a coral reef fisheries case, we predict ecosystem and fisheries trajectories given different man-
agement alternatives with an agent-based model. We evaluate the uncertain predictions with preference models
based on utility theory to find optimal alternatives for stakeholders. Using the expected value of partially
perfect information (EVPPI), we measure how relevant resolving uncertainty for various decision attributes is.
The VoI depends on the stakeholder preferences, but not directly on the width of an attribute’s probability
distribution. Our approach helps reduce costs in structured decision-making processes by prioritizing data
collection efforts.
1. Introduction

Environmental management decisions need to be made in the face
of large uncertainties. Confronted with these uncertainties, an intuitive
response is to collect additional information on the reasonable assump-
tion that more information will reduce uncertainty. This in turn may
improve our understanding and, ultimately, lead to better management
decisions.

However, collecting more information requires time and effort,
which could otherwise be allocated to management actions, particu-
larly in countries with limited resources for environmental manage-
ment. When we know enough about a system to make a sensible
decision, requesting ‘‘more science’’ rather becomes a technique to
delay implementation (Gregory et al., 2006). Faced with the trade-
off between researching and managing an ecosystem, it is important
to consider: to what extent is the use of limited resources to improve
our understanding of a system justified by the resulting potential for
improved management?

This question can be approached with the concept of value of in-
formation (Howard, 1966; Feltham, 1968). Value of information (VoI)
analysis allows us to determine the value (in the sense of benefit or
utility) of additional information for deciding between different alter-
natives. We can think of VoI analysis as a form of sensitivity analysis
with a focus on the sensitivity of the decision to new information rather
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than the magnitude of variation in the outcomes (Borgonovo et al.,
2016; Felli and Hazen, 1998; Razavi et al., 2021). The analysis sup-
ports us in answering the questions: would our decision for a specific
management alternative change if we had more information? And if
so, which information would most influence our choice? Or conversely,
resolving which of the uncertainties would bring more utility? Based on
the answers, we can rationally prioritize between research, monitoring,
and implementation activities for a concrete decision.

Tackling complex decisions in a rational way and conducting VoI
analysis is facilitated by a quantitative representation of the decision
and its uncertainties (see Section 2.1). This is achieved by a decision
model, which consists of a predictive system model and a preference
model (Reichert et al., 2015; Haag et al., 2019b). The predictive system
model (also called prediction model, system model, assessment model,
or simulation model in the literature) provides measures of various
system attributes (e.g., coral cover, crop yield, breeding pairs, etc.)
given an input state. This allows us to assess the potential consequences
if we implemented different management alternatives (also called op-
tions, variants, actions, strategies, or scenarios in the literature). The
preference model (also called evaluation or utility model) represents
how decision-makers, stakeholders, or society perceive and evaluate
the predicted consequences of the system state. In this study, we
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focus on quantitative preference models based on multi-attribute utility
theory (Keeney and Raiffa, 1993).

Value of information analysis is an established approach in health
care economics and medical decision making (e.g., Felli and Hazen,
1998; Fumie and Thompson, 2004; Jackson et al., 2022). There is also
growing interest in conservation biology (reviewed by Bolam et al.,
2019) and environmental management in general (Keisler et al., 2014;
Eidsvik et al., 2015). However, many environmental decision problems
share characteristics that complicate VoI analysis and at the same time
make it especially relevant for these problems.

In this paper we address two research gaps for VoI analysis that
emerge from the complexity of environmental decisions. First, we
lack an integrative framework for jointly tackling common characteris-
tics of such decisions, including (1) multiple, conflicting management
objectives (management criteria), (2) uncertain consequences of man-
agement alternatives with continuous distributions rather than discrete
states or hypotheses, and (3) probability distributions of consequences
that are not independent from each other. Multi-criteria decision ap-
proaches (MCDA/MCDM) have been used with VoI analysis before
(e.g., Bates et al., 2014; Runge et al., 2011; Eidsvik et al., 2015),
but mostly have addressed these aspects separately (see Bolam et al.,
2019). VoI analysis for continuous probability distribution remains
conceptually straightforward, but can become challenging for (condi-
tionally) dependent probability distributions (e.g., Eidsvik et al., 2015;
Myklebust et al., 2020). Second, multiple, conflicting perspectives on
an environmental decision problem commonly exist. However, the
consideration of multiple stakeholder perspectives in VoI analysis has
not been discussed widely in the literature before. We address this issue
and investigate the influence of diverging stakeholder perspectives on
the results and conclusions from VoI analysis.

The aim of this paper is to develop an integrated approach to
conducting VoI analysis given the characteristics of environmental deci-
sions, and highlight relevant considerations when applying the method.
The following questions guide our approach:

1. How can we estimate the VoI based on the correlated output of
complex system models?

2. How to analyze VoI in decision contexts with multiple, conflict-
ing objectives?

3. What is the influence of diverging stakeholder perspectives on
the conclusions of VoI analysis?

To address these questions, we create a framework to conduct VoI
nalysis for complex decisions, bringing together elements that have
een developed previously. Our VoI analysis rests upon a decision
odel that combines system predictions and stakeholder preferences

see above and Section 2.1). The predictions can come from one or
ore arbitrarily complex models and can exhibit dependencies in their
istributions. To efficiently conduct VoI analysis for dependent proba-
ility distributions, we adapt an algorithm by Strong and Oakley (2013)
s a replacement for traditional double-loop Monte Carlo procedures.
hile different measures of the VoI have been proposed (see Eidsvik

t al., 2015 and Section 2.2), we use the expected value of partially
erfect information (EVPPI; also called EVPXI or EVXI). This measures
he expected gain in utility if we would decide based on perfect
nformation about one (or few) variables of interest instead of being
ncertain about them.

To implement our framework, we investigate a case study on coral
eef fisheries management for islands in the Indo-Pacific. It is a complex
ecision problem in a region that requires sound management of pre-
ious and fragile ecosystems (Eddy et al., 2021). Coral reefs are under
ntense pressure from various local and global stressors, such as climate
hange, pollution, fisheries, and other impacts (Burke et al., 2012). A
eef’s ecological complexity poses substantial challenges for predicting
he state of the reef under a management alternative. While different
odeling approaches can be helpful (Kelly et al., 2013), we use a
2

patially explicit agent-based model in our study (Miñarro et al., 2018).
Decisions about their local management are not only difficult because
coral reefs and their fisheries are intricately linked, but they also
fulfill a variety of needs in often resource-constrained socio-economic
contexts (Ferse et al., 2014). Therefore, the divergent objectives and
perspectives of various stakeholders need to be considered in decision
making. Typically, the available data and our ability to collect data is
limited, requiring iterative and adaptive management approaches that
include targeted efforts for the collection of additional information.

After discussing our framework for VoI analysis (Section 2), we
introduce the structure of the reef management decision case (Sec-
tion 3.1). We describe how to analyze the EVPPI for predictions of
fisheries management alternatives and discuss design choices for such
efforts (Section 3). Based on the analysis results (Section 4), we discuss
the usefulness of VoI analysis and suggest desirable extensions to our
implementation (Section 5).

2. Framework for analyzing value of information for decision
models

2.1. Decision modeling

Making a rational decision between several alternatives is facilitated
by a quantitative representation of the consequences of implementing
an alternative and of the stakeholder preferences regarding these conse-
quences. The combination of predictive system models with preference
models to evaluate decision alternatives we call a decision model
(see Haag et al., 2019b). In the following, we provide the concep-
tual background to VoI analysis for such models (Fig. 1). A concrete
implementation is detailed in Section 3.

After a comprehensive problem structuring phase (e.g., Marttunen
et al., 2017), the first step of decision modeling is to predict the
consequences 𝒚𝑎 = (𝑦𝑎,1,… , 𝑦𝑎,𝑚) for each alternative 𝑎 on the system at-
tributes (1,… , 𝑚) that are relevant for decision making according to the
stakeholders. These predictions can come from a mathematical model,
but also from experts (e.g., Nicol et al., 2019). Given that environmen-
tal or socio-ecological systems can neither be completely understood,
nor fully observed, nor perfectly represented in a model, it makes
sense to conceptualize these predictive system models as probabilistic
models with uncertain parameters or inputs (Reichert et al., 2015;
Reichert, 2020). Therefore, the consequences for an alternative 𝑎 are
better represented as a random vector Y𝑎, as we do not obtain a point
estimate for the predicted variables, but distributions of predictions 𝑝Y𝑎

.
The distribution of predictions is a more informative description of our
knowledge than a point estimate or aggregated value. The predicted
distributions will often not be independent. For instance, the biomass
of carnivorous fish may be negatively correlated with biomass of prey
species.

The second step is to identify a utility function, 𝑢, that quantifies a
stakeholder’s preferences with regard to the predicted attribute levels
and their uncertainties. The utility function represents the trade-offs
the stakeholder is willing to make between uncertain consequences.
Let Y denote the set of all possible consequences for all attributes
considered relevant in the decision. A multi-attribute utility function
𝑢 ∶ Y → [0, 1] maps from a space of predicted consequence regarding
system attributes to a utility space. It returns the utility of potential
consequences, with larger utilities representing more preferred system
states (Keeney and Raiffa, 1993). Standard utility theory does not
consider uncertainty of preferences; in the following we keep to this
limitation. A more extensive and rigorous treatment of multi-attribute
utility theory than outlined here can be found in textbooks (e.g., Keeney
and Raiffa, 1993; French, 1986).

Once we specified parameters of a utility function based on a
stakeholder’s preferences, we can calculate the resulting multi-attribute
utility 𝑢(𝒚𝑎) for an individual prediction of consequences 𝒚𝑎 = (𝑦𝑎,1,… ,
𝑦𝑎,𝑚). For instance, 𝑦1 could be the prediction for the coral cover in %

2
and 𝑦𝑚 the prediction for herbivorous fish biomass per 𝑚 three years
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Fig. 1. Scheme of decision modeling and value of information (VoI) analysis followed in this study. The predicted uncertain consequences of alternatives (𝑌𝑖(𝑎)) are evaluated
according to stakeholder preferences to determine an optimal baseline choice by maximizing expected utility (EU). The sensitivity of this choice to new information is then
investigated with VoI analysis as a form of sensitivity analysis. For a practical case, more alternatives, several different predictive models, more attributes, and more stakeholders
may exist than depicted here.
from now. However, as the predictions are uncertain, we need to
evaluate their entire distribution. Given uncertain consequences Y(𝑎)
for an alternative 𝑎, we receive corresponding utilities U𝑎 = 𝑢(Y(𝑎)).
For a given stakeholder preference profile, we obtain a ranking of the
alternatives based on their expected utility (EU):

EU(𝑎) = E[U𝑎] = ∫𝑦
𝑢(𝒚)𝑝𝒀 𝑎

(𝒚)d𝑦 (1)

with 𝑝𝒀 𝑎
the probability distribution of the consequences of imple-

menting alternative 𝑎 as measured by all of the system attributes. The
alternative with the highest EU is then determined by maximizing:

max
𝑎=1…𝐴

E[𝑢(Y(𝑎))] (2)

Utility theory is prescriptive because a rational decision maker should
choose the alternative with the highest EU, 𝑎∗, given their prefer-
ences (encoded in the function 𝑢) and the probability distributions of
predicted consequences 𝑝𝒀 𝑎

.
Utility theory allows determining the optimal choice for individuals

or groups with homogeneous preferences. For environmental manage-
ment decisions, the societal utility of an alternative must be considered
from conflicting stakeholder perspectives. Which decision-making cri-
terion should be considered rational or fair for a group or society is
an unresolved question (de Jonge, 2012). However, making a number
of contested assumptions, such as the possibility for interpersonal
comparisons of utility, we can construct a group utility function from
the individuals’ utility functions (Keeney, 2013). To obtain a group
expected utility EU𝐺(𝑎) of an alternative 𝑎 across 𝐾 stakeholders per-
spectives, we aggregate individual expected utilities EU𝑘 using the
weighted arithmetic mean. The weights 𝑤𝑘 with 0 < 𝑤𝑘 ≤ 1 are scaling
factors for the utility between stakeholders that sum to one (Eq. (3)).

EU𝐺(𝑎) =
𝐾
∑

𝑘=1
𝑤𝑘 ⋅ EU𝑘(𝑎) (3)

2.2. Value of information sensitivity analysis

The optimal baseline choice in a decision is the alternative 𝑎∗

obtained by maximizing EU, given the current state of information and
the current preferences. However, in practice, we are usually concerned
about the sensitivity or robustness of such a conclusion: How bad
would it be if we picked this seemingly optimal alternative, but some
3

information turned out to be different in reality?
For illustration, let us consider a decision about a system in which
only one among all the variables is uncertain. Following ideas intro-
duced by Felli and Hazen (1998), we consider three perspectives of a
decision’s sensitivity to that uncertain variable:

• Threshold perspective: If we varied the variable from its lowest to
highest value, is there any threshold level at which the optimal
choice changes? If not, the decision is insensitive to that variable.

• Probabilistic perspective: Given the probability distribution of the
variable, how likely is it that the threshold is crossed? If this
is very unlikely, the optimal choice remains insensitive to the
variable, even though a threshold exists.

• Utility foregone perspective: How large is the expected difference
in utility between our baseline choice and the optimal choice if
the threshold would be crossed? If the difference in utility is small
enough, the penalty for having chosen a suboptimal alternative
will be small enough that we can consider the decision to be
insensitive.

Value of information can be thought of as a sensitivity measure
that takes both the probabilistic and utility foregone perspectives into
account (Felli and Hazen, 1998; Borgonovo et al., 2016). Converse
to utility forgone, it measures the gain in utility we can expect from
knowing a decision aspect, such as a system attribute or parameter,
with (more) certainty. With VoI we thus measure how sensitive the
optimal choice is to potential new information, before we acquire it.
If the VoI is small, it is unlikely that the baseline optimal choice
changes with that new information or the difference in utility that this
change would bring is small. Thus, VoI supports us in prioritizing which
uncertainties should be reduced by further information collection.

Several variants of VoI measures have been proposed. They share
the same concept, but differ with regard to the additional information
that is considered. The expected value of perfect information (EVPI),
measures the sensitivity of obtaining perfect information on all modeled
aspects of the decision (Eidsvik et al., 2015). The expected value of
partially perfect information (EVPPI, also abbreviated EVXPI or EVXI),
measures the sensitivity of obtaining perfect information on parts of the
uncertainties, for example, one or several parameters (Eidsvik et al.,
2015). This is the measure we focus on in the following.

Given that aleatory uncertainty cannot be reduced by more studies
or data collection, EVPI and EVPPI can be thought of as upper bounds
for the actual VoI we can expect. In practice, we will always only ob-

tain imperfect information. The expected value of sample information
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(EVSI) is a measure for the impact of obtaining additional data, but not
perfect information. Estimating EVSI is still difficult in many contexts,
but it is an active area of research (e.g., Williams and Johnson, 2018;
Kunst et al., 2020).

2.3. The expected value of partially perfect information

The idea of VoI is to calculate the added value of a piece of infor-
mation before we actually expend the effort and cost to obtain it. In the
case of EVPPI, we estimate the expected gain if we knew one or a group
of variables of interest (parameters, inputs, or attributes) with certainty.
A formal and extensive treatment as well as algorithms to estimate the
EVPPI is available in the literature (Brennan et al., 2007; Eidsvik et al.,
2015; Borgonovo et al., 2016; Heath et al., 2017). Here, we sketch out
the main ideas with the aim to provide an intuitive understanding of
the approach. In this study we focus on uncertainties of the predictions
of the attributes. However, VoI analysis can be conducted for other
variables within the models by following the same approach.

Let us assume we have determined the optimal baseline choice (𝑎∗)
for a coral reef management decision, given the current state of data
and knowledge. We are now interested to find out how sensitive that
choice is to one aspect of the decision: our prediction of the resulting
coral cover (cc) under a marine protected area (MPA) alternative. We
denote this variable of interest Y𝑖 = Ycc,MPA. If we had perfect informa-
tion about the resulting coral cover if an MPA were implemented, what
would be the expected added value to the decision?

The idea of the analysis is that we pretend we could – with a
certain cost and effort – gain clairvoyance on this variable and found,
for instance, that Y𝑐𝑐,𝑀𝑃𝐴 = 𝑦𝑐𝑐,𝑀𝑃𝐴 = 58%. This gives us a better
estimate for the variable and can have three effects: (a) the conditional
distributions of the other variables, Y−𝑖|Y𝑖 = 𝑦𝑖, change if they are
ot independent, (b) the distribution of all utilities U𝑎 change if they
re not independent from the variable of interest, and (c) the optimal
lternative might change.

We now calculate the maximum utility given this new information,
ax𝑎=1…𝐴 {E[U𝑎|Y𝑐𝑐,𝑀𝑃𝐴 = 58]}, and determine the best alternative. If

he best alternative is still the baseline optimal choice 𝑎∗, the additional
nformation that coral cover under the MPA alternative will be 58% did
ot help us make a better choice than we would have made anyway.
ather, there is an opportunity cost, if effort was expended towards
ollecting this information. Consequently, the value of this information
ould be zero as the EU of the optimal alternative given the informa-

ion, 𝑎∗, and the EU of the baseline choice given the information is
dentical: max𝑎=1…𝐴 {E[U𝑎|Y𝑐𝑐,𝑀𝑃𝐴 = 58]} − E[U𝑎∗ |Y𝑐𝑐,𝑀𝑃𝐴 = 58] = 0.
owever, if the new information changed our optimal choice, this
ifference will be positive and indicates the value of collecting this
nformation.

While this illustrates the VoI for one particular value 𝑦𝑐𝑐,𝑀𝑃𝐴, we
re interested in the expected VoI for Y𝑐𝑐,𝑀𝑃𝐴 over its entire probability
istribution of the coral cover within the predicted range. We can
stimate this by sampling from the predicted probability distribution of
oral cover, calculating the corresponding EU given that we ‘know’ this
ampled value, and tracking the corresponding change in the optimal
hoice. If the optimal choice does not change for any of these values,
t implies that no matter how much we improve our predictions our
onclusions would never change.

More formally, for a risk-neutral stakeholder we calculate the EVPPI
bout the variable of interest Y𝑖 with:

VPPI(Y𝑖) = E
[

max
𝑎=1...𝐴

{

E[U𝑎|Y𝑖]
}

− E[U𝑎∗ |Y𝑖]
]

= E
[

max
𝑎=1...𝐴

{

E[U𝑎|Y𝑖]
}

]

− max
𝑎=1…𝐴

{

E[U𝑎]
}

(4)

The EVPPI can be viewed as the difference between a ‘‘posterior’’
value of the decision with new information and a ‘‘prior’’ value without
4

the information, as in the second part of Eq. (4) (Eidsvik et al., 2015). If
a stakeholders has an exponential utility function (Keeney and Raiffa,
1993), these are the respective certainty equivalents of the situation
where information is available for free and where no further informa-
tion is available (Eidsvik et al., 2015). If a stakeholder is risk-neutral,
the certainty equivalents are the expected values, as in Eq. (4).

If we expand our analysis to several variables of interest (e.g.,
growth rates, herbivore fish biomass, revenue for fishers, etc.), we
can determine a ranking of the variables in terms of their EVPPI.
This provides a quantitative and transparent prioritization of the most
relevant uncertainties. This can serve as the basis for directing study
design and deciding about upcoming expenditure of costs and efforts
towards collecting data and information.

2.4. Given-data approach to estimating EVPPI and threshold sensitivity

Since analytical solutions can rarely be found, various simulation-
based approaches to estimate the EVPPI have been developed. The clas-
sical procedure is a two-level nested Monte Carlo simulation (e.g., Felli
and Hazen, 1998; Brennan et al., 2007). However, this requires many
simulations. In addition, to account for dependencies in the distri-
butions of predictions, Markov-Chain-Monte-Carlo (MCMC) or other
conditional resampling procedures with high computational burden are
needed with a nested approach (Strong and Oakley, 2013).

The alternative we describe here, is a given-data approach that
only requires a single-loop Monte Carlo sample, as one obtains from
a probabilistic sensitivity analysis. This procedure has been developed
by Strong and Oakley (2013) and is more generally discussed by Bor-
gonovo et al. (2016). The method was originally conceived for VoI
calculations based on the net benefit of alternatives, here we adapt it
to usage with EU for risk-neutral preferences.

We focus on this approach because it can handle the conditional
dependencies in the distributions of variables while being computa-
tionally more feasible in connection with complex system models, as a
single-loop Monte Carlo sample is sufficient. A drawback of the method
is that it is only efficient for calculating the EVPPI of single variables.
To calculate EVPPI for sets of variables other approaches have been
suggested (Strong et al., 2014; Heath et al., 2017).

While we refer the reader to the original publication by Strong and
Oakley (2013) for the details, the basic algorithm can be described as
follows.

• From a Monte Carlo simulation we receive 𝑆 samples of the
uncertain variables and of the 𝑆 corresponding utilities for each
alternative.

• The vector of samples 𝒚𝑖 of the variable of interest Y𝑖 for which we
want to calculate the EVPPI, as well as the corresponding utilities
𝒖(𝑎) for all management alternatives are now both reordered such
that 𝑦(1)𝑖 ≤ 𝑦(2)𝑖 ≤ ⋯ ≤ 𝑦(𝑆)𝑖 . The superscript denotes the reordered
position in the vector of variable samples.

• The reordered samples and the corresponding reordered utilities
are partitioned into 𝐾 bins of equal size 𝐽 , with 𝐽 ⋅𝐾 = 𝑆.

• For each bin 𝑘, we calculate the EU for each alternative. This is an
approximation of the EU conditional on the value of the variable
of interest 𝑦𝑖 being in this bin. We then take the maximum EU
across the alternatives.

• The arithmetic mean of these maxima across all 𝐾 bins is taken
as an approximation to the first term in Eq. (4): E

[

max𝑎=1...𝐴
{

E[U𝑎|Y∗]
}]

. The second term of Eq. (4), the EU of the baseline
optimal choice – max𝑎=1…𝐴

{

E[U𝑎]
}

– can be directly calculated
as in Eq. (2).

The corresponding estimator for EVVPI can be written as:

VPPI(Y𝑖) =
1
𝐾

𝐾
∑

𝑘=1
max
𝑎=1...𝐴

{

1
𝐽

𝐽 ⋅𝑘
∑

(𝑠)=1+𝐽 ⋅(𝑘−1)
𝑢(𝑠)(𝑎)

}

− max

{

1
𝑆
∑

𝑢𝑠(𝑎)

}

(5)

𝑎=1...𝐴 𝑆 𝑠=1
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We propose that the same algorithm is efficient for threshold sen-
sitivity analysis that takes into account conditional distributions. The
aim here is to estimate the EU of alternatives given that a variable of
interest Y∗ takes on different values and then identify threshold values
of Y∗ where the optimal alternative changes. This could be achieved
by varying Y∗ in a one-factor-at-a-time sensitivity analysis. However,
to take a regional view on sensitivity and account for dependencies
across attributes and alternatives, we need to consider the conditional
distributions of all variables given the specific values of the variable of
interest.

To understand the relationship between specific values of Y∗ and the
U of the alternatives, we can employ the algorithm described above.
he relationship can be approximated by calculating the arithmetic
ean of the variable of interest in each bin and the corresponding
U for each alternative in this bin. Thresholds can then be determined
isually from a scatterplot or by calculating a threshold criterion. As
t is sample-based, we may not be able to identify one threshold, but
ather a range of Y∗ as a threshold region.

. Implementation for a reef management problem

.1. Case study description

.1.1. Problem background
In this case study, we investigated the local reef management for an

sland that can be considered as typical in the Spermonde archipelago
n Indonesia, using the framework described in Section 2. The Sper-
onde archipelago is a complex of about 70 islands located off South-
est Sulawesi, most of them inhabited and surrounded by coral reefs.
he region lies in the center of the Coral Triangle, which is the most
iodiverse marine region worldwide (Burke et al., 2012). As for many
mall islands and island nations in the Indo-Pacific, it is necessary
o find a balance between the exploitation and conservation of their
atural resources in the face of local and global changes: from liveli-
oods and ecosystem degradation to climate change and globalized
conomics.

Major local stressors on the reefs in the area are overfishing and
he use of destructive fishing techniques. Fish are consumed for nu-
rition locally, but mostly sold, partly as live fish (Radjawali, 2012).
arget species are diverse and shift with global demands and local
upply (Ferse et al., 2014). A wide range of fishing techniques are
mployed, among them destructive techniques such as bomb fishing or
yanide fishing. For fisherfolk of the islands, alternative livelihoods are
ften neither attainable nor desired (Ferse et al., 2014). Additionally,
isherfolk are often embedded in elaborate systems of patron–client
elationships that provide benefits such as social protection (Glaser
t al., 2015). These relationships can influence fishing behavior and
ay encourage overfishing and destructive fishing (Glaser et al., 2015;
iñarro et al., 2016).

The effects of fishing pressure are exacerbated by pollution from
oint and diffuse sources as well as sedimentary run-off stemming from
he islands and the Makassar urban area (Teichberg et al., 2018). Larger
cale pressures such as global climate change are expected to cause
cean warming and sea-level rise, resulting in the decline of reef health.

For this study, we investigated an exemplary reef site of a typical
sland in the region. The site is 200 × 160 m and part of a larger reef
rea. The majority of the seafloor is less than 5 m deep, but descends
o 15 m depth (Fig. SI-1). To improve the local situation, we focus on
isheries management as a way to mitigate a primary local stressor for
he reef.
5

3.1.2. Societal perspectives and objectives
Different users and interest groups hold varied perspectives on a reef

site, its value, and its relevant services. Societal evaluation ultimately
determines which form of management is optimal. Therefore, we need
to consider different stakeholder perspectives on the issue. For the reef
of the inhabited island we investigate, we seek to represent a diversity
of views by exploring four archetypal perspectives:

• local livelihoods perspective, focused on ensuring food security
and economic benefit to local fishers

• reef conservation perspective, focused on ecosystem health and
resilience

• extraction perspective, focused on maximizing fishing yield and
economic benefits

• balanced perspective, focused on balancing the different aspects
and interests

The values that are implicit in these perspectives can be expressed in
the form of an objectives hierarchy (Keeney, 1992) that we developed
based on literature (Maynard et al., 2017; Brown et al., 2018; McField
and Kramer, 2007) as well as our knowledge of the case and context
(Fig. 2). We chose these four archetypal perspectives to illustrate a
wide range of views on the management issue, but they are not meant
to represent actual individual stakeholders or groups. For real-world
decision support, these perspectives and their objectives need to be
elicited and co-developed locally. We use these perspectives to guide
an analysis for multiple stakeholder perspectives, which can be adapted
to a particular decision context.

3.1.3. Management alternatives, attributes, and time scale
At the investigated reef site, fishing occurs for subsistence and

commercial reasons and destructive fishing techniques are employed
occasionally (see description of the no restrictions alternative in Ta-
ble SI-1). To define management alternatives, we first developed a
strategy generation table (Gregory et al., 2012). We identified three
management factors: (1) gear and technique restrictions, (2) access
restrictions, and (3) fishing quotas. Based on the strategy generation
table, we developed four management alternatives expected to result
in decreasing degrees of fishing pressure (see Table 1):

• no restrictions: no restrictions with continued intense fishing pres-
sure including destructive fishing

• no destructive fishing : enforcing a ban of bomb and cyanide fishing
• MPA subsistence: implementing a marine protected area, which

allows only subsistence fishing for locals
• MPA no-take: implementing a strict marine protected area, mak-

ing it a no-take zone

The management alternatives, if implemented, will have conse-
quences for very different aspects of the socio-ecological system of the
island reef. The consequences that are relevant for deciding between
the management alternatives are captured by attributes of the system
(Fig. 2 and Table SI-2). The attributes should describe the consequences
in a way that is understandable and useful for decision-makers and
stakeholders (Keeney and Gregory, 2005). The degree of fulfillment of
the decision objectives can then be quantified based on the attribute
levels. For instance, the attribute ‘‘total biomass of browsers, scrapers,
and grazers in g∕m2’’ can be used to determine the achievement of the
objective of having a high biomass of herbivorous fish in the reef.

The considered time scale of consequences can make a large differ-
ence in decision-making. Short-term and long-term consequences can
diverge. For instance, an over-exploitation of fishing resources can be
advantageous in the short term, but detrimental in the long term. In
this study, we consider consequences three to six years in the future.
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Fig. 2. Scheme of predicted model outputs (boxes on the left), their transformation/aggregation to attributes that measure decision-relevant consequences of management alternatives
(middle, also see Table SI-2), and the hierarchy of objectives (right side) used in evaluating these alternatives based on the attribute predictions. The objective hierarchy is also
the structure of the preference model based on utility theory that is used for evaluation. Consequences that are measured by the attributes are mapped to an aggregated utility.
3.2. Prediction of management consequences

Predicting the consequences of management alternatives on com-
plex systems is a difficult task. To predict the ecological consequences
of management alternatives on reef fishes, reef benthos, and fisheries
yield, we adapted a previously developed model of the system (SEA-
MANCORE; Miñarro et al., 2018). This model combines an agent-based
model of fish stocks and fishing behavior with a corresponding model
for benthic community dynamics. The implementation is detailed in the
next sections. To account for the often neglected cost of implementing
and enforcing management alternatives (McCrea-Strub et al., 2011),
we used the ‘‘required patrol days’’ as a proxy attribute for these
costs (Brown et al., 2018). We used our contextual knowledge to
estimate this attribute’s distribution for each management alternative.
These were assumed to be Poisson distributions with different rate
parameters.

3.2.1. Model of reef and fishery dynamics under management alternatives
SEAMANCORE is a spatially-explicit 2D model that simulates the

dynamics of the benthic and fish populations as well as fisheries in a
coral reef through an agent-based simulation (Miñarro et al., 2018).
We used SEAMANCORE to predict the temporal dynamics of the reef
benthos and fish community in a 200 × 160 m area. The predicted enti-
ties consisted of four benthic functional groups (hard coral, macroalgae
and turf, hard substrate and cropped algae, non-stabilized substrate),
stocks of three functional fish groups (carnivores, browsers and grazers,
scrapers), and different fisheries (Table SI-3).

The aim for prediction is to capture the inherent stochasticity of
the system as well as the directed effects of the management alter-
natives. We achieve this by differentiating between core parameters
and processes of the SEAMANCORE model that are unaffected by
the alternatives and alternative-specific parameters and processes. If we
intend to understand the effect of the alternatives, it is only mean-
ingful to compare the set of predictions where the core parameters
are shared. One model parameterization of the natural processes can
be viewed as one potential configuration of the world. The four man-
agement alternatives then lead to four different futures. Therefore,
for one core parameterization, we created four simulations with the
alternative-specific parameters set in addition.

The difference between the four management alternatives was rep-
resented by modified inputs and parameters in the fishing module
6

(e.g., number of boats). Four types of fisheries were considered: (1)
bomb fishing, (2) cyanide fishing, (3) non-destructive commercial fish-
ing, and (4) non-destructive subsistence fishing (see Table SI-2 for their
specification in SEAMANCORE). The different management alternatives
allowed specific combinations of these types of fishing to occur in the
reef, from all types in the no restrictions alternative to none in the
no-take alternative (Table 1).

For each simulation run, we specified the initial conditions in a
spatially explicit manner: the water depth (Fig. SI-1), the benthic cover,
biomass of fish functional groups, and the fishery modes to apply
(Table 1 and Table SI-3). Additionally, we set over 100 other core
parameters that govern the model behavior (Miñarro et al., 2018). For
each simulated time step, the model outputs a 10 × 10 cm resolution
map of benthic cover, a 20 × 20 m resolution map of biomass of fish
functional groups, and the total fishery yield differentiated by depth,
target species, and fishery type. We simulated at a temporal resolution
of 1 day for both the benthic and the fish grids.

The management alternatives were assessed against the background
of an uncertain environment in which most aspects are beyond man-
agement control. For instance, biological processes, such as death
rates or feeding rates, were assumed to be independent of manage-
ment alternatives at the considered scale. However, these processes
are usually variable and our knowledge about them is incomplete. We
represented this with two approaches. Firstly, the rules governing the
cellular automaton and model agents have a stochastic element. For
example, rules to change a hard substrate cell to an algae cell are
triggered only with a certain probability at each time step. Secondly,
we used probability distributions instead of point estimates for the core
parameters.

We used the calibration of Miñarro et al. (2018) as a basis for the
model parameterization. We then defined probability distributions for
37 of the models parameters (e.g., reproduction rates, feeding rates,
time for colonization; Fig. SI-2) and 15 input variables (initial benthic
cover and initial fish biomass; Fig. SI-2). Other parameters, such as
the probability of transition between benthic substrata, remained the
same across all simulations. Parameter distributions were identified
based on literature values and judgment by the authors, guided by
natural constraints (e.g., a death rate cannot be negative), plausibility
of the simulation results, and using maximum entropy distributions.

Distributions of model parameters were assumed to be independent,
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Table 1
Fishing types allowed under the management alternatives.

Name of alternative Subsistence fishing Commercial fishing Dynamite fishing Cyanide fishing

(1) No restrictions Yes Yes Yes Yes
(2) No destructive fishing Yes Yes No No
(3) MPA, subsistence Yes No No No
(4) MPA, no take zone No No No No
t
v
r
c
c
i

except for initial benthic coverages which were assumed to come
from a multivariate normal distribution. We assumed all parameters
to be constant across the modeled temporal and spatial dimensions. By
propagating this prior information through the model with Monte-Carlo
simulation, we received a corresponding distribution of model outputs.

An external stressor we modeled explicitly were coral bleaching
events (Eddy et al., 2021). We included strong bleaching that turn coral
cells into hard substrate and mild bleaching that resets the age of coral
cells. Bleaching affects coral cells with a certain probability depending
on the depth of their location. The effects of other external stressors
– such as temperature change, eutrophication, or loss of connectivity
to other reefs – are captured indirectly by the distributions of the
parameters — such as colonization rates of coral and algae, growth
rates of functional groups, or external recruitment.

3.2.2. Obtaining of decision-relevant predictions
To predict the uncertain consequences of management alternatives,

we used Monte-Carlo simulations to obtain a population of predictions
from independent runs of the SEAMANCORE model. We drew 1100
samples from the probability distributions of the model core parameters
(Fig. SI-2). These were combined with the definitions of each alter-
native. The SEAMANCORE model was thus run for 1100 samples×4
alternatives = 4800 times in total. For five of the 1100 parameter
combinations the model produced nonsensical results: either the model
returned an undefined value for biomass of a fish functional group or
scraper biomass was continuously above a threshold of 95 g∕m2 for
more than 60 days. These runs were excluded.

As we focus on the situation three to six years after implementing a
management alternative, we ran the model for 2280 time steps (days)
and then took the values for years four to six into the future as the
basis for the attribute predictions. To smooth out short-term, noisy
fluctuations due to asynchronous updating of fish and benthos grids,
we used a 42-day (6 weeks) rolling mean of the time series for the
benthos cover and a 14-day (2 weeks) rolling mean for the time series
of fish biomass.

The system model outputs are not directly of interest as attributes in
the decision. We therefore transformed and aggregated model outputs
to obtain predictions for attributes that would be understandable to
interested stakeholders (Fig. 2 and Table SI-2). For instance, the daily
time series of fish biomass for the three functional groups was aggre-
gated to arrive at weekly average total fish biomass. The variability
in time thus became part of the prediction uncertainty. From the
perspective of strategic management, the spatially explicit output of
the model was also not relevant. Therefore, we aggregated the model
outputs for the entire area.

The empirical joint distribution of the aggregated and transformed
model outputs was the basis for the decision-relevant attribute predic-
tions. We aimed for a sample of size 𝑆 = 120 000 for each attribute of
each alternative. To ensure equal sample size, attributes measured on a
weekly scale were downsampled (from 170 820 samples) and attributes
with monthly scale were upsampled with replacement (from 42 705
samples). For the attribute ‘‘required patrol days’’, we directly drew 𝑆
samples from the specified Poisson distributions.

A crucial consideration when creating this sample of attribute pre-
dictions is that dependencies exist across attributes and alternatives.
This should be considered in VoI analysis. For instance, if coral cover
7

correlates with herbivore biomass, having better information about
coral cover will also inform us about herbivore biomass. For an esti-
mation approach of VoI that is based on sampling, we therefore need
to create a sample that retains the relevant (conditional) dependencies
in the predictions. Given the way we set up our simulations, we
obtain these dependencies from the SEAMANCORE modeling. For other
modeling approaches this can be less straightforward.

Such dependencies exist within the predictions from a simulation
run for one alternative. Firstly, the parts of the ecological system are
connected. For example, high carnivore biomass will often coincide
with lower biomass of herbivorous fish. Secondly, predictions are cor-
related in time, as the future system state depends on previous time
steps. In the resampling of predictions for a management alternative,
we retained relations between samples for different attributes regarding
points in time and simulation parameterization. This means for one
alternative a particular sample of all attributes comes from the same
simulation run and time point.

Dependencies also exist between the consequences of different alter-
natives because they are predicted based on shared core parameters,
as described above. Across the alternatives, we retained relations re-
garding the core parameter samples. This represents system properties
or shared external influences that are the same for all alternatives.
However, we randomized the resulting predictions regarding time. In
this way, we represent different time points at which the effects of the
alternatives are assessed in the future. This means a particular attribute
sample across the alternatives comes from a model run with the same
core parameters, but potentially different time points. We illustrate the
effect of retaining different correlations in Fig. SI-7.

3.3. Evaluation of management alternatives

3.3.1. Preference model structure and parameters
To understand the differences in utility that the management al-

ternatives would bring to different societal actors, we specified a hi-
erarchical utility model for each of the four archetypal stakeholder
perspectives. Each model encodes an assumed preference profile for a
stakeholder perspective and is meant to represent specific interests for
that stakeholder. Based on the evaluations of management alternatives
with these models, we can then identify areas of conflicts and consen-
sus. As outlined in Section 2.1, we can also calculate aggregate results
across stakeholder perspectives.

In the following, we outline our approach to hierarchical utility
models, a detailed treatment can be found in Haag et al. (2019a)
and Reichert et al. (2015). The structure of the preference models
is given by a hierarchy of objectives (Fig. 2). We assume that all
stakeholder perspectives share the same set of objectives but differ in
their preferences; for instance, the trade-offs they are willing to make
between the objectives.

To build the model, we first specify a marginal value function for
each of the seven objectives on the lowest level of the hierarchy, 𝑣𝑜𝑝 (𝑦𝑝)
(Fig. SI-3). These map from the attribute space to a relative degree
of achievement for each of these objectives. Then, we aggregate these
valuations along the hierarchy with nested aggregation functions, 𝐹𝑘,
hat we specify for each aggregation step. We arrive at a multi-attribute
alue function over all attributes, 𝑣(𝑦1,… , 𝑦𝑚). With this function we
eceive an overall evaluation of each decision alternative. Lastly, as dis-
ussed by Dyer and Sarin (1982), this multi-attribute value function is
onverted to a utility function 𝑢(𝑣(𝑦1,… , 𝑦𝑚), 𝑟) at the highest objective
n the hierarchy, given the risk attitude 𝑟. As we assume stakeholders
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to be risk neutral, the EU of an alternative is its expected value based
on the evaluation with the value function. The preference model used
to evaluate one set of consequences of alternative 𝑎 can therefore be
written as (for the indices refer to Fig. 2):

𝑢(𝒚𝑎) =𝐹0(

𝐹1(𝑣𝑜1,1 (𝑦1,𝑎,𝜽𝑜1,1 ), 𝑣𝑜1,2 (𝑦2,𝑎,𝜽𝑜1,2 ),𝒘𝐹1 , 𝛾𝐹1 ),

𝑣𝑜2 (𝑦3,𝑎,𝜽𝑜2 ),

𝑣𝑜3 (𝑦4,𝑎,𝜽𝑜3 ),

𝐹4(𝑣𝑜4,1 (𝑦5,𝑎,𝜽𝑜4,1 ), 𝑣𝑜4,2 (𝑦6,𝑎,𝜽𝑜4,2 ),𝒘𝐹4 , 𝛾𝐹4 ),

𝑣𝑜5 (𝑦7,𝑎,𝜽𝑜5 ),

𝒘𝐹0 , 𝛾𝐹0 )

(6)

As aggregation functions 𝐹𝑘 for the values 𝑣 on each hierarchical
level we chose functions of the family of weighted generalized means
(also called power means) with the form:

𝐹𝑘(𝑣1,… , 𝑣𝑛,𝒘, 𝛾) =

( 𝑛
∑

𝑖=1
𝑤𝑖 ⋅ 𝑣

𝛾
𝑖

)1∕𝛾

, 𝛾 ∈ R∗ (7)

with weight parameters (scaling factors) 0 < 𝑤 < 1 and ∑𝑛
𝑖=1 𝑤𝑖 = 1.

The parameters of the preference model (Eq. (6)) were changed for
each of the stakeholder perspectives based on assumed preferences in
line with their concerns (see Section 3.1.2). These parameters are:

• how they evaluate changes on the attribute scales, such as di-
minishing returns regarding fish catch or coral cover (shapes of
marginal value functions, 𝜽, Fig. SI-3).

• how they trade off changes in one objective relative to the other
objectives (weight parameters, 𝒘, Table SI-3)

• to what degree a poor achievement of objectives can be compen-
sated. For example, can a high enough fished biomass compen-
sate for a very low coral cover, or is a ‘‘one out all out’’ view
appropriate (degree of non-additivity, 𝜸, Table SI-3).

As the aim in this study was to explore the space of potential
perspectives, the preference profiles were designed by the authors ac-
cording to the archetypes (see 3.1.2). For a practical decision problem,
the parameters should be inferred from stakeholder data. These data
can be collected by choice experiments (Hensher et al., 2015) or other
forms of preference elicitation (Haag et al., 2019a).

3.3.2. Estimation of expected utility
Based on the empirical distributions of attribute predictions, we first

calculated the optimal baseline choice. Each stakeholder preference
profile was treated separately. For each sample 𝑦 = 𝑦1,… , 𝑦7 of the
7 attributes, we calculated the utility of each alternative using the
respective preference model. Since we have 𝑆 = 120 000 samples, we
obtained 120 000 utilities, the set of which we denote 𝑈𝑎 for alternative
𝑎. By taking the arithmetic mean of U𝑎 we received the EU for each
alternative assuming risk neutrality: E[U𝑎]. The rational imperative is
to pick the alternative with the highest EU: max𝑎=1…4

{

E[U𝑎]
}

. This is
the optimal baseline choice for a stakeholder preference profiles, given
our current information about the system attributes.

Based on the evaluation of management alternatives with the four
preference profiles associated with the stakeholder perspectives, we
can identify areas of conflicts and consensus. For also providing an
aggregated view across the stakeholder perspectives, we followed the
approach outlined in Section 2.1. Using Eq. (3), we calculated the EU of
an alternative across perspectives giving all perspectives equal weight.

3.4. Sensitivity analysis using value of information

Value of information analysis can be conducted for any uncertain in-
puts or parameters of a decision model. For this case study, we focused
8

on exploring the EVPPI with regard to uncertain attribute predictions.
The aim was to understand the impact of better knowledge of the
predictions of specific attributes. To identify whether the uncertainty
of an attribute prediction was more relevant for some alternatives than
others, we focused on individual variables for each of the alternatives
and calculated the EVPPI of 4 alternatives for 7 attributes, resulting in
28 variables of interest. That is, if we had perfect knowledge of some
attribute’s predictions Y𝑖(𝑎) for alternative 𝑎, how much additional
utility would this be expected to provide to a stakeholder?

To estimate EVPPI, we implemented the algorithm as described in
Section 2.4 and ran the analysis separately for each of the 28 variables
of interest and each stakeholder perspective. We also calculated the
EVPPI across perspectives based on averaging the EUs of the perspec-
tives in each bin and on the EU of the baseline optimal alternative
across the perspectives. For the main analysis, we chose values of 𝐾 =
300 and 𝐽 = 400 to mitigate the chance of bias. We also investigated
the dependency of EVPPI on these choices (Fig. 7, Fig. SI-9).

To understand the added value of EVPPI over a simpler threshold
view on sensitivity (see Section 2.2), we conducted a threshold sensi-
tivity analysis. This means, we estimated the EU of alternatives given
that a variable of interest Y∗ takes on different values as described in
Section 2.4. We repeated this analysis for all 28 variables of interest
and each stakeholder. To identify thresholds visually, we normalized
the EU values to the baseline optimal alternative for a stakeholder and
estimated a smoothing spline model for this relationship.

4. Results

4.1. Predicted consequences of reef fishery management

The inputs and parameters of the predictive system model were
described by probability distributions. Together with the stochastic
processes in the model, this led to distributions for the obtained outputs
and, consequently, for the derived predictions of the relevant attributes
(Fig. 3). If we would only consider point predictions in our decision
making (e.g., median lines in Fig. 3), we would disregard a lot of
relevant information.

The distributions of attributes that describe the state of the reef –
coral cover, herbivore biomass, and total fish biomass – are wide. This
means, the predictive uncertainty about their future is high. The differ-
ences between alternatives appear less pronounced when considering
the marginal distributions. This suggests the alternative had relatively
less effect on the outcome compared to the stochasticity of the system.
As expected, decreased fishing pressure generally leads to increased
fish biomass, especially of carnivores. Increases in herbivore biomass
are smaller due to the increasing predation pressure from carnivores.
Coral cover increases when destructive fishing is stopped, but decreases
slightly when fishing is stopped completely as feeding pressure by
scrapers increases.

The distributions of attributes connected with fishery yield – car-
nivorous and herbivorous biomass to sell, fish for local consumption
– exhibit long tails (Fig. 3). With the high fishing pressure in the no
restrictions alternative, few carnivorous fish can be sold due to over
exploitation and hence stock depletion in the considered 3–6 year time
frame. The carnivorous fishing yield is higher in total with less intense
fishing. On the other hand, when only subsistence fishing occurs there
is little surplus of (especially herbivorous) fish to be sold. With the high
fishing pressure of the no restrictions alternative, it is more likely that
not enough fish can be caught for local consumption in comparison to
the alternatives with no destructive fishing or with a protected area
that allows subsistence fishing. With a strict no-take zone, no fishing is
assumed to occur. Therefore the attributes related to fishery yield are
always zero.
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Fig. 3. Marginal distributions and boxplots of predictions (y-axis) of the attributes (panels) of a coral reef area under four management alternatives (x-axis). Distributions per
alternative are based on 120 000 samples derived from 1100 independent simulations of the SEAMANCORE reef model, which were transformed, aggregated, and resampled. The
predictions cover the time 3 to 6 years after the management alternatives were activated in the model. Required patrol days were directly sampled from Poisson distributions.
Boxplots show the 0.25, 0.5, and 0.75 quartiles of these data, and whiskers extend to the maximum and minimum points within 1.5 times the interquartile range. Only a proportion
of outliers is visualized.
4.2. Optimal baseline choice under uncertainty

Given the uncertain predictions of the attributes and our preference
models for the different perspectives (Section 3.3), we calculated the
utility for each predicted sample of the alternatives (distributions in
Fig. 4). The expectation over these utilities, the expected utility (EU),
is the criterion that a rational decision should be based on. This EU
integrates over the predictive uncertainties and is therefore a single
number (solid markers in Fig. 4).

For the balance and local livelihoods preference profile, a ban
of destructive fishing practices would be the optimal alternative, for
the conservation profile a marine protected area (MPA) with only
9

subsistence fishing, and for the extraction profile the alternative with
no restrictions would be most desirable (Fig. 4). Except for the con-
servation profile, a strict MPA with a no-take zone receives the lowest
EU in all profiles; for the conservation profile the no restrictions al-
ternative results in sightly lower EU. This can be explained by the
missing fulfillment of any socio-economic objectives by an alternative
that enforces a no-take zone. The alternative with no restrictions is
not optimal for most preference profiles. Even a moderate restriction
of fisheries can lead to higher fish biomass and also fished biomass,
especially of carnivorous fish, even in the short time frame studied.

Based on these results, no clear consensus for a best management
alternative emerges between the different perspectives. However, we
can identify two aspects that might help come to such a consensus in
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Fig. 4. Distribution of utilities (y-axis) and the EU (solid markers) for the management alternatives (x-axis). Each stakeholder preference profile (panel) is represented by a different
utility function which maps the consequences of the alternatives into a utility between 0 and 1. Utilities are relative and allow ranking of alternatives within a perspective.
an iterative process: (1) some reduction in fishing seems beneficial for
fishery yield even in a short time horizon and (2) the lack of fulfillment
of socio-economic objectives due to a complete ban of fisheries can
hardly be counterbalanced by better conservation outcomes.

4.3. Threshold view on decision sensitivity

There are large overlaps in the distributions of the alternatives’
utilities (Fig. 4). This means, we might see future system states in which
different conclusions about the optimal alternative would be drawn.
Therefore, we need to investigate the sensitivity of the decision. Before
considering the VoI view of sensitivity analysis, we identify thresholds
for individual variables of interest – here the attribute predictions for
one alternative – that lead to changes in the optimal alternative.

In Fig. 5 we see the resulting EU of the management alternatives
relative to the baseline optimal alternative as we vary a variable of
interest along its range. This relative EU is given as a function of
a variable of interest, while retaining a probabilistic view and the
correlation structure in all other variables.

Based on this we can identify thresholds at which the ordering
of the decision alternatives changes. Since our results are based on
simulations, the thresholds are small regions rather than exact points.
As an example, the baseline optimal alternative for the conversation
perspective is the MPA with subsistence fishing. We can now investigate
the decision’s sensitivity to the predicted coral cover of the MPA with
subsistence fishing alternative (lower left panel of Fig. 5; results for all
variables and perspectives are given in Figs. SI-5–8).

There are two thresholds. If we knew the coral cover of the MPA
with subsistence fishing alternative would turn out to be below 23%,
the no restrictions or no destructive fishing alternatives would now
provide higher utility. If we could be certain that the coral cover of the
MPA with subsistence fishing alternative would be between 23% and
62%, it would be the optimal choice. In this region, the VoI is zero,
as the best alternative is not sensitive to the precise value of the coral
cover prediction.

If the coral cover of the MPA with subsistence fishing alternative
would be higher than 62%, the no-take MPA would be optimal. This
may seem counter intuitive as, all else being equal, the utility of
the MPA with subsistence fishing alternative should increase with
increasing coral cover as higher cover is preferred. It is, however,
a consequence of the correlation structure in the predictions. Either
the high coral cover for that alternative coincides with less preferred
10
consequences on its other attributes or it coincides with even more
preferred consequences for the no-take MPA alternative.

The analysis falls short in two regards. First, we do not take into
account how probable a crossing of a threshold would be: how probable
would it be that we actually see coral cover greater than 62% under
the MPA with subsistence fishing alternative? Second, once we crossed
a threshold, we disregard how large the potential gain in utility would
be from taking the optimal instead of the now sub-optimal alternative:
if coral cover was above 62%, how much higher would the utility of
deciding for the no-take MPA alternative be in comparison to sticking
with the MPA with subsistence fishing? Both aspects are crucial for
understanding the sensitivity of a decision. This is the point of the
analysis of the VoI.

4.4. Results of the value of information analysis

To have a more comprehensive measure of decision sensitivity than
the threshold view, we calculated the EVPPI of the variables of interest.
The lower the EVPPI of a variable is, the lower the sensitivity of the
decision to it and vice versa. If we had perfect information about that
variable, this either would seldom change the optimal alternative, the
gain in utility due to choosing the new optimal alternative would be
small, or both. A ranking of the variables of interest based on their
expected VoI can then support us in identifying the key uncertainties
and prioritizing their resolution.

The EVPPI varies by variable of interest and stakeholder preference
profile (Fig. 6, Table SI-5). Comparing all stakeholder perspectives,
two commonalities exist. The attribute of required patrol days had
relatively low EVPPI, while the attribute regarding fish available for
local consumption had high EVPPI. Otherwise the results are more nu-
anced. Across variables, the livelihoods perspective often receives lower
EVPPI than the other perspectives; the decision is less sensitive for this
perspective. This demonstrates how the VoI depends on the stakeholder
preference models and how far away (in terms of probability of change)
the baseline optimal alternative is from the others (see Fig. 4).

The EVPPI is not directly linked to the width of the probability
distributions of the variables (Fig. 3). The herbivore biomass of the
no restrictions alternative has a markedly narrower distribution than
the total fish biomass of this alternative. Yet, for all profiles as well as
across profiles both have a similar EVPPI. As expected, for variables
that are known with certainty, for instance, fisheries variables in the
no-take MPA alternative, the EVPPI is zero.
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Fig. 5. Visualization of a threshold view on sensitivity for the conservation perspective. Each panel shows the variation of expected utility (EU) of alternatives (y-axis) when
one variable of interest, meaning one attribute of one alternative, takes on different values (x-axis) while keeping the conditional variability in all other attributes. For clearer
presentation, the EU of alternatives is divided by the EU of the baseline optimal alternative; thus, the y-axis shows ratios relative to this alternative. The lines are a loess smoothing
of these data points (dots). The alternative with highest relative EU is the optimal alternative given that the variable of interest takes on a specific value on the x-axis. At the
threshold values of this variable the optimal alternative changes (dotted vertical lines). In regions between thresholds where the EU of the baseline optimal alternative is higher,
the value of information (VoI) is zero, as the best alternative is not sensitive to the precise value of the variable of interest in that range. A subset of the results for the conservation
stakeholder preference profile is depicted. Figs. SI-5–8 show the other results.

Fig. 6. Expected value of partially perfect information (EVPPI; x-axis) of uncertain attribute predictions of interest (y-axis) differentiated by alternative for which they were predicted
(colors). Results for different stakeholder perspectives are shown in panels, with the leftmost shaded panel showing the result of an aggregated view across the perspectives. A
single bar represents the expected gain in units of utility for a particular preference profile if we had perfect information about the prediction of the attribute of interest of a
specific alternative. For variables that are known with certainty, such as fish catch under a no-take zone, the VoI is zero by definition.
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For the conservation perspective, we can summarize our analysis
as follows (for brevity, we do not discuss the other perspectives here,
but they can be similarly analyzed). The optimal baseline choice given
our current state of knowledge would be implementing an MPA with
subsistence fishing (Fig. 4). However, this choice is sensitive to the
actual realizations of the predicted attributes. Thresholds exist that
would make a different choice optimal (Fig. 5 and Fig. SI-6). We expect
the optimal choice to be sensitive to the days with food for local
consumption, herbivore biomass in the reef, and total fish biomass
(Fig. 6). We expect it to be insensitive to the number of patrol days
and the actual fished biomass for selling. For any variable, except
the coral cover, better knowledge about the true consequences when
implementing the no-take MPA alternative is hardly relevant for the
decision (green bars in Fig. 6). This alternative is unlikely to become
the best one for the conservation perspective.

Based on the EVPPI analysis, the conclusion for the conservation
preference profile would be that understanding the trajectory of the reef
and its organisms better should be a priority. However, the uncertainty
about the fish for local consumption is also relevant. Further efforts di-
rected at improved understanding of these aspects will be most critical
for decision-making as the determined baseline choice may not be the
best if our knowledge about the respective attributes was improved.
On the other hand, further investigation of the patrolling effort or the
sold fish biomass is unlikely to change the conclusions regarding the
optimal management alternative. For the other preference profiles, the
list of priorities differs, with some commonalities as described above.

The estimation algorithm for EVPPI that we propose in Section 2.4
has a hyper-parameter, the size of the bins, 𝐽 . The choice of 𝐽 can
have a significant effect on the resulting estimate (Fig. 7 and Fig. SI-
9). For small bin sizes the estimator is upwardly biased due to the
maximization step. As 𝐽 → 1 the estimates converge to the expected
value of perfect information across all variables (EVPI). If each sample
is placed in its own bin, i.e., 𝐽 = 1, the estimated EVPPI is equal to the
EVPI. The estimated EVPPI converges to zero as 𝐽 → 𝑆, as both terms
of Eq. (5) become equal. Thus, for large sizes of the bins, the estimator
is downwardly biased.

In our case, most EVPPI estimates are relatively stable, using from
100 bins with 1200 samples each to 12 000 bins with 10 samples each
(Fig. 7). This confirms our choice of a bin size of 400 for the analyses
above. However, in specific cases, estimates can also be sensitive to the
bin size (e.g., days with fish for local consumption in Fig. 7 or Fig. SI-9).

5. Discussion

5.1. Relevance of value of information analysis for the case study

In the case study on coral reef fisheries management, we found that
the attributes measuring consequences related to fish biomass, food
security, and sales of fish groups had the highest EVPPI for at least
one stakeholder preference profile. On the other hand, better estimates
for the required patrolling effort had low EVPPI for any single and
across stakeholder perspectives. Likewise, hard coral cover, which is
routinely monitored and prominently reported, was not among the top
three variables in terms of EVPPI for any perspective.

The analysis provided a reasoned and prescriptive focus for the
design of future investigations for the decision case. The effect of the
management alternatives on the reef fish, their catch, and livelihood
impacts should be a focus of future data collection efforts to reduce
decision uncertainty. However, this conclusion depends on the stake-
holder perspective considered. For the conservation perspective, better
knowledge about the amount of fish sold had low expected informa-
tional value, whereas for the livelihoods perspective better knowledge
about the biomass of fish functional groups in the reef was not very
relevant (Fig. 6).

Importantly, the EVPPI is not directly linked to the extent of un-
certainty in the predictions (Fig. 3). Even though the coral cover had
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Fig. 7. Dependence of the EVPPI (y-axis) on the bin size parameter 𝐽 (x-axis) of the
estimation algorithm. The variables of interest are the attribute predictions (colors) for
the no destructive fishing alternative. Only results for the conservation perspective are
shown. The upper dotted line indicates the expected value of perfect information, the
lower dotted line is at zero, the minimum possible EVPPI. Results for other perspectives
and variables of interest are given in Figure SI 9. For our case study we used a bin
size of 400.

a wide distribution for each management alternatives, having perfect
information on it did not have high informational value. Consequently,
to improve decision robustness, it is not always the largest uncertain-
ties that require addressing. Rather, it is the most decision-relevant
uncertainties, which can be identified through the analysis of VoI.

This is in line with several studies that have investigated the factors
that influence the VoI in a decision, but found it can vary in unexpected
and sometimes counter intuitive ways (e.g., Eeckhoudt and Godfroid,
2000; Gould, 1974). Dependencies between alternatives can be one
influencing factor: while we may be very uncertain about the future
coral cover, we may be quite certain that one alternative results in
higher coral cover than another (cf. Reichert and Borsuk, 2005).

Delquié (2008) has shown that under quite general assumptions
the VoI is highest when a stakeholder’s baseline choice is indifferent
between two alternatives. The VoI decreases with increasing utility
difference between the alternatives in the baseline case. Our results
show the same pattern, as for the livelihoods and extraction preference
profiles, which have a larger spread among the utility of alternatives
(Fig. 4), the EVPPI is generally lower than for the other two preference
profiles (Fig. 6).

Value of Information is specific to the investigated decision. If the
informational value of a variable, e.g., coral cover, is low in a partic-
ular decision this does not imply we should stop regular monitoring.
Historical baselines and operating protocols remain important and can
be of great value in another decision and for improved understanding
of the complex system dynamics.

5.2. Evaluation and outlook of VoI framework

This study showed how VoI analysis, and specifically the EVPPI, is
a useful form of sensitivity analysis for decision models. Based on the
approach in this study, we highlight three key directions for further
development that we consider relevant in the context of environmental

management decisions.
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The first direction is extending the approach to uncertainty of pref-
erence model parameters. Standard utility theory (e.g., French, 1986;
Keeney and Raiffa, 1993) does not consider uncertainty of preferences
nor do any VoI applications we are aware of. However, in practice
the stakeholder preferences are also uncertain and we have shown in
this study that the preference model can make a substantial difference
for the VoI analysis results. The uncertainty of stakeholder preferences
could be included in VoI analysis by using the expected expected utility
concept (Chajewska et al., 2000; Haag et al., 2019b). Considering the
uncertainty about the consequences of management alternatives and
the uncertainty about the societal evaluation of these consequences
on equal footing in VoI analysis will allow us to differentiate better
where further studies are actually needed. Depending on the case, the
uncertainty about the social evaluation could be the primary cause for
decision uncertainty (Gregory et al., 2006).

The second direction for development is improving uncertainty
quantification of the variables of interest (e.g., the predictions). Quanti-
tative VoI analysis is only meaningful to the degree that we can specify
or infer probability distributions for these variables, ideally derived
from empirical sources. The question of a variable’s VoI is only ever
addressed in the ‘‘small world’’ (Savage, 1954) of our specified model.
However, the assessment of uncertainties in predictive system models
is usually limited, especially regarding structure and dependencies. We
also disregarded crucial structural uncertainties in the predictive reef
model. Missing processes, such as changes in fish population structure
might entail larger uncertainties than all the included parametric uncer-
tainty. More comprehensive uncertainty assessments are a large task for
the environmental modeling community, but there are many advances
in this direction (e.g., Uusitalo et al., 2015; Reichert, 2020).

A way to address large uncertainties that are difficult to quantify
– examples for reef systems are crown-of-thorns starfish outbreaks or
powerful storms – are scenarios (e.g., Walker et al., 2003; Wright
et al., 2019). Scenarios can be modeled by repeating the analysis for
different possible futures – in the form of constraints or modified
ecosystem processes – and qualitatively evaluating the differences in
the conclusions. This would be possible without fundamental changes
to the presented approach.

The third direction for development is advancing methods to es-
timate EVPPI more efficiently. Especially with environmental models
that often entail significant computational effort, simulation-based ap-
proaches that rely on many model runs and resampling from condi-
tional distributions, such a nested Markov-Chain-Monte-Carlo (Brennan
et al., 2007; Felli and Hazen, 1998), are infeasible. The algorithm we
implemented based on Strong and Oakley (2013) and Borgonovo et al.
(2016) is fast, only requires a given probabilistic sensitivity analysis
sample, and can handle conditional dependencies. On the other hand, it
can only be sensibly used for investigating the EVPPI of single variables,
and it still requires a large sample size.

An important consideration when using the proposed algorithm is
the choice of the bin size 𝐽 as this can lead to bias, as investigated in
ection 4.4. As Strong and Oakley (2013) have also shown before, the
pward and downward biases appeared for extreme values of 𝐽 with a
arge region of stability in between these. However, in our case there
ere few estimates where such a stable region was small (Fig. SI-9).
he conditions under which the algorithm can reliably be used thus
equire further investigation.

.3. Value of information analysis to support iterative environmental man-
gement

VoI analysis is most useful if we can take actions to address the key
ncertainties and improve the information state before or after decision
aking. Thus, it fits well with decision contexts that have an iterative

spect, such as the regular strategic considerations of environmental
onitoring programs. For the case study, we presented the first steps of
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uch an iterative approach. Based on the analysis results, we can decide
to (a) move forward with implementation of the baseline optimal
alternative, (b) gather more information if we deem the decision too
sensitive to potential new information, or (c) conduct implementation
and information gathering in parallel.

In the environmental domain, adaptive management is a common
iterative approach and VoI analysis has been used to improve adap-
tive management decisions (e.g., Moore and Runge, 2012; Williams
et al., 2011; Runge et al., 2011). In adaptive management, we plan
monitoring and data collection activities in parallel to implementing a
management alternative. There will be feedback processes in the system
after implementing a management alternative that we need to take into
account in long-term management. Therefore, the idea of revisiting the
same decision context and updating our state of knowledge is key.
This can include (1) updating changed stakeholder perspectives, (2)
monitoring how the predicted trajectories have played out, (3) updating
the future model predictions, and (4) coming up with the plan in
terms of what to focus on for the next monitoring phase. In modeling
approaches that optimize over iterative management problems, such
as Markov decision processes, VoI analysis can also play an important
role (Chadès et al., 2017; Williams et al., 2011; Williams and Johnson,
2018).

Using VoI in environmental management and conservation practice
is still at an early stage, though its value is increasingly recognized (see
studies in Bolam et al., 2019; Keisler et al., 2014). Along structured
decision-making approaches (Gregory et al., 2012), many opportunities
for broader application of VoI analysis beyond local management or
conservation decisions exist. For example, VoI analysis can be of inter-
est when designing large-scale research programs (Rushing et al., 2020)
or monitoring programs (Bal et al., 2018).

The long-term benefits of investing in VoI analysis include a well-
reasoned allocation of resources as it provides a ranked list of the
expected benefit of addressing uncertainties. For VoI measures that
are based on utility, this relative benefit can be difficult to interpret.
If costs and benefits of additional information are not measured in
the same units, we cannot directly determine which uncertainties we
should resolve. Any practical decision about information collection
requires making trade-offs with the (opportunity) cost of acquiring this
information (e.g., Maxwell et al., 2015). A straightforward approach
to this issue is a cost–benefit analysis to find the Pareto optimal set of
cost-efficient information seeking activities (Marchese et al., 2018).

6. Conclusions

Difficult environmental decisions can benefit from structured ap-
proaches (Gregory et al., 2012) and the conceptual foundation of
rational decision making under uncertainty is well established (Keeney
and Raiffa, 1993; Reichert et al., 2015). Understanding the sensitivity
of a decision to uncertainties remains a key challenge to support better
decision making. Our intuitions about the benefit of more information
may not be correct, but the costs of additional data acquisition are often
high. We propose that sensitivity analysis known under the umbrella
term value of information (VoI) analysis is useful to estimate the
robustness of current conclusions and indicate where to focus future
data collection.

The complexities of environmental issues make the practical appli-
cation of VoI analysis challenging. In this study, we tackled VoI analysis
in the framework of multi-attribute value/utility theory (MAVT/MAUT)
with: (1) a continuous uncertain prediction space, (2) dependencies
in the distribution of these predictions, (3) multidimensional objective
functions that include trade-offs between objectives, and (4) divergent
stakeholder perspectives. This included adapting a fast algorithm for
estimation based on a probabilistic sensitivity analysis sample. We
analyzed expected value of partially perfect information (EVPPI) for
a decision model of local coral reef fishery management. This led to a
ranking of the sensitivity of predictive uncertainty of management al-
ternatives. Our framework can be used as a template for other decision

cases.
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Two simple, but practically relevant, conclusions were corroborated
in our case study. First, the EVPPI of a variable cannot directly be
mapped to the extent of uncertainty in that variable. Large uncer-
tainties in predictions do not prevent robust decision making per se
(cf. Reichert and Borsuk, 2005). More data collection is not always the
answer. Second, the results of VoI analysis depend on the preference
models used to evaluate the predicted consequences (cf. Delquié, 2008).
The variables that stakeholders require more information on can differ.
If we disregard the variety in stakeholder perspectives, any VoI analysis
will give an incomplete picture of the actual value of a piece of
information in a specific context.

Value of information analysis fits into many structured and iterative
approaches to decision-making and assessment, such as adaptive man-
agement. It facilitates identifying and ranking (Fig. 6) key uncertainties
and thus key aspects for further investigation and data collection.
While the extent and intricacy of a quantitative modeling approach, as
employed in this study, will need to be aligned with the concrete needs
and resources available, any practical decision case can benefit from a
deliberation about the value of new information. Which information –
if any – would likely change our conclusions?
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