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• Biases in climate model outputs of precip-
itation and temperature are substantial.

• Bias adjustment generally improves vari-
ous aspects of raw climate model outputs.

• Not a single bias adjustment method ex-
cels in all of the investigated statistical fea-
tures.

• Simple univariate distribution scaling
(DS) performs well for simple hydrocli-
matic applications.

• Multivariate bias correction (MBCn) per-
forms better for complex applications,
but is computationally more demanding.
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For climate-change impact studies at the catchment scale, meteorological variables are typically extracted from ensem-
ble simulations provided by global and regional climatemodels, which are then downscaled and bias-adjusted for each
study site. For bias adjustment, different statistical methods that re-scale climatemodel outputs have been suggested in
the scientific literature. They range from simple univariate methods that adjust each meteorological variable individ-
ually, to more complex and more demanding multivariate methods that take existing relationships between meteoro-
logical variables into consideration. Over the past decade, several attempts have beenmade to evaluate such methods
in various regions. There is, however, still no guidance for choosing appropriate bias adjustmentmethods for a study at
hand. In particular, the question whether the benefits of potentially improved adjustments outweigh the cost of in-
creased complexity, remains unanswered.
This paper presents a comprehensive evaluation of the performance of two commonly used univariate and two multi-
variate bias adjustment methods in reproducing numerous univariate, multivariate and temporal features of precipita-
tion and temperature series in different catchments in Sweden. The paper culminates in a discussion on trade-offs
between the potential benefits (i.e., skills and added value) and disadvantages (complexity and computational de-
mand) of eachmethod to offer plausible, defensible and actionable insights from the standpoint of climate-change im-
pact studies in high latitudes.
We concluded that all selected bias adjustment methods generally improved the raw climate model simulations, but
that not a single method consistently outperformed the other methods. There were, however, differences in the
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methods' performance for particular statistical features, indicating that other practical aspects such as computational
time and heavy theoretical requirements should also be taken into consideration when choosing an appropriate bias
adjustment method.
1. Introduction

Climate models (CMs) are primary tools for reconstructing past and
predicting future climate. It is common procedure to use global climate
models (GCMs) for large-scale studies, and a combination of GCMs and re-
gional climate models (RCMs) for climate-change impact studies at a finer
spatial resolution. Such studies encompass a large variety of research topics,
ranging from hydroclimatic impact studies that involve, e.g., estimation of
future droughts (Masud et al., 2017), floods (Brunner et al., 2019) or wild-
fires (Yang et al., 2015), to fundamental research projects that advance the
understanding of the climate system beyond what could be achieved from
observations or theories alone (Edwards, 2011). Therefore, a precise repre-
sentation of the climate system is important not only for climate modeling,
but also for many other research disciplines, including for example impact
studies on Earth's natural systems and the interconnected socio-economic
consequences, as well as research on mitigation and adaptation strategies
(Bonan and Doney, 2018).

However, CMs typically provide a somewhat biased representation of
reality, i.e., the statistical features of their outputs (such as mean, variance,
quantiles, dependence between variables or temporal properties) do not
necessarily comply with the features of the observed variables such as pre-
cipitation or temperature (Hakala et al., 2019; Maraun, 2016). Formally,
such biases can be defined as “systematic differences between model simula-
tions and observations” (Jung, 2005; Teutschbein and Seibert, 2012), and
they may occur because CMs rely on the parametrization of processes
(e.g., atmospheric convection) that exist at a smaller scale than what the
models are typically able to resolve (Gentine et al., 2018; Maher et al.,
2018). During parametrization, average or expected values of the variables
are specified or determined through empirical relations, which causes un-
certainty in CMoutputs and is considered one of themain reasons for biases
(Mcfarlane, 2011). Thus, CM outputs cannot readily be used for impact
studies (Teutschbein and Seibert, 2010), and some adjustments to reduce
the existing biases are required prior to any impact study (Hakala et al.,
2019; Maraun et al., 2017; Teutschbein et al., 2011). Formally, this process
is called ‘bias correction’ or ‘bias adjustment’ (BA). The latter term pre-
vails in recent scientific publications (François et al., 2020; Schmith et al.,
2020; Zscheischler et al., 2017) and is, thus, adopted in this paper.

In the past two decades, various BA methods have been developed.
All methods rely on some kind of algorithm that is established
(i.e., calibrated) to improve agreement between the CM outputs and the
corresponding observations over a given climatic period (frequently
named as control or calibration period) inwhich observations are available.
Then the established algorithm serves as basis to adjust the entire record of
the simulated climate variable, including both calibration and future pe-
riods (also referred to as projection period).

Traditionally, BA methods were only applied to one simulated variable
at a time to adjust one or several univariate statistical attributes, without
considering the dependence structure among multiple climate variables.
Such simple univariate methods were already introduced around the turn
of the millennium and include for instance linear scaling, the delta ap-
proach or quantilemapping. For detailed reviews on their underlyingmath-
ematical assumptions and their performance in different regions, we refer
the reader to other references (e.g., Fang et al., 2015; Gudmundsson
et al., 2012; Gutjahr and Heinemann, 2013; Maraun and Widmann,
2018a; Räty et al., 2014; Teutschbein and Seibert, 2012; Watanabe et al.,
2012). One of the most commonly used univariate BA methods is quantile
mapping (QM), which adjusts the full probability distribution of a climate
variable. Originally introduced by Panofsky et al. (1958), QM shows better
2

performance compared to other univariate methods that only adjust biases
in the mean or variance (Teutschbein and Seibert, 2012).

A changing climatewill influence not solely univariate characteristics of
variables, but also their dependences (i.e., multivariate features), and tem-
poral aspects, which are of critical importance for properly modeling and
projecting climate change impacts on human society and ecosystems
(Chen et al., 2020). In fact, shifts in temporal and multivariate aspects are
already being observed (Ettinger et al., 2021; Singh et al., 2020). But uni-
variate BA methods do not consider biases in cross-dependence attributes
among multiple CM outputs and may, thus, generate unrealistic multivari-
ate situations, causingmisinterpretations and distortions of the result of im-
pact studies (Meyer et al., 2019; Zscheischler et al., 2019). Multivariate
characteristics are especially relevant for extreme hydroclimatic compound
events that result from the interplay between different variables
(Zscheischler et al., 2019). For example, droughts may occur because of
the compound effect of a precipitation deficit coupled with high tempera-
tures that lead to increased evapotranspiration (AghaKouchak et al.,
2014). In high latitudes or at high elevations, the precipitation-
temperature dependence also influences the transition between rainfall
and snowfall as well as snowmelt processes, and therefore plays a key
role in controlling spring flood peak, volume and timing (Meyer et al.,
2019). Thus, adjusting simulated variables separately might lead to inaccu-
rate estimates of their combined influence and the risk of compound events.

Over the past few years, new BA methods, which specifically consider
the multivariate properties of CM outputs, have been proposed. These
methods differ from the traditional univariate methods in their level of
complexity, the number of observed/adjusted climate variables, the statis-
tical attributes to be adjusted, and the underlying assumptions. Among
the proposedmethods, two approaches are frequently adopted: (1) different
variations of the copula approach in its empirical form (Piani and Haerter,
2012; Vrac, 2018) or theoretical form (Laux et al., 2011; C. Li et al., 2014),
and (2) multivariate bias correction in n dimensions (MBCn) (Cannon,
2018), which is a multivariate extension of the widely used univariate
QM approach.

Given the relatively recent development of multivariate BA methods,
most of them are not yet fully understood and their ability to adjust the
CM outputs, added value and suitability for impacts studies have not been
thoroughly examined, mainly because of their complexity and sometimes
challenging underlying statistical assumptions. In fact, the scientific litera-
ture only provides few studies that systematically compare their perfor-
mance in adjusting multivariate and temporal statistics of climate
variables. For example, Vrac and Friederichs (2015) analyzed the perfor-
mance of two multivariate BA methods to adjust coarse-scale gridded re-
analysis data (temperature and precipitation) over southern France.
François et al. (2020) compared the ability of several multivariate BA
methods to adjust coarse-scale gridded temperature and precipitation sim-
ulations of a single CMover France. Both studies concluded that application
of multivariate BA methods is beneficial for intervariable dependences.

Proper representation of the complex relationships among climate var-
iables are particularly important for hydrological impact studies such as cli-
mate change or land use/land cover impact assessments, or for water
management in general. Therefore, good performance of BAmethods in re-
producing these relationships, especially at spatial scales that are relevant
for the hydrological studies, is essential. These scales are determined by
the spatial resolutions at which runoff generation processes are being sim-
ulated.

For this reason, the present study aims at adding another piece to the yet
unsolved puzzle of suitability of multivariate BA methods for practical



F. Tootoonchi et al. Science of the Total Environment 853 (2022) 158615
tasks, and at providing more plausible, defensible and actionable informa-
tion primarily for future climate-change impact studies at the catchment
scale (Hewitson et al., 2014; Maraun et al., 2015). Based on a multi-
catchment and multi-climate-model approach, we here present a novel sys-
tematic evaluation of the ability of the four commonly used uni- and multi-
variate BA methods to adjust a wide variety of statistical features of
simulated precipitation and temperature series aggregated over 55 catch-
ments of different sizes and climatic regimes across Sweden. We conclude
this paper by discussing the trade-offs between potential benefits and disad-
vantages of each method from the standpoint of climate-change impact
studies in high latitudes.

2. Methods

2.1. Study area

Sweden is a country in northern Europe with a land area of roughly
408,000 km2, and an elevation range of −2 to 2100 m.a.s.l.. It covers
three of the Köppen-Geiger climate zones (Fig. 1a) (Beck et al., 2018):
(1) the polar tundra climate zone (ET), with monthly mean temperatures
below 10 °C, covers the Scandinavian Mountains in North-western
Sweden, (2) the subarctic boreal climate (Dfc), with cool summers, very
cold winter, persistent seasonal snow cover and soil frost during winters,
stretches over Central and Northern Sweden, and (3) the warm summer
hemiboreal climate zone (Dfb) can be found in Southern Sweden.

Sweden is a heavily forested country (69%of the land area)with a large
number (9 %) of lakes, wetlands and streams. Roughly 8 % of the area is
covered by shrubs and grass land, 8 % is agricultural land, 3 % urban
areas and the remaining 3 % open land and glaciers.

The present study used a well-established data set consisting of
55 Swedish catchments with different sizes (ranging from 2 km2 to
22,600 km2), which has been the basis for various hydroclimatic studies
(e.g., Teutschbein et al., 2022; Todorović et al., 2022). The selected sites
Fig. 1. Location of the 55 Swedish study sites and (a) the spatial extent of the 3 differ
of (b) temperature and (c) precipitation over the period 1961–2004. The shaded rang
10th–90th percentile ranges of all catchments.

3

cover an extensive range of latitudes from 55.9°N to 68.4°N and, thus,
spread over all three Swedish climate regions (Fig. 1a). Daily mean temper-
ature in the catchments in period 1961–2004 varied from −3.0 °C in the
North to +7.7 °C in the South (Fig. 1b), while average daily precipitation
ranged from 3.2 mm·day−1 in north-western Sweden to 1.4 mm·day−1 in
southern Sweden (Fig. 1c). Temperature exhibited a pronounced
seasonality, with the highest temperatures in July (Fig. 1b). Precipitation
also displayed a distinct pattern with the highest precipitation rates in
summers and autumns (Fig. 1c). Variability in precipitation across the
catchments was considerable, especially during the colder autumn and
winter months.

2.2. Study design

To evaluate the ability of the selected bias adjustment methods to re-
duce biases in various features of the simulated series of precipitation and
temperature in Sweden, the following procedure consisting of four steps
(each of which is explained inmore detail in the sections below)was imple-
mented:

1. A set of 10 different CM outputs of precipitation and temperature in
55 Swedish catchments of varying sizes and climatic features was
selected (see Section 2.3 Data Selection).

2. Biases in univariate, multivariate and temporal features were estimated
(see Section 2.4 Statistical Features)

3. Two widely used traditional univariate BA methods (variations of
quantile mapping: distribution scaling and quantile delta mapping)
and two prevailing multivariate BA methods (copula-based method and
n-dimensional multivariate bias correction method, MBCn) were cali-
brated over 22 years of observations (1961–1982), thus representing
the calibration period. The calibrated BA methods were then applied
to adjust the biases over the full record period of observations
(1961–2004, see Section 2.5 Bias Adjustment (BA) methods).
ent climate zones covering the country, as well as spatial and seasonal variability
es in the seasonal plots in (b) and (c) show the interquartile range (IQR) and the
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4. Performance of the selected BA methods in reducing biases in the con-
sidered features (i.e., univariate, multivariate and temporal statistical
properties) of the series was assessed during a 22-yr verification period
(1983–2004) that was different from the data that BAmethods were cal-
ibrated to (see Section 2.6 Performance Assessment and Ranking).

2.3. Data selection

2.3.1. Observations (reference data set)
Gridded daily mean values of observed temperature and precipitation

were obtained from SMHI's PTHBVdatabase (SMHI, 2005), which provides
a spatially interpolated 4 km × 4 km national grid for the period
1961–2020 (Johansson, 2002). Catchment-specific temperature and pre-
cipitation values were calculated from area-weighted averages of all grid
cells partly or fully lying within the catchment boundaries. Geospatial
data of the catchment boundaries for each of the 55 catchments was ob-
tained from SMHI's SVAR database (Eklund, 2011).

2.3.2. Climate model simulations
Daily precipitation and temperature series simulated by an ensemble of

10 combinations of global and regional climatemodels (detailed in the sup-
plementary material, Table S1) for the historic period 1961–2004 were ob-
tained from the EURO CORDEX initiative (Jacob et al., 2014). We selected
only those CMs that had available both the historical and future simulations
for all three-greenhouse gas concentration trajectories (i.e., RCP 2.6, 4.5
and 8.5), and in the highest available horizontal resolution of 0.11 degree
(roughly 12.5 km). To cover a wide range of uncertainties, we selected sim-
ulations from different families of global climate models. If simulations
were available in more than one version (e.g., v1 and v2), then the most
up-to-date and corrected version was selected. The gridded daily precipita-
tion and temperature data was averaged for each catchment following the
same approach as for the averaging of the gridded observations.

2.4. Statistical features of precipitation and temperature series

Following the formal definition of bias by Jung (2005), we measured
systematic differences between statistical attributes of climate simulations
and observations (Teutschbein and Seibert, 2012). Biases were estimated
for (1) univariate, (2) multivariate and (3) temporal statistical features as
listed below.

Univariate aspects of climate variables included common summary sta-
tistics, such as mean and variance of precipitation and temperature, the
10th and 90th percentiles of temperature, the 90th percentile of precipitation
and the number of dry days in a considered period.

Additionally, we analyzed several multivariate and temporal aspects
outlined below that were not directly calibrated when establishing the sta-
tistical relationships for each BA method (Maraun and Widmann, 2018a).
Multivariate features covered the Pearson correlation coefficient ρ
(Pearson, 1920) for the entire range of dependence between precipitation
and temperature, and the Clausius-Clapeyron (C-C) relation (a measure
for the relationship between heavy rainfall and temperature). Pearson cor-
relation was here chosen instead of other rank correlation measures
(e.g., Spearman correlation coefficient (Spearman, 1904)), as it can be
more robust for data with same ranks (Vrac and Thao, 2020), which was
the case for our precipitation data that contained many drizzle (i.e., zero
precipitation) days. Detailed information on the concept and implementa-
tion of the C-C relation can be found in the supplementary material S2.1.
Temporal characteristics encompassed the cross-correlation between
precipitation and temperature for lags between±5 days and the autocorre-
lation of precipitation time series until a lag of+5days. Cross-correlation is
a common measure to detect the underlying interaction between precipita-
tion and temperature processes, and possible time delays in those. The cor-
rect representation of cross-correlation has been shown to be crucial for
simulations of streamflow (in particular low flows) and other land-surface
interactions (Seo et al., 2019). In contrast, the autocorrelation of precipita-
tion quantifies the persistence of rainfall/snow events and has critical
4

implications for assessments of drought and flood risks. Furthermore, due
to the importance of wet or dry spells for many types of hydroclimatic im-
pact assessments, we followed the suggestion of Maraun et al. (2019) to an-
alyze precipitation transition probabilities. These transition probabilities
are conditional probabilities for a state at time t, given the state at time t-
1 (Wilks, 2006). More specifically, we investigated the two transition prob-
abilities most relevant for hydrological extreme events: (1) P11, a wet day
following a wet day, which is relevant for flood events and (2) P00, a dry
day following a dry day, relevant for drought events. For a detailed descrip-
tion of the computation of transition probabilities, we refer the reader to
the supplementary material S2.2.

2.5. Bias adjustment (BA) methods

We applied a set of four BAmethods varying in their complexity and the
number of climate variables they consider. Methods used in this study
ranged from simple traditional univariate BA methods (Section 2.5.1) to
rather advanced, modern multivariate BA methods (Section 2.5.2). These
methods were further categorized into (1) so-called distribution-based
methods if they were based on known probability distributions (Ivanov
and Kotlarski, 2017; Luo et al., 2018), and (2) into distribution-free
methods. All four methods are shortly described below. In-depth explana-
tions and equations can be found in the supplementary material, S3.

2.5.1. Traditional univariate BA methods
In the bias adjustment literature, different versions of quantile mapping

(QM) are commonly adopted. QM methods are specifically advantageous
because of their ability to adjust the overall distribution of the data rather
than adjusting just mean or variance. The idea behind these methods is to
correct the theoretical probability distribution of CM outputs to agree
with probability distributions of the corresponding observations. Here we
adopted two versions of QM as benchmark univariate methods to which
the multivariate methods were compared to. The benchmark univariate
methods were the distribution scaling and quantile delta mapping.

Distribution scaling (DS) is a distribution-based quantile mapping ap-
proach introduced byYang et al. (2010), which is widely adopted in the sci-
entific literature (Gudmundsson et al., 2012; Teutschbein and Seibert,
2012). In this method, particular distribution families are chosen to form
a cumulative distribution function (CDF) of variables. The Gamma distribu-
tionwith shape parameter α and scale parameter β is commonly used to rep-
resent the precipitation intensity (i.e., the precipitation amount on wet
days) (Teutschbein and Seibert, 2012; Thom, 1951). For temperature, the
Gaussian distribution with mean μ and variance σ is assumed to provide a
plausiblefit (Teutschbein and Seibert, 2012). Therefore, these two distribu-
tions were adopted in this paper. For the detailed formulation of the DS ap-
proach refer to Teutschbein and Seibert (2012), Eqs. (23)–(26).

Quantile delta mapping (QDM) was first introduced by H. Li et al.
(2010). It is a distribution-free combinationwith the simple delta approach,
that explicitly preserves relative changes in simulated CM quantiles
(Cannon et al., 2015). QDM adjusts CM output variables in the projection
(verification) periodfirst towards the CMoutput variables in the calibration
period, and then towards the observed variables in the calibration period.
By comparing QDM to other QM methods, Cannon et al. (2015) showed
the merits of QDM to preserve the trends of CM outputs.

2.5.2. Modern multivariate BA methods
In addition to adjustments of univariate characteristics of the CM out-

puts, multivariate methods also adjust the dependence structure between
variables. Different multivariate methods have recently been introduced,
among which are copula approaches (e.g., C. Li et al., 2014; Räty et al.,
2018) and MBCn (e.g., Cannon, 2018; Singh and Reza Najafi, 2020), both
widely used in impact studies.

Copula adjustment methods rely – as the name indicates – on a cop-
ula, which is a mathematical function that links marginal distributions of
two ormore sets of randomvariables to represent their joint probability dis-
tribution (Sklar, 1959). In the bias-adjustment literature, empirical copulas
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(e.g., Bárdossy and Pegram, 2012; Vrac and Friederichs, 2015) and
distribution-based Gaussian copulas (e.g., C. Li et al., 2014; Räty et al.,
2018) are typically used. However, several studies have shown that
Gaussian copulas do not always guarantee the bestfit, and that other copula
families should also be tested (Brunner et al., 2019; Singh et al., 2020;
Tootoonchi et al., 2022). Thus, we here tested one elliptical copula
(i.e., Gaussian), and three widely used Archimedean copulas (i.e., Clayton,
Frank and Gumbel copula), all of which were applied separately on daily
precipitation and temperature of each month. Only the best-fitting theoret-
ical copula according to the results of the Cramer-von Mises test (Genest
et al., 2009) was used for the bias adjustment of the variables. Whenever
the test failed to provide an admissible theoretical copula, the empirical
copula was used for modeling the dependence. In this study, empirical
copula was used most often (38 %), followed by Clayton (24 %), Gaussian
(16 %), Frank (11 %) and Gumbel (10 %) copulas. After adjusting the de-
pendence, the DS method was applied on the margins to adjust univariate
characteristics.

It should also be noted that the copula approach cannot directly be ap-
plied if the data contains values of the same rank (known as ‘ties’ in the cop-
ula literature), which is typically the case in daily precipitation data that
contains occasional dry days (Tootoonchi et al., 2022). Therefore, amethod
to handle ties should first be applied on the data to produce a dataset free
from ties. In this study, a jittering algorithm (following Pappadà et al.,
2017) was applied on the data with the same rank to break these ties.

The n-dimensional multivariate bias correction (MBCn) method, in-
spired by image processing techniques, was introduced by Cannon (2018)
and has by now been adopted as a benchmark for multivariate bias
adjustment performance assessments (Van de Velde et al., 2022; François
et al., 2020; Räty et al., 2018; Singh and Reza Najafi, 2020; Zscheischler
et al., 2018). This method is distribution-free and randomly generates or-
thogonal rotation matrices, and repeatedly applies them to multivariate
data. At each rotation, a selected univariate BA method (we used the
QDM method) is applied on each of the variables separately to adjust for
biases. This iterative procedure is applied until the distribution of the target
variables converges to the corresponding distribution for observations ac-
cording to the energy-distance metric, which is a measure for multivariate
similarity. Originally, Cannon coded this approach in R and the algorithm is
freely available in the ‘MBCn’ package (https://cran.r-project.org/web/
packages/MBC/index.html).

2.5.3. Calibration and verification of BA methods
Both observations and climate simulations were divided into two inter-

vals of 22 years each to allow for a split-sample evaluation (Klemeš, 1983).
The split-sample test was preferred over k-fold cross validation (Maraun,
2016) to resemble evaluation protocols typically used by impact modelers
(e.g., for the evaluation for hydrological models). This setup was further
dictated by the data availability, and by the fact that the empirical
copula can only be applied to series of equal length. The first period
(1961–1982) was considered as the calibration period to set (calibrate) pa-
rameters of the bias adjustment methods. The simulated precipitation and
temperature series in the second (verification) period (1983–2004) were
adjusted directly based on the parameters estimated during the calibration
period. For each period, BA was performed separately for each of the
12 months to preserve seasonal variations. In accordance with common
practice, drizzle days with less than 1 mm·day−1 of precipitation were set
to dry days (zero precipitation) before evaluation.

2.6. Performance assessment and ranking

Evaluation of the selected BA methods in this paper was based on the
similarity between the statistical features of the simulated and observed
precipitation and temperature (Gudmundsson et al., 2012). The perfor-
mance of BAmethodswas judged based on the results in the verification pe-
riod, which was generally warmer and wetter than the calibration period.
We applied the t-test under the null hypothesis of equal means of the data
over the two periods at 5 % significance level, which was rejected for
5

most catchments for both annual mean precipitation and temperature.
Thus, the vast majority of the selected data indicates differences in the cli-
matic properties for calibration and verification periods. We, therefore,
considered that such a setup enables a comprehensive evaluation of biases
in the simulated precipitation and temperature, and fair comparison of the
BA methods.

The statistical features considered in this study are elaborated in
Section 2.4. In this paper, we utilized the mean absolute error (MAE) as a
performance measure of bias in univariate, multivariate and temporal fea-
tures of the simulated temperature and precipitation series.

The MAE value represents the mean absolute difference between
the simulated and corresponding observed statistical features (Eq. (1)). As
such, MAE is also suitable for features that take rather small values
(i.e., close to zero), which was the case for several statistical features we an-
alyzed. The MAE values were computed as follows:

MAE ¼ 1
N
∑N
i¼1 Robs,i � Rsim,i

�
�

�
�, (1)

where, Robs,i represents a statistical feature calculated from observations,
while Rsim,i stands for the statistical feature of the correspondingmodel sim-
ulation, and N is the total number of observations. Lower values of MAE
suggest lower biases.

It should be noted that MAE cannot show the sign of bias (e.g., if the
simulated mean temperature shows a cold or warm bias). However, we
here focused solely on the magnitude of bias (rather than on the sign)
and, therefore, considered MAE an appropriate indicator to quantify errors
in the statistical features. The MAE values were computed for each statisti-
cal feature (Section 2.4) for the raw and for bias-adjusted series simulated
by the 10 CMs (Table 1) in each of the 55 catchments, separately for the cal-
ibration and verification periods. For univariate metrics and Pearson corre-
lation, biases (MAEs) were computed separately for each month, whereas
MAEs in the C-C relation and temporal featureswere calculated over the en-
tire period under consideration.

While we carefully analyzed the performance of BA methods for both
calibration and verification period, we found the results to bemostly consis-
tent across periods and chose to only present results for the independent
verification period to ensure consistency, brevity and transferability of
the results to future climate conditions (i.e., conditions that the BAmethods
have not been calibrated to).

To provide a holistic evaluation and fair comparison of the applied BA
methods, a final scoring matrix was developed based on the remaining
biases using the MAE values that were averaged over all catchments and
CM outputs. For the final scoring, MAE of raw CM outputs was taken as
benchmark and all other MAE values (obtained after applying the various
BA methods) were scaled accordingly by dividing them with the bench-
mark MAE value. Therefore, the raw CM outputs always received a value
of 1, whereas all other methods either received a better score (i.e., below
1) when they reduced the bias or a worse score (i.e., above 1) when they in-
creased the bias. For each category of univariate,multivariate and temporal
features, the BAmethods were thus ranked based on their remaining biases
(i.e., based on the magnitude of MAE), and a final average rank was com-
puted for each method. Additionally, a ranking of the methods' complexity
based on their computational times was also included in the evaluation. It
should be noted, however, that such a ranking is highly sensitive to coding
style and might be speeded up with further coding enhancements.

3. Results

3.1. Statistical features of the observed precipitation and temperature

Observed hydroclimatic features of the selected catchments were calcu-
lated over both the calibration and the verification periods, and minimum,
mean and maximum values over the catchments for the statistics intro-
duced in Section 2.4 are presented in Table 1. In accordance with their

https://cran.r-project.org/web/packages/MBC/index.html
https://cran.r-project.org/web/packages/MBC/index.html


Table 1
Statistical features of observed precipitation and temperature time series in the selected catchments calculated over the entire calibration (1961–1982) and verification
(1983–2004) periods. Note that these values are based on daily values.

Spatial characteristics Calibration period (1961–1982) Verification period (1983–2004)

Min Mean Max Min Mean Max

Univariate statistics
Temperature
Mean [°C] −3.5 2.6 7.2 −2.4 3.5 8.1
Variance [°C2] 50.3 83.1 133.1 47.34 72.6 120.4
10th percentile [°C] −18.8 −9.6 −1.9 −16.8 −7.5 −0.6
90th percentile [°C] 9.2 13.5 16.2 10.1 14.2 16.9

Precipitation
Mean [mm·day−1] 1.4 2.0 3.0 1.5 2.2 3.4
Variance [mm2·day−2] 8.5 13.9 24.3 9.2 16.9 30.9
The 90th percentile [mm2.day−1] 4.2 6.1 9. 4.6 6.8 9.8
Number of dry days per year 33.6 96.0 169.8 37.9 94.0 171.6

Multivariate statistics
Pearson correlation between daily variables [−] 0.03 0.09 0.17 0.03 0.10 0.16
C-C relation [%/°C−1] 0.3 % 2.5 % 6.3 % 0.07 % 3.2 % 4.7 %

Temporal statistics
Cross-correlation lag +1 day [−] −0.04 0.20 0.37 −0.02 0.24 0.38
Autocorrelation of precipitation lag +1 day [−] 0.35 0.45 0.57 0.35 0.43 0.56
Dry-day to dry-day transition probability (P00) [−] 0.42 0.57 0.68 0.42 0.55 0.69
Wet-day to wet-day transition probability (P11) [−] 0.72 0.84 0.93 0.72 0.83 0.93
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wide geographical spread across the country, the study catchments showed
a wide range of different hydroclimatic characteristics.

3.1.1. Univariate statistical features of precipitation and temperature
During the calibration period (1961–1982), mean temperature ranged

from −3.5 °C in the North to +7.2 °C in the South. Temperature featured
a clear north-south pattern in its univariate characteristics (not shown
here). Generally, all temperature-related features were relatively higher
in the southern catchments, and lower in the northern ones, except for
the variance, which exhibited the opposite behavior. The mean precipita-
tion varied from 3.0 mm·day−1 in the Scandinavian mountains (North-
Western Sweden) to 1.4 mm·day−1 in the drier southern regions (not
shown here). During the later verification period (1983–2004), all
temperature-related statistics increased, except for the variance. The aver-
age annual temperature was considerably warmer as it increased by
roughly 1 °C in the selected catchments, while precipitation rose slightly
by+10 %. Although the underlying causes of these shifts from calibration
to verification period cannot clearly be attributed to man-made climate
change (given the relatively short length of these periods) and could poten-
tially be caused by internal climate variability, the verification period can
be considered a reasonable proxy for future climate conditions, as the ob-
served changes in mean temperature and precipitation are within the
range of likely climate-change scenarios in Sweden (IPCC, 2014).

3.1.2. Multivariate statistical features of precipitation and temperature
Dependence between daily temperature and precipitation (here

expressed in terms of the Pearson correlation between daily variables,
Table 1) was weakly positive in all catchments during both simulation pe-
riods with values between 0.03 and 0.17. However, dependence also
showed considerable monthly variations (Fig. 2a), with generally negative
values during the months of May to August and positive ones from October
to March. The spatiotemporal pattern detected during the calibration pe-
riod (Fig. 2a, left) generally persisted over the verification period (Fig. 2a,
right), but slight shifts occurred in some months. For example, the depen-
dence in July became weaker in the southern catchments, while positive
dependences in February and October became stronger.

TheClausius-Clapeyron (C-C) relation between the precipitation greater
than 95th percentile and the temperature at which it occurred had an aver-
age of 2.5 %/°C in the calibration period, and increased to 3.2 %/°C in the
verification period (Table 1). This increase, however, was not detected in
all catchments (denoted by the decrease in the minimum and maximum
6

values in Table 1). Furthermore, The C-C relation did not feature a pro-
nounced north-south gradient.

3.1.3. Temporal statistical features of precipitation and temperature
Cross-correlation of precipitation and temperature was assessed for lags

between−5 days to +5 days (Fig. 2b). The overall pattern was consistent
across all lags from−5 to +5: positive cross-correlation was higher in the
southern catchments and slightly increased in the verification period. In the
northern catchments, cross-correlation was weaker or even negative in
some catchments across all lags. In a few northern catchments, a shift to-
wards positive values in the verification period was observed.

Precipitation autocorrelation (Fig. 2c) took values between 0 and 0.57
with decreasing values with increasing lag length. Generally, higher values
were found in the northern catchments in all lags (Fig. 2c). No clear
alteration in the magnitude was observed in the verification period
(Table 1).

The dry-to-dry-day transition probability (P00) took values between 0.4
and 0.7, with slightly lower values in the northern catchments in both pe-
riods. These probabilities decreased over the verification period (Fig. 2d).
The wet-to-wet-day transition probability (P11) was higher than P00
(Fig. 2e), indicating a higher probability of two consecutive rainy days
than two consecutive dry days. The values of P11 were between 0.72 and
0.93 in both periods (Table 1), without any distinct spatial pattern, includ-
ing the north-south gradient. Therewas also no clear difference in this prob-
ability between the calibration and verification periods (Fig. 2e).

3.2. Bias estimation (raw CM outputs)

To quantify biases in the simulated precipitation and temperature series
and to enable comparison of the four BAmethods, we calculatedMAE from
the univariate, multivariate and temporal statistics of these series, by com-
paring them to the corresponding features of the observations (as explained
in Section 2.4). We evaluated the BA methods over the verification period
(1983–2004) and, for the sake of brevity, presented biases in the raw CM
outputs only in that period.

3.2.1. Univariate statistical features of precipitation and temperature
Biases in univariate characteristics of raw simulated temperature

(Fig. 3a–d) and precipitation (Fig. 3e–h) showed considerable seasonal var-
iations, and, in many instances, large spread across the CMs.

Simulated monthly mean temperatures (Fig. 3a) featured the largest
(absolute) biases (i.e., MAE) in spring with values up to 7.27 °C in April.



Fig. 2. Multivariate and temporal statistical features in the 55 catchments over the calibration and verification periods: (a) Pearson correlation coefficients obtained from
daily precipitation and temperature and is shown for different months, (b) cross-correlation between daily precipitation and temperature from lag −5 to lag +5 days,
(c) autocorrelation of precipitation for lags 1 to 5 days, (d) transition probabilities for dry-to-dry days (P00), (e) transition probabilities for wet-to-wet days (P11). Latitude
of the catchments is indicated on the y-axis in panels (a)–(c).

Fig. 3. The MAE values in the univariate statistics obtained for eachmonth from the raw simulated temperature (upper row) and precipitation (lower row). The ranges show
the spread (minimum and maximum values, as well as the interquartile range, IQR) in MAE across the 10 CMs after averaging MAE values over all 55 catchments in the
verification period.
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During the first half of the year (January–May), simulated temperatures ex-
hibited both higher uncertainty and larger average bias than in the remain-
ing months (Fig. 3a). Bias in the variance of the simulated temperature
(Fig. 3b) exhibited a clear seasonal pattern as well, featuring both larger av-
erage biases and a larger spread during winter (December–February) than
in the period from March to November. The largest biases were detected
in January with values up to 29°C2. The ensemble mean of MAE in the
10th and 90th percentiles of temperature (Fig. 3c, d) generally had similar
values and followed a similar seasonal pattern as the mean temperature
(Fig. 3a). Both percentiles featured a larger spread of biases in CM outputs
in thefirst half of the year, especially during spring (the highest valueswere
detected in April). However, biases in the 10th percentile of temperature
(Fig. 3c) featured a larger spread (with maximum values up to 8.36 °C in
April) than biases in the 90th percentile (Fig. 3d, maximum values were
up to 6.3 °C in April).

For mean precipitation, the largest biases (up to 1 mm·day−1) as well as
pronounced uncertainty of CM outputs were detected during warmer and
wetter summer months (in June in particular) (Fig. 3e). On average,
Fig. 4.Overview of themultivariate statistics obtained from the observed and raw simula
in (a) Pearson correlation coefficient obtained from raw CM outputs and observations, an
after averaging over 55 catchments. The lower row shows the spatial pattern (c) of the C
MAE values. Ranges show the spread across the 10 CMs in the verification period.
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however, the lowest biases and lowest variability were observed in
2 months of different seasons: March and October. Similar to the mean pre-
cipitation, variance had larger biases (as large as 11.63 mm2·day−2) and
higher variability during summer (Fig. 3f). Extremely high precipitation
(i.e., the 90th precipitation percentile) yielded considerably higher biases
than the mean precipitation (nearly 3 mm·day−1). The largest MAE values
were found June–September, while the highest spread of biases in CM out-
puts was observed in the period May–July (Fig. 3g). The bias in CM-
simulated number of dry days (i.e., days with precipitation less than
1 mm) was up to 12 days in the spring, while the variability was generally
highest during the summer (Fig. 3h).

3.2.2. Multivariate statistical features of precipitation and temperature
To describe biases in multivariate characteristics in detail, the Pearson

correlation coefficient between precipitation and temperature, and the C-
C relation for the uncorrected CM output were compared against the corre-
sponding features obtained from the observations (Fig. 4a, c) and quanti-
fied in terms of MAE (Fig. 4b, d).
ted temperature and precipitation series. The upper row shows the seasonal patterns
d (b) the correspondingMAE values. The ranges show the spread across the 10 CMs
-C relation obtained from raw CM outputs and observations, and (d) corresponding



F. Tootoonchi et al. Science of the Total Environment 853 (2022) 158615
Observed correlation coefficients across the catchments exhibited a pro-
nounced seasonal pattern, with negative correlation in the warm season
(May–August) and positive correlation in the cold season (October–
March). This pattern was generally reproduced by the CMs (Fig. 4a), with
exception of a slight shift in negative correlation towards the end of the
warm season. The correlation of CM outputs was somewhat stronger
(i.e., more extreme) than the correlation featured by the observations
(Fig. 4a). Stronger correlations in CMoutputs could specifically be observed
for the period November–February (positive correlation) and in July (neg-
ative correlation). This pattern of over-/underestimation was also reflected
in the MAE (Fig. 4b), which demonstrated the largest median biases in the
winter months (December through February) and the lowest biases in the
summer (June through August). The greatest uncertainty (i.e., spread
across the CMs) was observed in April.

The relationship between extreme precipitation and the temperature at
which it occurred was mostly overestimated by CMs (Fig. 4c). Biases were
overall high, with median MAE values across the catchments ranging
from 1.7 %/°C to 7.9 %/°C (Fig. 4d).

3.2.3. Temporal statistical features of precipitation and temperature
Considerable disagreement between the temporal characteristics of raw

simulated and observed series was detected (Fig. 5). The observations
displayed the highest cross-correlation between precipitation and tempera-
ture at lag−1, but also continued to show relatively high values for lags 0
to 5 (Fig. 5a). In contrast, raw CM outputs consistently demonstrated
highest cross-correlation at lag 0 (Fig. 5a), and consistently underestimated
the observed cross-correlation at all lags. However, the lowest biases were
found at lag 0 (Fig. 5b). The spread of MAE at different lags did not exhibit
strong variations, spanning from 0.02 to 0.12 over all lags (Fig. 5b).

Concerning autocorrelation of precipitation over different lags, CM out-
puts mostly overestimated the observations, particularly at higher lags
Fig. 5. Temporal statistics of the observed and raw simulated precipitation and tem
precipitation and temperature, and (b) the corresponding MAE values, (c) raw CM ou
MAE estimates. The two figures on the right-hand side show spatial variability of M
probability P11. The ranges show the spread in the CM outputs (a and c), MAE (b and d
of MAE across the catchments (e and f), in the verification period.
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(here of maximum 5 days, Fig. 5c). While no specific pattern could be de-
tected in MAE over different lags (Fig. 5d), autocorrelation featured lower
average biases and variability compared to cross-correlation.

For the simulated transition probabilities, MAE took relatively high
values. Dry-to-dry-day transition probability (P00) (Fig. 5e) featured consid-
erably higher biases (almost twice as high) compared to wet-to-wet-day
transition probability (P11) (Fig. 5f). No clear north-south gradient could
be detected in the MAE value (Fig. 5e, f).

3.3. Performance assessment of the BA methods

3.3.1. Univariate statistical features of precipitation and temperature
All BA methods considerably reduced MAE in the univariate attributes

of temperature (Fig. 6a–d). Across all univariate features (i.e., mean, vari-
ance, the 10th and 90th percentiles), adjustments done through
distribution-based BA methods (i.e., DS and copula) featured a lower me-
dian and spread of bias. For the mean temperature, the spread in MAE
and especially the most extreme biases are reduced considerably, from a
maximum bias of 7.8 °C to a maximum of approximately 4 °C with the
distribution-free BA methods (i.e., QDM and MBCn), and to a maximum
bias of less than 2 °C with the distribution-based DS and copula method
(Fig. 6a). The median of MAE in the variance of temperature (Fig. 6b)
was somewhat reduced, with better performance of the distribution-based
BA methods (i.e., DS and copula). The spread of MAE, however, showed a
considerable decrease from 15 °C in raw CM outputs to roughly 6.2 °C after
application of DS and copula, and approximately 8.1 °C via the QDM and
MBCn BAmethods.WhileMAEs in both raw 10th and 90th percentiles of tem-
perature (Fig. 6c, d) were roughly as large as MAE in the mean temperature
(Fig. 6a), the remaining biases after bias adjustment were slightly larger com-
pared to correspondingMAEs inmean temperature, i.e., application of the BA
methods did not reduce biases in extreme temperatures to the same degree as
perature series: (a) raw CM outputs versus observed cross-correlation between
tputs versus observed autocorrelation in precipitation, and (d) the corresponding
AE in (e) dry-to-dry-day transition probability P00, (f) wet-to-wet-day transition
) across 10 CMs after averaging MAE over all catchments and temporal variability



Fig. 6. MAE in the univariate statistics of raw CM outputs and bias adjusted temperature (upper row) and precipitation (lower row). The ranges show the spread in MAE
across the 10 CMs after averaging MAE over all catchments and 12 months in the verification period.
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in mean temperatures (Fig. 6c–d). When comparing MAE of the 10th percen-
tile to the 90th percentile, the former exhibited a slightly higher spread of bias
with all BA methods (Fig. 6c–d).

The performance of the BAmethods for precipitation (Fig. 6e–h) varied
across the statistical features and the methods. In the case of mean precipi-
tation, all methods reduced the median MAE to some extent, but the
remaining biases featured a considerable spread across the CMs (Fig. 6e).
Outperforming the other three BA methods, MBCn yielded the lowest
median bias, which decreased from 0.24 mm·day−1 in raw CM outputs to
roughly 0.16 mm·day−1 after the adjustment. Variance of precipitation
(Fig. 6f), on the other hand, did not exhibit any improvements after the ap-
plication of QDM orMBCn, with the overall bias even increasing. However,
both the spread and median of bias was reduced after adjusting the results
with the distribution-basedmethods DS and copula, reducing themedian of
bias from 3.18 mm2·day−2 in raw CM outputs to roughly 2.6 mm2·day−2.
Similar to mean precipitation, biases in extreme precipitation were
generally reduced from 0.73 mm·day−1 in raw CM outputs to roughly
0.65 mm·day−1 after application of the BA methods (Fig. 6h). All BA
methods considerably reduced biases in the number of dry days per month
(Fig. 6h). Raw CM outputs ranged from approximately 2 to 12 days, while
biases after the adjustment ranged from 0 to 4 days. The best result was ob-
tained with the MBCn method that reduced the biases to almost zero days.
Unlike previous statistics, however, therewas no distinct difference between
the distribution-based and distribution-free methods.

3.3.2. Multivariate statistical features of precipitation and temperature
As highlighted earlier (Section 3.2.2), the raw CM outputs (Fig. 7a)

overestimated the magnitude of correlation in summer and winter, which
led to large biases across the year, especially in the colder seasons (Fig. 7b).
The two univariate BA methods DS (Fig. 7c, d) and QDM (Fig. 7e, f) were
not able to noticeably reduce the existing biases throughout the year. Only
the multivariate BA methods based on the copula approach (Fig. 7g, h) and
MBCn (Fig. 7i, j) considerably reduced biases in the correlation over different
months, but also reduced the spread across the CM outputs.

The copula method resulted in the lowest MAE values and the lowest var-
iability both across the CM outputs (Fig. 7g) and across the seasons (Fig. 7h),
with biases in some months even been completely removed after the
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adjustment. The copula-corrected CMs generally followed observational var-
iations in the calibration period (Fig. 7g) and the original signal from the raw
CM outputs seemed to be almost completely lost, which was apparent in the
weaker correlation in February and October. MBCn brought the raw CM out-
puts correlation closer to those of the observations (Fig. 7i), which resulted in
overall lower MAE values (Fig. 7j). In contrast to the copula method, MBCn
still preserved the original variation in MAE produced by the CMs (Fig. 7j).

When averaged over all months of the year (Fig. 7k), the differences
among BA methods became more apparent: the univariate methods (DS
and QDM) only slightly reduced existing biases, whereas multivariate
methods (copula andMBCn) reduced theMAE in correlation from amedian
of 0.075 in raw outputs, down to 0.026 (copula) or 0.037 (MBCn).

The estimated C-C relation after bias adjustment (Fig. 8a) was generally
improved after the application of all four BA methods. Corrected CM out-
puts through both univariate methods (DS and QDM) and one multivariate
method (MBCn) generally resulted in a slight overestimation of the C-C re-
lation (Fig. 8a), whereas copula somewhat underestimated the C-C relation,
specifically in the northern catchments.While all fourmethods were able to
reduce biases by lowering the median of MAE (Fig. 8b), multivariate
methods succeeded to reduce MAE the most, with copula outmatching
MBCn by both lowering the spread of error and the median of MAE from
4 %/°C in raw simulations to 1 %/°C in the corrected ones (Fig. 8b).

3.3.3. Temporal statistical features of precipitation and temperature
BA methods showed substantial differences in changing the biases of

temporal features (Fig. 9). After applying the univariate BA methods,
cross-correlation between precipitation and temperature (Fig. 9a) generally
showed lower MAE values. In contrast, MAE increased from a median of
0.06 in raw CM outputs to approximately 0.09 in those corrected with the
multivariate methods (Fig. 9a).

Autocorrelation of precipitation (Fig. 9b) exhibited less bias in compar-
ison to the cross-correlation (Fig. 9a). Application of all BAmethods except
for DS resulted in some decrease of biases (Fig. 9b). Only the application of
DS caused an increase of MAE from amedian value of 0.012 in rawCMsim-
ulations to 0.019 in the adjusted ones.

All four BA methods substantially reduced biases in both transition
probabilities P00 and P11 (Fig. 9c–d). Corrected CM outputs with univariate



Fig. 7.Ability of BAmethods to adjust the bias in dependence between temperature and precipitation. Left panels (a ,c, e, g, i) show the seasonal dependence patterns in raw
and bias-adjusted CM outputs versus observations, central panels (b, d, f, h, j) show the resulting MAE values. Right panel (k) indicates overall performance after averaging
over all catchments for all months and CMs, in the verification period.
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methods (DS and QDM) were associated with a higher spread of MAE in
comparison to corrections done through multivariate methods (copula
and MBCn). In both P00 and P11 as well as across all BA methods, the
copula-based BA method featured the highest median, but the lowest
spread of MAE (Fig. 9c, d).

3.3.4. Overall performance and ranking
All BA methods considerably reduced biases in univariate temperature

metrics (Fig. 10a). It should be highlighted, though, that distribution-
11
based methods (univariate DS and multivariate copula) consistently
outperformed QDM and MBCn (Fig. 10a).

For precipitation, the improvements were less pronounced. The
distribution-based BA methods (DS and copula) were again able to reduce
biases in all univariate metrics more than their distribution-free counter-
parts (QDM and MBCn). In case of variation, QDM and MBCn even slightly
increased biases (Fig. 10a).

Concerning the multivariate features, univariate BA methods (DS
and QDM) only slightly modified biases in both the dependence



Fig. 8. Ability of BAmethods to reduce the bias in the C-C relation: (a) spatial variability of the C-C relation obtained from raw and bias-adjusted CM outputs (averaged over
the 10 CMs in each catchment) in direct comparison to those by the observations, and (b) the MAE values. The ranges of boxplots show the spread across the 10 CMs after
averaging over all catchments.
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structure and C-C relation (Fig. 10b), while both multivariate BA
methods considerably reduced MAEs, with copula outperforming
MBCn.
Fig. 9.MAE in temporal features of the raw and bias adjusted CM outputs variables in t
averaging the MAE values over all catchments in the verification period. In (a) and (b)
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BA methods exhibited noticeable differences in their ability to modify
temporal features (Fig. 10c). For cross-correlation, both multivariate
methods resulted in larger biases than raw simulations, whereas for
he verification period. The ranges show the spread in MAE across the 10 CMs, after
values were additionally averaged over all lags.



Fig. 10. Holistic performance of all BA methods in comparison to raw CM outputs across numerous statistical features of simulated precipitation and temperature series
categorized into (a) univariate, (b) multivariate and (c) temporal features. Color and size of the circles showing raw CMs (left column) are fixed to the same value of one,
while circle size and color of the bias adjusted CM represent the remaining biases relative to that. Bias reductions (good performances) are shown by smaller blue circles,
bias amplification (poor performance) by larger pink circles. Performance ranks are included in the lower right corner of each BA method. Overall efficiency of each BA
method for reducing biases for each category of (a) univariate, (b) multivariate and (c) temporal features was quantified by averaging their performance ranks within
each category and shown together with the ranks for (d) complexity.
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autocorrelation biases only increased with DS (Fig. 10c). Biases in both
transition probabilities (P00 and P11) consistently decreased after applica-
tion of all four BA methods, with the copula approach performing slightly
worse than the other methods (Fig. 10c).

Differences in the complexity of the underlying assumptions and statis-
tical concepts of each BAmethod were also reflected in the time to concep-
tually understand and implement each BA method (not directly measured
here), and in the computational costs to run them (Fig. 10d). Computations
of the two simpler univariate methods were considerably faster, with QDM
taking only 6 seconds for all catchments and DS twice as much. While the
13
run-time of the multivariate copula approach (30 seconds) had a similar
order of magnitude, MBCn stood out by requiring approximately 120
times more time to run.

4. Discussion

4.1. Characteristics of observed variables

Our analysis of observed univariate characteristics of temperature and
precipitation, their multivariate features, and their temporal aspects
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highlighted a large variability across the study sites. Mean temperature
followed the prevailing north-south climate gradient with colder tempera-
tures in the North and warmer in the South. Precipitation exhibited a
more heterogeneous behavior in different sites across the latitudes, but
also in monthly or daily temporal resolutions. Heterogeneous variability
of precipitation can be explained by natural variability of precipitation
and its response to local forcings (A. Berg et al., 2015), intrinsic complexity
of precipitation process (Franzke et al., 2020), and significant heterogene-
ity of humidity over entire Sweden (Lind and Erik, 2008) that contributes
to precipitation events.

Both the magnitude and the north-south gradient of correlation be-
tween precipitation and temperature observed in our study were in accor-
dance with other studies, e.g., C. Li et al. (2014), while the C-C relation
for extreme precipitations deviated from the theoretical relation of
6–7 %/°C (Lenderink and Van Meijgaard, 2008; Myhre et al., 2019). Such
deviations from the theoretical C-C value are a matter of discussion in nu-
merous studies (e.g., Aleshina et al., 2021; P. Berg et al., 2009; Hardwick
Jones et al., 2010; Panthou et al., 2014; Singh et al., 2020). For example,
Hardwick Jones et al. (2010) argue that in high temperatures, the amount
of extreme precipitation decreases because it depends not only on the
water holding capacity of the atmosphere, but also on the available mois-
ture, which naturally decreases at higher temperatures.

Temporal features of precipitation and temperature typically followed a
clear north-south gradient. Higher values of autocorrelation were found in
northern catchments, which form a pattern that was also observed over the
UK (Wilby et al., 2003). This might be a consequence of different dominat-
ing types of precipitation, e.g., cyclonic atmospheric conditions at the large-
scale versus local convective systems (Stehlı́k and Bárdossy, 2002). Cross-
correlation and dry-to-dry-day transition probabilities showed the opposite
pattern by being stronger in southern catchments. Temporal variability of
hydroclimatic variables is highly affected by the spatiotemporal scale at
hand (Franzke et al., 2020), but has essential implications for long-term
dry or wet spells, which play a key role in vegetation growing season or
the hydrological cycle.

We detected an overall warming and wetting trend during the study pe-
riod 1961–2004, which is in line with other studies in this region
(e.g., Nygren et al., 2021; Teutschbein et al., 2022). In agreement with pre-
vious studies, we found a declining variance in mean temperature
(Tamarin-Brodsky et al., 2019) and an increasing variance in precipitation
(Dore, 2005). However, this aspect needs further evaluation, because the
behavior of variance is rather heterogeneous and strongly depends on the
chosen temporal resolution and the length of study periods (Lewis and
King, 2017). Our results also indicate an increasing value of the C-C rela-
tion, whichmight, according to Poschlod and Ludwig (2021), be a direct re-
sult of a shift from less intense large-scale events towards more intense
convective events (Lenderink and Van Meijgaard, 2009). But this change
in the ratio between the two types of precipitation did not alter the tempo-
ral characteristics (i.e., cross-correlation, autocorrelation and the transition
probabilities) for all of our catchments.

The observed changes in temperature and precipitation during our
study period were of comparable magnitude to the projected future
trends in Sweden (IPCC, 2014). Thus, regardless of the underlying
causes for these changes, our chosen verification period can be consid-
ered as a reasonable proxy for future climate conditions in our evalua-
tion, serving as a basis for testing the ability of BA methods to correct
several statistical features in climate conditions different from those
that they were calibrated to.

Evaluating BA methods only with respect to their ability to reproduce
marginal aspects (i.e., univariate statistics) of the simulated series increases
the risk of not being able to identify unskillful BAmethods (Maraun, 2016).
We, therefore, thoroughly analyzed performances of the BA methods with
respect to numerous aspects, including also those that the BA methods
were not calibrated to reproduce (e.g., multivariate for DS andQDMor tem-
poral for all four methods). Thus, we provided a rather robust and reliable
performance assessment of the BAmethods. Robustness of the evaluation in
our study was further increased by including catchments with a wide
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variability in all features of the observed precipitation and temperature,
as well as in the changes in them between the two periods.

4.2. Bias estimation (raw CM)

The raw simulated temperature and precipitation with the 10 CMs used
in this research showed substantial biases in their univariate, multivariate
and temporal characteristics. These biases are mainly caused by imperfect
representations of processes within CMs (Jaeger et al., 2008; Kotlarski
et al., 2005; Teutschbein and Seibert, 2010, 2012), for instance atmo-
spheric convection, cloud-microphysical, and aerosol behavior (IPCC,
2014).

Similar to previous studies in Sweden (Lind and Erik, 2008; Olsson
et al., 2016), temperature showed considerable bias, more specifically
over winter.

For precipitation, CM outputs featured considerable biases in all univar-
iate features, including their magnitudes and, occasionally, seasonal varia-
tions. In fact, CMs face major challenges in capturing the spatiotemporal
pattern and extreme precipitation at regional or smaller (e.g., catchment)
scales (Lind and Erik, 2008), because of significant heterogeneity of
humidity and dependence of precipitation processes on local characteris-
tics. In our study, the number of dry days was consistently underestimated
by all CMs. This is a known issue with climate simulations called drizzle
effect, which is a consequence of CMs producing several days with close-
to-zero precipitation values (Olsson et al., 2016; Teutschbein and Seibert,
2012).

RawCMoutputs resulted in a somewhat stronger correlation in compar-
ison to the observations in several months, but seasonal variations were
mostly well-reproduced. Stronger dependence may potentially have nega-
tive consequences on the simulations of water-cycle components and
might result in overestimation of extreme events such as droughts or floods
(Singh et al., 2020). Then, adjusting multivariate characteristics is relevant
for impact studies.

Biases in the temporal structure of CM outputs series were substantial,
too. This was also confirmed by previous studies, e.g., Rajczak et al.
(2016), which also observed substantial overestimation of the frequency
of wet days, as well as other systematic biases in precipitation persistence
over time. This can be explained by the lower level of confidence in dy-
namic aspects of climate change, such as location and timing of the events
(Shepherd, 2019), due to fundamental modeling errors in synoptic-scale at-
mospheric circulation in CMs (Addor et al., 2016; Maraun et al., 2017) and
also under-representation of persistence of atmospheric circulation patterns
(Maraun et al., 2021).

4.3. Performance assessment

The ability of each BAmethod to correct CM outputs strongly depended
on the climate variable at hand (i.e., temperature or precipitation), the sta-
tistical feature being adjusted, and the capability of raw CMs to present that
particular feature.

4.3.1. Univariate statistical features of precipitation and temperature
For univariate features of both temperature and precipitation, no clear

pattern could be detected as to whether uni- or multivariate BA methods
performed better. But we detected similarities in the ability of the
distribution-based methods (DS and copula) to adjust biases, which on av-
erage performed better than the distribution-free BA methods (QDM and
MBCn).

It should be noted that the performance of QDM and MBCn strongly
depended both on the raw CM outputs and on the estimated transfer func-
tion. Thus, uncertainties associatedwith the robustness of the transfer func-
tion must be considered. Piani and Haerter (2012) argued: ‘Transfer
functions with a high number of parameters perform well, by construction,
when applied to model output in the calibration period. However, they are
likely to do poorly in the cross-validation period because of the variation of the
climate bias over long time scales’.
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Changes in higher statistical moments like variance and skewness after
application of quantile mapping have been the focus of previous studies
(e.g., Hempel et al., 2013; Maraun et al., 2019; Switanek et al., 2017). Re-
maining biases in such higher-order moments are problematic as they
might cause over- or underestimation of the exceedance probabilities for
a given warming or drying/wetting, and, thus, any subsequent estimates
of hydroclimatic compound events, such as floods or droughts (Fischer
and Knutti, 2015). To overcome this issue, Hempel et al. (2013) suggested
using QDM. However, this method was not able to preserve variance in
both precipitation and temperature in our study for 55 Swedish
catchments.

4.3.2. Multivariate statistical features of precipitation and temperature
For the 55 study sites, adjustments made by the univariate BA methods

(DS and QDM) typically reproduced the dependence characteristics of un-
corrected CMs and, thus, were not able to adjust the existing biases consid-
erably. This has been also observed by other studies (Cannon, 2018;
François et al., 2020; Wilcke et al., 2013), and can be explained by the
fact that each variable is adjusted separately. Slight differences after the ap-
plication of the univariate methods mainly occurred due to the adjustment
of drizzle days.

In contrast, multivariate methods have been shown to be able to adjust
dependences in previous studies (Guo et al., 2020; C. Li et al., 2014; Piani
and Haerter, 2012; Singh and Reza Najafi, 2020). However, for the studied
Swedish catchments, there were fundamental differences between the two
multivariate methods (i.e., copula and MBCn) and their performance in
adjusting correlation or the C-C relation.

The copula method considerably reduced correlation biases, but at
the same time the original signal of the raw CMs seemed to vanish
completely. Simulations yielded almost the exact same values for all
CMs (denoted by exceptionally narrow ranges), but not always accurate,
which is shown by large MAE values in February, July and October. The
reason behind this lies in the statistical framework for the application of
copulas: in the classic (stationary) copula framework, the copula param-
eter, which indicates the strength of dependence (Tootoonchi et al.,
2022), is calculated based on the calibration period and is considered
to be stationary over time (Bárdossy and Pegram, 2012; François
et al., 2020; Tootoonchi et al., 2022; Vrac and Friederichs, 2015). By de-
sign, the dependence is therefore time-invariant. Vrac (2018) argued
that capturing the baseline dependence structure of temperature and
precipitation during the calibration period might be sufficient even for
future projections as it is mainly bounded by regional constraints. As
we can see from our results, considering the magnitude of climate
change in our study sites, this assumption might not hold for all regions
and for all dependence features. In fact, Mahony and Cannon (2018)
found that the dependence between temperature and precipitation
may globally change more significantly in the future. This was also the
case for the Swedish study sites: We found that dependence was specif-
ically modified in southern catchments in warmer months over the
verification period. Naturally, this alteration of dependence was not
reflected by the copula method and, consequently, considerable biases
appeared in some months.

To overcome the issue of stationary copula parameters, nonstationary
algorithms such as dynamic copulas (Rakonczai et al., 2012; van den
Goorbergh et al., 2005) can be adopted, but the added uncertainty of
these methods and the challenging mathematical requisites to employ
such methods considerably limits their applicability, specifically for practi-
cal climate change studies.

Another important source of uncertainty in the copula approach is the
added jittering algorithm that is used to perturb ties, e.g., dry days (Y. Li
et al., 2020; Pappadà et al., 2017; Salvadori et al., 2014). This algorithm
may compromise the dependence structure, typically in regions where
there is a large portion of data with ties. This was also the case in southern
Sweden, where catchments experienced more dry days. Of course, copula
can also be adopted only on a portion of data, where variables do not
have ties (most typically wet days).
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Simulations after application of MBCn showed better agreement with
observed correlation and C-C relation than after application of the univari-
ate methods. The ability to perform well even in the verification period in
combination with the remaining spread across bias-adjusted CMs indicates
that MBCn could maintain the climate-change signal projected by the CMs,
which the copula method was not able to uphold (spread across CMs
vanished). This is a great advantage of MBCn, which does not make strong
stationarity assumptions about climatemodels (Cannon, 2018), specifically
if the raw simulations are preserving dependence plausibly and are in line
with changes over the two periods. But MBCn relies on a stochastic rotation
matrix (Cannon, 2018), which can impact the adjustments. The algorithm
incorporated in the MBCn method can potentially lead to modifications of
the climate signal (François et al., 2020) and the statistics of adjusted vari-
ables can slightly differ from one adjustment to another. However, the ef-
fect of this stochastic procedure is not yet entirely understood and needs
further investigation.

Whether or not climatic shifts in multivariate features simulated by raw
CMs should be preserved needs to be carefully considered based on the
study at hand, but also depends largely on the performance of the
CMs. Wilcke et al. (2013) argued that the ability to maintain the raw CM-
simulated dependence structure can be advantageous, because the underly-
ing assumption for bias-adjusting CMs is that these models are able to sim-
ulate the spatiotemporal features of regional climate in a physically correct
way. However, the same authors also highlight that the problem of CM-
caused deficiencies in those features are potentially being retained as
well. In line with the latter, several other authors argue that BA methods
can compensate for such deficiencies and improve the simulated climate-
change signal if themodel error characteristics can be considered stationary
(Bellprat et al., 2013; Boberg and Christensen, 2012; Gobiet et al., 2015).
For instance, Gobiet et al. (2015) argued that methods based on quantile
mapping have the potential to serve as an empirical constraint onmodel un-
certainty in climate projections under the assumption of time-invariant
model bias. Maraun (2016), on the other hand, stated that one should
adopt a trend-preserving BAmethod (such as QDM and MBCn) if the simu-
lated change signal can be trusted, while the way forward is rather difficult
in case of implausible trend simulations.

4.3.3. Temporal statistical features of precipitation and temperature
The BA methods in this study are not specifically aimed at adjusting

temporal behavior of CMoutputs and, thus, this aspect of their performance
was not included in the calibration. Therefore, further investigation in these
aspects can serve as basis for understanding the performance of BAmethods
(Maraun, 2016). If the observed temporal behavior of climate variables is
fundamentally misrepresented by CMs, the BA methods cannot mitigate
such errors (Haerter et al., 2011; Maraun et al., 2017, 2021). However,
our study clearly demonstrated that all BA methods (even unintentionally)
modified the temporal characteristics of CM outputs, temperature and
precipitation.

The ability of BA methods to modify temporal behavior has only been
discussed in few studies. For example, Wilcke et al. (2013) found some im-
provement or no clear effect on autocorrelation in the simulated series of
precipitation and temperature using univariate QM for a few stations over
Austria and Switzerland, while François et al. (2020) found deterioration
in autocorrelation of precipitation for France and stated that ‘univariate
correction could have a non-negligible effect on Pearson autocorrelation’. In
our case, it seemed like some methods were able to reduce biases in auto-
correlation of precipitation, while application of DS clearly increased such
biases. Furthermore, modification of cross-correlation after application of
any BA method has also been observed in Van de Velde et al. (2022),
which was also the case in our study where univariate methods resulted
in some reduction of errors, while both multivariate methods even inflated
the biases in cross-correlation.

Owing to the fact that autocorrelation and cross-correlation are highly
affected by the chosen spatiotemporal scales, correct representation of
such features is not straightforward, and slight modification of time series
can have huge impacts on both features (François et al., 2020). Generally
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false improvement (i.e., apparent ‘improvement’ that is a mere artefact of
the bias adjustment)may give thewrong impression of themethod's robust-
ness (Maraun and Widmann, 2018b). For instance, differences between au-
tocorrelation of corrected and uncorrected simulations may potentially be a
combined result of incorrect rank structure of the model (François et al.,
2020) and the drizzle effect. This is also the case for cross-correlation,
which is affected both by its univariate features as well as chronology of the
variables. The adjustment of drizzle days is, thus, crucial to improve temporal
precipitation features. In particular, we demonstrated that the adjustment of
drizzle days as part of all four BA methods applied in our study strongly im-
proved the ability to simulate transition probabilities in all study sites.

4.3.4. Summary of findings
There was not a single BAmethod that excelled in all of the investigated

statistical features, and variations across individual statistics could be ob-
served. Nonetheless, the average performance of each BA method was rel-
atively consistent: Raw simulations performed consistently worse across
the analyzed univariate, multivariate and temporal features, while applica-
tion of any of the four BA methods generally reduced existing biases.

Considering the two univariate methods, DS outperformed QDM in all
temperature-related univariate statistics, half of the precipitation-related
univariate statistics as well as half of the multivariate and temporal statis-
tics, and consistently ranked higher than QDMwithin each of the statistical
categories (univariate, multivariate and temporal).

When comparing the twomultivariate methods with each other, copula
outperformed MBCn for the temperature-related univariate statistics as
well as for precipitation variance. While both methods were able to consid-
erably reduce biases in multivariate features, their performance varied for
temporal features: Among all four BAmethods, MBCn showed the best per-
formance (rank 1), whereas copula was least suitable (rank 4) for reducing
biases in temporal features.

Among the two distribution-based BA methods (DS and copula), the
simpler univariate DSmethod ranked only slightly lower than copula (aver-
age rank 2.3 versus rank 2.1) in adjusting univariate features. While copula
showed better performance (rank 1) for adjusting multivariate statistics, it
ranked the lowest (rank 4) for reducing biases in temporal characteristics
and was outperformed by DS (rank 2). Among the distribution-free ap-
proaches, MBCn exceeded QDM in the vast majority of statistics, though
they performed similarly in adjusting univariate features.

It should, however, be noted that the practical applicability of a bias ad-
justment method should not only be judged on its performance, but also on
its complexity – or in other words on the simplicity to be implemented.
While MBCn was able to reduce biases in many intricate aspects
(i.e., multivariate and temporal), compared to simpler univariate methods
and even the advanced copula method, it was computationally rather expen-
sive. This can be drawback when bias adjustment has to be applied to multi-
ple catchments, CMs, RCPs and variables at the same time. François et al.
(2020) even stated that a higher number of dimensions to be corrected can re-
sult in a deterioration of rank variability. Additionally, the iterative rotation
that is applied on variables may result in overfitting in the calibration period
or cause higher uncertainties in comparison to easier univariate methods.

5. Concluding remarks

The evaluation presented in this paper provides an overview of the per-
formance of two prevailing multivariate bias adjustment methods
(i.e., copula andMBCn) and compares them against two popular univariate
methods (i.e., DS and QDM).

By using a large hydroclimatic dataset across 55 Swedish study sites in
combinationwith an ensemble of 10 climatemodels, we evaluated the ability
of the four bias adjustment (BA) methods to adjust multiple univariate, mul-
tivariate and temporal aspects of daily simulated precipitation and tempera-
ture series. Our large multi-climate-model and multi-site setup of the study
enabled a thorough evaluation of practical benefits and drawbacks of
adopting various BA methods with different levels of complexity, under cli-
mate change, and under conditions representative for high latitudes.
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In our study, biases in raw CMoutputs of precipitation and temperature
were substantial. Thus, raw series of CM simulations should not be used di-
rectly in (hydrologic) impact studies without prior adjustment.While all se-
lected BA methods generally improved various aspects of the raw climate
signal, there was not a single method that was consistently able to adjust
all characteristics and outperform all other methods. In some instances,
BA methods even inflated existing biases.

For adjusting univariate characteristics of both temperature and precip-
itation, DS outperformed the other univariate method (QDM). As it is com-
putationally cheaper than multivariate methods, we recommend the
adoption of DS for simple hydroclimatic applications that rely for instance
on annual or seasonal water balance computations. When accurate simula-
tions of more complex properties of hydroclimatic variables (e.g., the cor-
rect timing or magnitude of extreme events) are needed, we instead
recommend to apply multivariate BA methods and in particular MBCn, as
it performs similar to copula in reducing biases in multivariate features,
but is rather superior in modifying temporal aspects. The multivariate
methods tested in this study were, however, rather complex and may result
in further unwanted modifications of temporal features. Therefore, prior to
adopting these methods, other practical aspects, such as computational
time and heavy theoretical requirements should be considered.

Additionally, we would like to highlight that improvement through
these methods might not always be distinct in a specific region or at a
given spatiotemporal scale due to multiple sources of added uncertainties.
Thus, careful assessment of these bias adjustment methods for a specific
purpose, region or on other hydroclimatic variables is crucial to ensure ro-
bust future projections and adjustments of systematic errors in them.
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