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Aquaculture is one of the fastest growing food production sectors and has
great potential for food security and livelihoods. However, it generates concerning
consequences for the environment, including chemical and biological pollution,
disease outbreaks, unsustainable feeds and competition for coastal space. Recent
investigations are focusing on sustainable techniques (e.g., polyculture, offshore
facilities) to improve the relationship between the industry, environment and society. This
review provides an overview of the main factors of ecological concern within marine
finfish aquaculture, their interactions with the environment, and highlights sustainable
alternatives that are currently in use or development. Adequate environmental
monitoring and location of farms, the reduction and exploitation of wastes and chemicals
being used is crucial to ensure the growth and continuity of aquaculture production.
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INTRODUCTION

Aquaculture can be traced back as far as 4000 years in Egypt (Chimits, 1957) and more than
2000 years in China (Beveridge and Little, 2002; Edwards, 2004; Lu and Li, 2006) and Europe
(Beveridge and Little, 2002; Buschmann and Muñoz, 2019). Aquaculture was further developed
because the capacities of traditional aquatic ecosystems could not support the human population
growth (Costa-Pierce, 2002), thus, it became a social necessity. The rapid development of the
aquaculture sector by producing great amounts of diverse fish products for human consumption
has been called the “Blue Revolution” (Costa-Pierce, 2002) which started during the 1960s in
Asia (Thia-Eng, 1997) and in the West in the late 1970s and early 1980s (MacKay, 1983). Since
then, the aquaculture sector is continuing to significantly develop towards new diversification and
intensification (Ahmed and Thompson, 2018). The economic demand for fish protein is increasing,
however, capture fisheries production remains static or is diminishing (depending on the species in
question) during the last decades (FAO, 2018). Currently, aquaculture produces more than 30% of
the total fish consumed worldwide (FAO, 2018).

In recent years, society has become increasingly concerned about the effects that anthropogenic
activities have on the environment. The assessment of impacts from aquaculture farm activities has
not been examined extensively enough to cope with the growth of this industry (Bostock et al., 2009;
Bohnes and Laurent, 2021). These assessments are mostly based on physical-chemical measures
and/or sediment characteristics with comparably limited focus on environmental carrying capacity
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studies, required for aquaculture sustainability. Environmental
characteristics of the receiving environment define the
Environmental Carrying Capacity (ECC) of the selected
site, which will determine the discharge load (i.e., dissolved and
particulate organic matter, chemicals) that might be assimilated
by the affected ecosystem. These environmental characteristics
include bathymetry conditions, physical-chemical characteristics
of water and substrate, trophic status, and colonizing capacity
(fouling) (Garmendia et al., 2012).

Since its appearance on the international agenda, the concept
of sustainability has been the topic of much debate, both
in terms of how to achieve it as well as how to define
it. A popular definition is the one coined by the 1992
United Nations Conference on Environment and Development
report Our common future in the context of sustainable
development: “meeting the needs of the present without
compromising the ability of future generations to meet their
own needs” (Brundtland, 1987). However, not all ecosystems
can be conserved unaltered (Brundtland, 1987). Principles of
sustainability include three dimensions: (1) the economy (ability
to be maintained without an outside influx of money; Copus and
Crabtree, 1996), (2) the society [equity and cultural capital that
can be passed to succeeding generations (Copus and Crabtree,
1996)], and (3) the environment [maintenance of an ecosystem’s
characteristic diversity, productivity and biogeochemical cycling
(Amundsen and Osmundsen, 2018)]. In this chapter, we focus on
environmental aspects of sustainability.

Environmental aspects of sustainability in aquaculture may
not be achieved until several problems are solved: eutrophication
of receiving ecosystems, destruction of natural habitats,
dependence on fishmeal and fish oil, introduction of exotic
species and inadequate medication practices (Martinez-Porchas
and Martinez-Cordova, 2012; Figure 1).

FIGURE 1 | The main pollution sources from marine finfish aquaculture and
their related effects on the environment.

Worldwide, there are many developed co-operational projects
that are or have been researching for more sustainable methods
(Table 1). The main topics studied address general sustainable
intensification of aquaculture, educational purposes, animal
welfare, alternative feeds, land-based and aquaponics systems.
According to Life Cycle Assessment studies (a tool to assess the
environmental impacts to get a product, including processing,
transport, use and disposal), fish feed and burning of fossil
fuels (required for mobility and electricity) are the main
environmental impacts from net cage aquaculture (Samuel-
Fitwi et al., 2012; Ramos et al., 2019). From a feed efficiency
point of view, aquatic livestock use less energy than terrestrial
livestock to grow and, therefore, produce less greenhouse gasses
(Ayer and Tyedmers, 2009; Pelletier et al., 2009). For example,
eutrophication is not considered due to the inexistence of specific
impact methodologies for the marine environment (Samuel-
Fitwi et al., 2012; Woods et al., 2016; Winter et al., 2017; Ramos
et al., 2019). Nevertheless, more research is needed to measure
life cycles covering all environmental aspects (Samuel-Fitwi et al.,
2012; Woods et al., 2016; Winter et al., 2017).

Optimal environmental monitoring plans help to understand
the impacts of waste management, their utilization and
possibilities of how it can be reduced. The exploitation of
farming wastes implies a double benefit; less environmental
contamination and higher economic profits. Thus, polycultures
and technological advances should help the aquaculture industry
and are necessary towards aquaculture sustainability.

This review focuses on marine finfish aquaculture. The
majority of world aquaculture occurs inland, producing nearly
twice as much as coastal and marine aquaculture (Li et al., 2018).
However, these are mostly small operations while multinational
companies are mainly focused on marine farming. Those
companies highly contribute to aquaculture research (including
minimizing economic losses from uneaten feed or ineffective
chemical treatment), define best management practices, develop
more detailed monitoring studies and help governments in
defining environmental regulations. Marine aquaculture, also
known as mariculture, includes those cultures located in the
sea while coastal aquaculture implies human-made structures in
areas close to the sea (e.g., coastal ponds and gated lagoons). Most
of the finfish aquaculture from the Americas, Europe and Oceania
is produced through mariculture (FAO, 2018). Most African
production belongs to inland aquaculture because infrastructure,
technical expertise and investment are needed to promote marine
culturing (FAO, 2020). In terms of live weight, molluscs represent
the most biomass from mariculture. Nevertheless, when edible
animal-source food is considered, a conversion factor of 6
and 1.15 is applied to the commonly reported weight from
molluscs and finfish, respectively. Therefore, finfish are the main
contributor from whole aquatic animal production to human
nutrition (FAO, 2018; Edwards et al., 2019).

Mariculture concerning finfish production is dominated by
salmonid aquaculture, especially Atlantic salmon (Salmo salar),
which is also the most cultured carnivorous fish worldwide (Føre
et al., 2018; Filgueira et al., 2019; Figure 2).

From an ecological point of view, intensive fish farming
represents the highest environmental risk when compared to
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TABLE 1 | Summary about co-operational projects (ongoing or finished) concerning sustainable methods in aquaculture.

Acronym Project goals Website Countries involved Project duration

Aquaculture intensification
GAIN

TAPAS
BLUEEDU
MefANIG
EURASTIP

MedAID

MYSAP
PerformFISH

Green Aquaculture Intensification in
Europe
Tools for Assessment and Planning of
Aquaculture Sustainability
Fostering growth in the blue economy
by developing an action plan for
innovative European aquaculture VET
and harmonized qualifications
(2016-2019)
Metric for Aquaculture Nutrition Impact
for Girls

Promoting Multi- Stakeholder
Contribution to international
Cooperation on Sustainable Solutions
for Aquaculture Development in
South-East Asia
Mediterranean Aquaculture Integrated
Development. Supporting sustainable
intensification of aquaculture sector,
helping to realize its potential for food
security, nutrition and employment.
Consumer Driven Production:
Integrating Innovative Approaches for
Competitive and Sustainable
Performance across the Mediterranean
Aquaculture Value Chain

https://www.gain2020.com/

http://tapas-h2020.eu/
http://www.blueedu.eu/
http://www.susaquastirling.net/blog/
2017/2/22/mefanig-kicks-off-in-
khulna-bangladesh
https://cordis.europa.eu/project/id/
728030
http://www.medaid-h2020.eu/
https://www.giz.de/en/worldwide/
63918.html
http://performfish.eu/

United Kingdom, Germany, Ireland,
Spain, Portugal, Norway, Netherlands,
Poland, Italy, Canada, China
United Kingdom, Malta, France, Spain,
Netherlands, Hungary, Greece,
Sweden, Norway, Ireland, Scotland
Faroe Islands, Finland, Iceland, Ireland,
Norway, Scotland, Croatia, Cyprus,
France, Greece, Italy, Spain
Bangladesh, Scotland, Denmark
Belgium, United Kingdom,
Netherlands, Norway, Ireland,
Malaysia, Vietnam, Thailand
Croatia, Denmark, Egypt, France,
Greece, Italy, Netherlands, Norway,
Portugal,
Spain, Tunisia, Turkey, United Kingdom
Myanmar, Germany
Greece, Spain, Italy, France, Norway,
Denmark, Portugal, Slovenia,
United Kingdom, Ireland, and Croatia

2018 – 2021

2016 – 2020
2016 – 2019

finished
2017 – 2019

2017 – 2021
2017 – 2021

2017 –2022

Feed sourcing
PROteINSECT
INvertebrateIT
IFFO
Ento-Prise

Insects as sustainable sources of
protein
Disruptive and forward-looking
opportunities for competitive and
sustainable aquaculture
Fishery Improvement Projects
Pathways to Resilience in Semi-Arid
Economies

https://www.proteinsect.eu/
https://invertebrateitproject.eu/ https:
//www.iffo.net/fishery-improvement-projects
www.prise.odi.org

China, Africa, Europe (7 countries)
Ireland, Belgium, France, Spain,
Portugal
United Kingdom, Peru, China
United Kingdom, Senegal, Pakistan,
Central Asia, Kenya, Burkina Faso

finished
2017 – 2019
2017 – 2019
finished

Integrated Multitrophic Aquaculture
iDREEM
KEEP
IMPAQT

Increasing Industrial Resource
Efficiency in European Mariculture
Project - Sustainable and
Environmentally friendly Aquaculture
For the Atlantic Region of Europe
Intelligent Management Systems for
Integrated Multi-Trophic Aquaculture

http://www.idreem.eu/
https://www.keep.eu/project/418/
sustainable-and-environmentally-friendly-
aquaculture-for-the-atlantic-region-of-europe
https://impaqtproject.eu/

United Kingdom, Scotland, Israel,
Norway, Ireland, Cyprus, Italy,
Netherlands
Ireland, United Kingdom, France,
Spain, Portugal Ireland, Greece,
Luxembourg, Netherlands, Turkey,
France, Portugal, United Kingdom,
Poland, Spain, Italy, China

2012- 2016
2007 – 2013
2018 – 2021

Education, training, networking
AQUAEXCEL

SARNISSA

SEAT
AQUA-TNET

SFP
SSCI
SWOMA

AQUAculture infrastructures for
EXCELlence in European fish research
towards 2020

Sustainable Aquaculture Research
Networks in Sub-Saharan Africa
Sustainable trade in ethical
aquaculture
European Thematic Network in the
field of aquaculture, fisheries and
aquatic resources management.
Rebuild depleted fish stocks and
reduce the environmental and social
impacts of fishing and fish farming
The Sustainable Seafood Consumption
Initiative worked with remote
communities in Sierra Leone to offer
sustainable income for local women
through the culture, processing and
marketing of native mangrove oysters.

https://www.aquaexcel2020.eu/
https://cordis.europa.eu/project/id/
213143 https://cordis.europa.eu/project/id/
222889/reporting http://www.aquatnet.com/
https://www.sustainablefish.org/
https://sustainableseafood
consumption.wordpress.com/
https://www.susaquastirling.net/
s/ThirdBontheAnnualOysterFestival
MarketTrials__26Jul19.pdf

Norway, Ireland, Scotland, Denmark,
Netherlands, France, Spain, Portugal,
Czech Republic, Hungary, Greece,
Belgium
United Kingdom, France, Egypt,
Thailand, Malawi, Cameroon,
Netherlands
Bangladesh, China, Thailand, Vietnam
26 countries
United States
United Kingdom
United Kingdom, Sierra Leone

2015 – 2020
2008 – 2011
2009 – 2013
2011 – 2014
since 2006
since 2018
finished

Economic sustainability
PrimeFish
ClimeFish

Developing Innovative Market
Orientated Prediction Toolbox to
Strengthen the Economic Sustainability
and Competitiveness of European
Seafood on Local and Global Markets
Developing production scenario
forecasts to serve as input to
socio-economic analysis to identify
risks and opportunities within fisheries
and aquaculture related to climate
change.

https://cordis.europa.eu/project/id/
635761
https://climefish.eu/

Denmark, Iceland, Germany, Norway,
Canada, Vietnam, Faroe Islands,
United Kingdom, Spain, Greece
Norway

2015 – 2019
2016 –2020

(Continued)
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TABLE 1 | Continued

Acronym Project goals Website Countries involved Project duration

Animal and human health

IMAQulate
PEDIGREE
BOLTI
EGYPT
SNIPH

Probiotics in Aquaculture
increase awareness of issues around
risk & efficacy of prophylactic health
product (based on findings of
IMAQulate)
Behavioral Prophylaxis Project
Sustainable New Ingredients to
Promote Heath

http://www.stir.ac.uk/imaqulate
https://www.pedigree.stir.ac.uk/
http://www.susaquastirling.net/blog/2017/2/
22/bolti-egypt https://sniph.stir.ac.uk/

India, Bangladesh, Kenya,
United Kingdom
Scotland, Bangladesh,
Egypt, United Kingdom
United Kingdom, India, Kenya and
Tanzania

2015 – 2019
2019 – 2020
finished
finished

Private consultancy

WORLDFISH
SAS
TUNATECH

Building capacity, coordination and
communication for collective action on
small-scale fisheries
Sustainable Aquaculture Solutions
Bluefin Tuna Project in Egypt (Mersa
Gargub)

https://www.worldfishcenter.org/
http://www.sasnet.nl/ https://www.tunatech.de/

Nepal, China, Bangladesh,
United States, Cambodia, Vietnam,
Philippines. Zimbabwe. Uganda,
Myanmar, Nigeria, Singapore,
Thailand, Mozambique, Netherlands,
Cameroon, Malawi, Laos, Zambia,
United Kingdom, Germany, Norway,
Egypt, Tanzania, Australia, Zambia,
Ghana, Indonesia, South Africa
Netherlands
Germany

2018 – 2022
since
2005
since 2008

Land-based recirculation systems

VEOLIA
AQUAOPTIMA
CLEWER
MAT
LSS
AGROFIM
Blue Unit
Nova Q

Sustainable Water Solutions for
Aquaculture
Optimal water quality - ideal fish health

Urban Protein Production with
Innovative Recirculating Aquaculture
Systems
Aquarium filtration systems and
engineering
Indoor Recirculating Aquaculture
System with Integrated Greenhouses
Consultancy specializing in water
quality management for land-based
fish farms
Driving Innovation in RAS Water
Quality

https://www.veolia.com/en/solution/
treatment-recycling-of-wastewater-aquaculture-
industry

https://aquaoptima.com/en

https://www.clewer.com/aquaculture/
?lang = en

https://matlss.com/
https://www.agrofim.com/
http://blue-unit.com/
https://www.nova-q.ie

United States, Canada
Norway
Finland
Greece, Turkey
Poland, Slovak Republic
Denmark
Ireland

na
since 1993
since 1984
since 2012
na
since 2009
na

Offshore systems

SalMar ASA Offshore fish farming- Passion for
Salmon

https://www.salmar.no/ Norway since 1991

Aquaponics

AQUAPONIC SOURCE
SMART AQUAPONIC
AGROFIM

Growing fish and plants together
Development of intelligent
management tools for aquaponics
Aquaponic in action

https://www.theaquaponicsource.com/
http://www.smart-aquaponics.com/
https://www.agrofim.com/

United States
Belgium
Poland, Slovak Republic

na
na
na

other aquaculture sectors due to the feeding needs and the
chemicals used associated with the production process (Tornero
and Hanke, 2016). This chapter will further describe the
main effects that the marine finfish aquaculture creates for
the environment.

MAIN ENVIRONMENTAL AQUACULTURE
EFFECTS

As the aquaculture sector is developing and expanding, it has an
increasing effect on the surrounding environment. These effects
include nutrient pollution from uneaten feed and metabolic
waste, chemical pollution from various substances used in
the production process (such as medical treatments, including
antibiotics and antiparasitics) as well as the spread of farmed fish
genes, parasites, and diseases to wild populations (Sarà, 2007;
Burridge et al., 2010; Little et al., 2016; Weitzman, 2019). An
important indirect effect of the production process is the high
impact on aquatic ecosystems through the need to use wild fish
to feed carnivorous species of farmed fish (Little et al., 2016).

However, it must be noted that there are also other direct effects,
such as landscape visual impact, noise, odor, and marine litter
from intensively farmed areas (Figure 3; Martinez-Porchas and
Martinez-Cordova, 2012; Radford and Slater, 2019). Untreated
wastewater from fish farms includes elevated nutrient levels, but
also chemicals used to prevent diseases. In the case of open net
cages, the ability to prevent these contaminants from entering the
surrounding water is very limited. The focus of this chapter is on
the main sources of contamination in marine finfish aquaculture
(as highlighted, e.g., by Duarte et al., 2009).

Nutrient Pollution
During the production process, uneaten feed and the metabolic
waste of fish release nitrogen and phosphorus into the water.
This process causes problems in intensive farming areas where
food sources from a broader region are concentrated in a smaller
area (Dempster and Sanchez-Jerez, 2008). Waste originated from
aquaculture farms may create a significant source of excess
nutrients within the coastal areas. These excess nutrients are
mainly related to the proliferation of primary producers that
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FIGURE 2 | Main finfish species produced in marine aquaculture globally, salmonid species on the right (percentages extracted from FAO, 2018).

FIGURE 3 | Intensive marine land-based fish farm discharging effluents directly into the sea (NW Spain). Authorship: Carlos Carballeira.

may trigger micro- and macroalgal blooms that may be toxic
(Wang et al., 2018). The causes of emergence of toxic algae
are still unknown and seem to be more related with natural
or anthropogenic nutrient and silica fluxes from terrestrial
sources (Masó and Garcés, 2006; Kumar et al., 2018), but
nutrients are required for algal blooms and they may originate

at pisciculture facilities. Up to 50% of supplied feed can be
lost to the surrounding water and sediment, posing not only
an economic, but also an environmental threat (Ballester-Moltó
et al., 2017b). Particulate waste from aquaculture farms, such as
feeds, feces, and other organic material, traps harmful lipophilic
compounds, increasing their incorporation into the trophic
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chain, elevates water turbidity and, thus, decreases photic depth,
and is finally deposited close to fish farms, modifying chemical
and biochemical properties of the sediment (Price et al., 2015;
Brager et al., 2016; Ballester-Moltó et al., 2017a).

Nitrogen species make up the largest volume of aquaculture
contaminants and provide a source of nutrients for primary
producers. When discharged into the surrounding environment,
they affect the trophic balance and can lead to eutrophication at
low hydrodynamic sites, where less mixing occurs (Price et al.,
2015; Urbina, 2016; Herrera et al., 2018). Ammonia is excreted
directly by the fish and produced through decomposition of
uneaten food. It is toxic to animals, especially at high pH
levels, and when levels of unionized ammonia are also high,
this reduces fertility and increases susceptibility to diseases (Ip
and Chew, 2010). Ammonia is rapidly taken up by primary
producers because of the higher preference for reduced forms
of nitrogen or oxidized by Nitrobacteraceae bacteria into nitrite,
which is 50 to 100 times more toxic to freshwater animals
than those from seawater (Kroupova et al., 2005). Nitrification
continues when nitrite is oxidized into nitrate, which is less
toxic than its previous forms. At low levels of oxygen as
found in sediment, nitrate is reduced into dinitrogen gas,
then sulfate-reducing bacteria transfer electrons to sulfur forms
(sulfate, thiosulfate, and elemental sulfur) releasing toxic sulfides
(Wang and Chapman, 1999).

Nitrogen and phosphorous support and limit the growth
of aquatic primary producers because they are needed
for the synthesis of proteins, DNA, RNA, and the energy
transfer, respectively (Conley et al., 2009). The vast majority,
about 80%, of phosphorus contained in fish feed has been
found to be lost to surrounding waters, with a large
portion ending up in the sediment (Holby and Hall, 1991).
Phosphorous introduced from aquaculture pollution can
be more mobilizable (more easily released to the overlying
water and posteriorly taken up by primary producers)
than what is usually found in the environment, hindering
recovery and increasing the potential to cause eutrophication
(Jia et al., 2015).

Chemical Pollution
Numerous chemicals are being used in aquaculture production
(Table 2) to prevent and treat disease outbreaks, ranging from

TABLE 2 | Main chemical pollution sources in marine finfish aquaculture and their
related effects on the environment.

Antibiotics Affect biodiversity increase risk of selection of
antibiotic resistant bacteria, can affect food safety
(Ferreira et al., 2007; Burridge et al., 2010)

Parasiticides Can affect non-target organisms (Tornero and
Hanke, 2016)

Antifouling products Can affect non-target organisms (Fitridge et al.,
2012; Tornero and Hanke, 2016)

Disinfectants Can have negative effects on fish health and other
marine organisms (difficult to assess) (Buschmann
et al., 2006)

Anesthetic Few associated negative effects (Burridge et al.,
2010)

medicines such as antiparasitics and antibiotics to disinfectants
(Burridge et al., 2010; Martinez-Porchas and Martinez-Cordova,
2012; Ozbay et al., 2014; Rico et al., 2018). Antifouling chemicals
are also being used at aquaculture facilities to avoid the
clogging of meshes.

Chemicals used in aquaculture enter surrounding marine
environments and may be toxic to non-target organisms in
proximity of the farming sites because they are not highly
selective, e.g., benzoylurea pesticides affect naupliar development
of copepod Tisbe battagliai (Macken et al., 2015). Moreover, the
effectiveness of most chemical treatments is low within high fish
densities because of increased host availability. This is especially
the case in open cage systems where chemical inputs are directly
released to the marine environment.

Antibiotics are used in aquaculture to control the spread
of pathogenic bacteria (Burridge et al., 2010; Martinez-Porchas
and Martinez-Cordova, 2012; Rico et al., 2018). This raises
concerns about the possible effects on biological diversity and of
selection of antibiotic resistant bacteria when antibiotics are used
excessively over time, e.g., Erythromycin and bacterial kidney
disease (Burridge et al., 2010). Moreover, the use of a single
pharmaceutical can cause insignificant consequences while it may
have a highly adverse effect when acting in combination with
other chemical substances (Fent et al., 2006). It is estimated that
around 70 - 80% of antibiotics given as medicated feed ends up
in the marine environment around the farming sites (Ferreira
et al., 2007). Another environmental risk is associated with
parasiticides, which contaminate the water column and seabed
either as uneaten medicated feed, fecal material or in soluble form
in urine (Tornero and Hanke, 2016). Additionally, parasiticides
that are being used in aquaculture to control ectoparasite
infestations can lack specificity to target organisms thereby
posing a threat to non-target species including small crustaceans
in the proximity of the farm site (Burridge et al., 2010).

Due to increasing resistance, the approach in some cases is
to use even larger concentrations of chemical treatments. Use
of antibiotics is subjected to reporting but quantities are not
always publicly accessible (e.g., Chile) (Burridge et al., 2010).
However, there are examples of diseases that classically have
been considered as occurring only in freshwater but today cause
problems in marine aquaculture, e.g., furunculosis (Aeromonas
salmonicida), bacterial kidney disease (Renibacterium
salmoninarum) and some types of streptococcosis in such
species as salmonids and turbot (Toranzo et al., 2005).

Antifouling products are used in aquaculture on submerged
structures (cage nets and supporting infrastructure) to avoid
biofouling by various epibiotic organisms, such as marine
algae, barnacles, bivalves, bryozoans and others. Marine finfish
aquaculture biofouling can result in compromised cage structures
and have negative effects on farmed fish lowering water flow
through cages, leading to poor oxygen availability or increased
risk of disease (Fitridge et al., 2012). Antifouling products are
associated with increased copper levels, which are toxic to several
marine invertebrates, especially molluscs (Fitridge et al., 2012).
In addition, the immune defense of exposed organisms around
farming sites is affected by antifouling and copper-based products
(Fitridge et al., 2012; Tornero and Hanke, 2016).
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There is little information available regarding disinfectant
quantities and particular substances, and not so much research
has been performed on the effect of disinfectants, which are used
on land-based facilities, nets, platforms, boats, ponds, and other
surfaces (Buschmann et al., 2006).

Anesthetics are being used in marine aquaculture to reduce
stress during handling and to improve the efficiency of
procedures (Sneddon, 2012). However, the use of those chemicals
does not pose significant risks to the environment due to
infrequent and limited use and practically no discharge into
the environment when good management practices are followed
(Burridge et al., 2010).

Disease Outbreak and Biological
Pollution
Outbreaks of fish diseases are a result of the interaction between
the pathogen, the host, and the environment. Several drivers may
cause a disease outbreak: high fish density, compressed rearing
cycle and a limited genetic diversity (Kennedy et al., 2016).
Considering the high stocking densities within aquaculture
farms, bacterial, viral, and fungal diseases as well as the spread
of parasites is taking place at an increasing rate. For example,
in marine aquaculture such spread of diseases occurred during
Infectious Salmon Anemia outbreaks (Lyngstad et al., 2018).
Another recently growing problem is dealing with parasites (e.g.,
salmon lice Leopephtheirus salmonis) (Overton et al., 2018).
While the culture period is shortened to minimize the production
costs, this may lead to higher pathogen virulence due to evolution
(Kennedy et al., 2016). In addition, the limited genetic diversity
due to selective breeding may lead to the development of a
pathogen specialization towards a particular group of hosts
(Kennedy et al., 2016).

Another issue concerning aquaculture-based negative effects
on the environment is the risk of biological pollution. Biological
pollution can be caused by the farming of exotic species, which
also act as vectors for new parasites and diseases, and of native
but cultured individuals with a reduced genetic diversity that
may also pose a threat to wild populations. After shipping,
aquaculture is the second largest sector causing the introduction
of exotic species worldwide and likely to increase because of the
spread of farms into more pristine areas (Hewitt and Campbell,
2007). Although some escaped fish have shown homing behavior
(remaining in the vicinity of the cages), other studies found
escaped fish dozens of kilometers away from the place of
cultivation (Toledo-Guedes et al., 2014; Dempster et al., 2016).
Recapture methods have been only partially effective, therefore,
efforts should be focused on preventive measures.

Biological pollution can take place as the accidental release
of fish during operation, damage to cages (e.g., caused by harsh
weather conditions), or attacks by wild predators. It may also
occur during spawning when farmed fish are kept in open
cages to a size in which they can become sexually mature (e.g.,
Atlantic cod (Gadus morhua)), allowing drifting of fertilized
eggs into the surrounding environment (Jensen et al., 2010).
Although accidental escapes (especially large scale) do not occur
often, the number of individuals escaping can be large when

compared to the abundance of their wild conspecifics as is the
case with wild Atlantic salmon (S. salar) (Thorstad et al., 2008).
Negative effects to the wild populations are related to ecological
interactions, such as possible genetic impacts in case of inter-
breeding and competition for both food and habitat (Izquierdo-
Gómez et al., 2017). Around 80-83% of the European aquaculture
production originates from selective breeding to improve growth
performance (Janssen et al., 2017). In the wild, farmed fish
may transmit these genetic characteristics, which may result in
reduced life span, increased susceptibility to diseases and lower
individual fitness leading to a lower survival rate of future wild
populations (Glover et al., 2017; Faust et al., 2018).

Fish farms are considered as fish aggregation devices (FAD)
due to the significant increase of surrounding populations after
installation of facilities because their wastewater is a source
of food and their structure acts as artificial reefs (Dempster
et al., 2006; Grigorakis and Rigos, 2011; Sanchez-Jerez et al.,
2011; Aguado-Giménez et al., 2016; Riera et al., 2017; Figure 4).
Cage aquaculture is colonized similarly to artificial and rocky
reefs but unique fish assemblages have been observed around
deployed aquaculture facilities. The combination of both floating
and bottom artificial structures (e.g., Integrated multi-trophic
aquaculture, IMTA) enhances the population of local species and
increases the complexity of fish assemblages (Wang Y. et al.,
2015). However, artificial reefs for sea cucumber cultivation
may trigger the settlement of polyps whose jellyfish blooms
may generate severe gill problems on farmed fish (e.g., salmon)
(Purcell et al., 2007). Furthermore, microbial densities are
increasing, as a result of the medusae preying on the predators
of microbes like small copepods and ciliates (Turk et al., 2008).
Wild organisms may improve the quality of sediment and water
by reducing the organic load released by farms (Katz et al.,
2002; Vita et al., 2004). However, fishing in the vicinity of farms
must be restricted because of public health concerns (disease
and antibiotic transmission) and ecological reasons. Fishing at
FADs will reduce local populations and subsequently adjacent
populations that are attracted by the empty ecological niches
and the food supply (Riera et al., 2017). Other wild populations
are attracted by the increased biomass and may damage farming
facilities (e.g., sea lions, dolphins, cormorants, and bluefish)
easing biological pollution (Aguado-Giménez et al., 2016).

POLLUTION ASSESSMENT

The control of the main marine aquaculture production
by multinational companies helps the development of
environmental regulations and technological breakthroughs,
improves feeding techniques by reducing feed losses, and
decreases the usage of antibiotics by the increasing utilization
of vaccines (Føre et al., 2018). However, these regulations
are mainly based on the economically dominant type of
fish farming; net cages on protected coasts. This is why
Environmental Monitoring Plans (EMPs) are usually based on
the assessment of water and sediment changes. Meanwhile,
the location of farms at high dispersive sites (high flow
velocities and great depths) may disable this type of monitoring
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FIGURE 4 | Opportunistic species from turbot land-based farms: (a) mullets [Nerga, Cangas do morrazo (Spain)], (b) birds [Quilmas, Carnota (Spain)], (c) green
algae [Grove, Salnés (Spain)]. (a,d) Recreational fishermen are usually found in the dumping area, attracted by the high concentration of fish [d – Aguiño, Barbanza
(Spain)]. Authorship: Carlos Carballeira.

(Sutherland et al., 2018). Changes on physicochemical properties
of the water column are most times undetectable (Sarà,
2007) even between input and output water from land-based
farms. Sediment is a matrix that integrates and concentrates
contaminants from the water column and facilitates studies
of ecological integrity of benthic communities (Caeiro et al.,
2012) but this may not be present at hard bottom coastal
areas and offshore sites because organic waste is highly
dispersed (Carballeira et al., 2012). The following sections
describe the current type of assessment, monitoring plans
and methods, and how to improve and adapt it to different
types of facilities.

Nutrient Pollution Assessment
Nutrient release may affect water quality (e.g., water turbidity,
dissolved oxygen), increase trophic resources, and modify
the geochemical properties of sediment (Qi et al., 2019).
Nevertheless, most times the effect of a fish farm on the water
column is negligible due to the high dilution and recycling
of nutrients at sites where farms are established (Soto and
Norambuena, 2004). For this reason, environmental impact
assessments are mainly based on the study of sediment,
but this is not possible in hard-bottom sites. To reach
sustainable alternatives, effective assessment methods must
be used without being sediment dependent. Traditional
water monitoring measures physicochemical parameters
mainly related with organic contamination (dissolved oxygen,
nitrogen forms, phosphorus, salinity, turbidity, pH, chlorophyll,
temperature, sulfides, and redox potential). When a parameter
represents a certain pollution threshold, the water sample
is sent to a laboratory for further analysis. Every step is
performed manually, which is time- and cost-consuming,
and contamination episodes might be missed (Li and Liu,
2018). New sensors that utilize fiber optics, laser technology,
biosensors, optical sensors, and microelectronic mechanical
systems to detect different water quality parameters in situ
and in real-time are being developed (Simbeye et al., 2014;

Li and Liu, 2018). Nevertheless, these methods are either under
development or expensive.

Chemical Pollution Assessment
Chemical treatments used in aquaculture depend on several
factors - disease, the location of the facility, system parameters,
treatment type, and legislation. There are specific regulations
concerning the use and quantities of specific substances
in aquaculture but this highly differs between countries
(Burridge et al., 2010). These include mandatory risk
evaluation and authorization processes before a particular
substance can be used. There are also various modeling
tools, based on the assessment of dilution and dispersion
of both chemical treatments and particles (from medicated
feed), that calculate chemical exposure and ecotoxicological
risks close to cages (Rico et al., 2018). Even though there
are only few monitoring and control requirements regarding
accumulation of chemicals used, their components and
derivatives (FAO, 2009).

Authorities are setting regulations concerning allowed
substances but also routes of delivery, dosage by fish species
and other limitations (Dawood et al., 2018). Fish do not
metabolize antibiotics efficiently; releasing a large part
of the substance to the marine environment that should
be posteriorly monitored or reused within polycultures
(Burridge et al., 2010).

Overall, the use of antimicrobials in aquaculture has declined
because of improved rearing practices and hygienic conditions,
as well as the development of vaccines. Also, the use of antibiotics
as growth promoters is not practiced in aquaculture (Burridge
et al., 2010; Done et al., 2015; Watts et al., 2017; Okocha et al.,
2018). Producers in the largest farming countries are required
to report particular diseases and the chemicals prescribed to
avoid their outbreaks and minimize chemical treatments, e.g.,
allowable number of salmon lice (L. salmonis) per fish in Atlantic
salmon (S. salar) farming which is monitored regularly during
the production process (Hjeltnes et al., 2018).

Frontiers in Marine Science | www.frontiersin.org 8 April 2021 | Volume 8 | Article 666662

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-666662 April 15, 2021 Time: 19:11 # 9

Carballeira Braña et al. Environmental Sustainability Marine Finfish Aquaculture

Biological Pollution Assessment
Fish from open net cages may escape and enter directly into the
surrounding environment. The ability to assess the escape rate
depends on factors determined by species behavior, including the
time escaped fish are spending close to the aquaculture facilities
after the escape and their mortality rates. These behaviors are
important for calculating the efficiency of potential recapture
methods (Izquierdo-Gómez and Sanchez-Jerez, 2016; Dempster
et al., 2016; Arechavala-Lopez et al., 2017). Recapture is said to be
mostly ineffective (around 50% of escaped fish) although required
in many jurisdictions (Dempster et al., 2016). According to that,
a contingency plan consisting of notification of the escape to
responsible authorities, recapture actions and a final report must
be carried out (Arechavala-Lopez et al., 2018).

Recapture methods are similar to those that have been used
in wild fisheries and include the identification of farmed fish
(Dempster et al., 2016). Farmed fish can be tagged and thereby
identified in case of escape using acoustic telemetry or mark and
recapture techniques (Arechavala-Lopez et al., 2017). Methods
to detect escaped fish are based on genetic differences (Karlsson
et al., 2011) and external characteristics, as a consequence of high
crop densities and handling (fin erosion, opercular deformities
and body lesions) (Fiske et al., 2005). A simple and less expensive
method includes the identification of scales based on the fact that
fish in aquaculture lose some scales when handling or during
feeding. These lost scales are then regenerated, and this can be
detectable on the farmed fish (Izquierdo-Gómez et al., 2017).

Triploid organisms are being used in commercial farming
(e.g., oysters and trout) but triploidy attempts with some species
have been unsuccessful with an increase in deformities, e.g.,
Atlantic salmon (S. salar) (Lovatelli et al., 2013). Triploidy
might be a potential solution to prevent interbreeding but it
will not solve the problem of potential disease transmission or
competition for food and space. The location of the farm (to
avoid harsh weather conditions) is important as a preventive
measure for escapes. The same is said about the provision of
appropriate technical standards for the operation of facilities
(e.g., appropriate mooring and netting of the cages) and
development of farming routines (Arechavala-Lopez et al., 2017).

Environmental Monitoring Plans
The effects of marine aquaculture on the surrounding
environments (especially in open production systems) may be
limited to a minimum. To establish these limits, monitoring data
are needed at different levels of organization, so that, ecological
changes can be detected and Ecological Quality Standards
can be defined and included within an Environmental Impact
Assessment (EIA) (Telfer and Beveridge, 2001; Holmer et al.,
2008). Monitoring techniques must be effective, scientifically
rigorous, cost-effective, dynamic, and regionally/site adapted
to facilitate their usage and avoid unwanted damage to the
ecosystem. Research is still needed to improve the monitoring
programs, in particular those related to eutrophication at
different scales and the ecosystem approach at larger scales
(Holmer et al., 2008). Only few countries apply the ECC
approach (e.g., Norway) and regulations from the majority are

aimed at favoring farmers’ production (e.g., feed efficiency and
absence of anoxic sediments) and regulate food standards (FAO,
2009; Weitzman and Filgueira, 2019). Determination of ECC of
an aquatic ecosystem is a complex process generally based on
mathematical models, making difficult to assess and implement
standards (Silva et al., 2012; Bueno et al., 2017).

Open Land-Based Farming
Environmental monitoring programs for marine open land-
based aquaculture effluents are generally based on maximum
percentages of increase or decrease of several physicochemical
parameters between input and output water. These parameters
are related to the eutrophication risk by measuring nutrient
content (ammonia, nitrites, nitrates, and phosphorus) and related
parameters such as turbidity, dissolved oxygen, chlorophyll, and
pH (Carballeira et al., 2012).

One of the most critical problems from marine land-based
aquaculture monitoring is the absence of sensitive methods
able to determine the amount and toxic effects of pollutants
in highly diluted seawater discharges. This is because there
are no industries with similar discharges; moreover, intensive
aquaculture is relatively modern and was previously considered
as a non-polluting activity (Carballeira et al., 2018). This is
not the case with net cages and soft bottom samples, because
there is usually sediment underneath and its integrative capacity
concentrates contaminants from the water column and allows its
determination (Caeiro et al., 2012).

Net Cages
Net cages involve higher: (i) losses of nutrients (feed and
biological waste) and chemicals; (ii) emergence and transmission
of diseases; (iii) risk of escapees and attraction of predators;
and (iv) greater problems in the shared use of waters (Price
and Morris, 2013). The environmental requirements of cage
production are very similar worldwide; they are based on
the same parameters of study, by focusing the study on the
ecosystemic effects in the benthic macrofauna of the sediment
and the appearance of bacterial mats (Holmer et al., 2008;
Wilson et al., 2009). Moreover, implications of EIA’s and routine
monitoring involve high costs and time because there is a
lack of harmonization between federal and regional roles in
regulating aquaculture activities, and appropriately qualified
scientific personnel (particularly in the area of benthic ecology
and this is regarded as a major issue for the EIA).

Norway, being the largest salmon producer in the world,
is developing the aquaculture practice that is based on the
sustainable development (one that does not exceed the carrying
capacity of the ecosystem) (Hersoug, 2015; Michaelsen-Svendsen,
2019). Even if each particular farming site meets the requirements
independently, overall, they may exceed the load capacity in the
area in question and cause environmental problems. Therefore,
the presence of salmon lice (L. salmonis) in salmon farming is
considered as an important factor relating to the ECC. Overall,
close cooperation between the Norwegian government and
producers allows better enforcement of sustainable measures, but
this approach does regulate production carrying capacity instead
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of ECC (Chapman and Byron, 2018). The first may not guarantee
long-term sustainability. Thus ECC should be considered.

Monitoring Methods
Unfortunately, EMPs do not usually consider ECC measures and
there are problems associated with current monitoring methods
regarding sampling, selection of indicator species, use of biotic
indices and the absence of sediment (hard-bottom sites). Most
of the time methods lack standardization and effectiveness at
different aquaculture scenarios.

Sampling
Before and After Control Impact (BACI) is a common design
proposed to evaluate anthropogenic perturbations on ecological
variables. Using powerful statistics, different approaches allow
adjusting to the particular real conditions (Underwood, 1993).
However, the BACI method depends on the preoperational
study (which is only done once just before starting the activity)
and requires choosing control sites arbitrarily and assumes
the control and impact sites to be similar before the impact.
When a contaminant disperses with distance from a point
source it is suggested that a gradient design will be more
sensitive to change than BACI sampling designs (Rubio-Portillo
et al., 2019). Gradient designs avoid the problem of arbitrarily
selecting a control site, enable chemical, physical, and biological
changes to be assessed as a function of distance, and results
are easier to interpret and to use in public policy decisions
(Ellis and Schneider, 1997).

Indicator Species and Biotic Indices
Geochemical changes of the sediment due to organic enrichment
alter the composition and structure of the infauna, favoring
the dominance of the tolerant-generalist versus the sensitive-
specialized species (Resende et al., 2010; Martinez-Garcia et al.,
2013). The effects of the farms on the benthic communities
are widely studied, especially on the communities of macro
and meio invertebrates from the infauna, and occasionally on
the benthic microbial communities (Verhoeven et al., 2016;
Weitzman, 2019). It is usual to determine the degradation of the
sediment by using the formation and coverage of Beggiatoa spp.,
a chemotrophic filamentous bacterium common in sulfur-rich
environments (Verhoeven et al., 2016; Weitzman, 2019).

Benthic communities (e.g., bacterial mats, polychaetes,
amphipods) are the most studied group as they are those that
manifest the greatest changes when environmental conditions
are altered (Buschmann et al., 2006; Borja et al., 2009; Keeley
et al., 2012; Martinez-Porchas and Martinez-Cordova, 2012;
Ozbay et al., 2014; Martinez-Garcia et al., 2013; Weitzman,
2019; Verhoeven et al., 2016). It is very common to use them
as bioindicators of the state of the benthic ecosystem (both
indicator species and communities), such as the increase of
opportunistic species (e.g., Capitella capitata or Malacoceros
fuliginosus) (Maldonado et al., 2005) or the reduction of sensitive
species (e.g., Pennatula phosphorea) (Wilding, 2011) up to
macroscopic parameters (e.g., ABC Curves, Shannon-Wiener
Index, ITI, AMBI, OSI, BHQ) of the invertebrate community
(Borja et al., 2009; Cromey et al., 2012; Keeley et al., 2012).

However, there are no standardized protocols for the selection
of indicator species (Carballeira et al., 2019), and biotic indices
need to be regionally adapted and may show higher biodiversity
at transitional zones of disturbances than reference sites because
of low-medium concentrations of organic matter (Galand et al.,
2016). Thus, it might be hindering the interpretation of results.

Moreover, sampling and the studies related to benthic fauna
are very onerous, and very little has been done regarding the
combined effects of pollutants and the ecological preferences of
marine indicator species, impeding the development of sensitive
biomonitoring tools (Belando et al., 2017). The application of
frequency analysis techniques, the calculation of specific renewal
rates along environmental gradients and multiple regression
techniques allow to select the explanatory variables and define the
physicochemical thresholds that best characterize the significant
changes in the ecological status of the system represented by the
community of polychaetes (Martinez-Garcia et al., 2013).

Sessile organisms are good candidates for indicator species
because they cannot change their habitat, have to deal with
and/or adapt to shifts to less favorable conditions (Scheu et al.,
2011). Being bioaccumulators, the study of their body burdens
and pollution effects allow the determination of influence area
and extent of impact, respectively (Carballeira et al., 2012).
The uptake of organic matter from fish farms by associated
invertebrates can be traced by examining changes in their fatty
acid profile due to the assimilation of terrestrial-based oils
used in fish feed (Gonzalez-Silvera et al., 2015; White et al.,
2019). Additionally, metabolomics is emerging as a technique to
assess the impact of aquaculture effluents on wild populations
(Maruhenda-Egea et al., 2015).

Stable Isotope Analysis
Deducing the fate of nutrients in an aquaculture or natural system
can be done based on balance calculations of the nutrient content
in plants or animals (Vandermeulen and Gordin, 1990; Brown
et al., 1999; Shpigel et al., 2013).

However, there are shortcomings to this technique when
trying to account for all nutrient transformation in the system
(Gribsholt et al., 2005). A more detailed view can be obtained
through stable isotope analysis (SIA), a widely accepted tool to
reconstruct diets and trophic relationships of organisms and their
food (DeNiro and Epstein, 1978; Middelburg, 2014). The analysis
of stable isotopes is often applied in marine or estuarine sciences
and can be used to examine fluxes of carbon and nitrogen from
ecosystems and pollution from coastal aquaculture (Peterson and
Fry, 1987; Herbeck et al., 2014; Viana et al., 2015). Compared
to the natural aquatic ecosystem, aquaculture derived nutrients
are usually enriched in their δ15N and depleted in their δ13C
values, allowing this source to be traced along gradients and into
sinks (Holmer et al., 2007; Watai et al., 2015). In case larger
isotopic differences are needed, isotope labeling (the introduction
of compounds high in the heavy isotope) can be applied to
trace the fate of the labeled matter over time, through specific
metabolic pathways or along trophic chains (Berthold et al.,
1991; Burford et al., 2002; Gribsholt et al., 2005; Barrón et al.,
2006). A number of studies have worked with labeled feed in an
aquaculture context, tracing the fate of feed derived nutrients in

Frontiers in Marine Science | www.frontiersin.org 10 April 2021 | Volume 8 | Article 666662

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-666662 April 15, 2021 Time: 19:11 # 11

Carballeira Braña et al. Environmental Sustainability Marine Finfish Aquaculture

the vicinity of fish cages (Felsing et al., 2006; Gonzalez-Silvera
et al., 2015; White et al., 2017, 2019), monitoring nutrient uptake
in different fish tissues (Felip et al., 2012; Maruhenda-Egea et al.,
2015), or identifying uptake of cyanobacteria in an aquaculture
pond (Wang Z. et al., 2015).

Establishing a monitoring system based on isotope values of
an indicator species gives the opportunity to trace the impact of
aquaculture effluents in the surrounding ecosystem and check the
effectiveness of mitigation measures (Costanzo et al., 2005).

Hard Bottom Sites
Eutrophication and toxicity assessment methods of hard bottom
sites should always integrate physicochemical and biological
indicators as a basis for management decisions although some
methods use only selected water column parameters (Ferreira
et al., 2011). Contaminant concentrations may not be useful
parameters (most times below the detection limits of analytical
methods) while properly selected indicators should show a
gradient that reflects the level of human-induced impairment.

No single set of indicators will meet the needs worldwide
so general guidelines for the selection of indicator species must
be established, both for soft and hard substrates (Rice et al.,
2012). Hard substrates sites require the selection of sensitive or
tolerant sessile organisms (Scheu et al., 2011), such as macroalgae,
bivalves, cnidarians, and defined ecological state groups for both
unpolluted and contaminated situations.

Other indicator species, such as sponges (Porifera) have shown
to be strong indicators of environmental changes (Luter et al.,
2014) and are highly sensitive to environmental shifts (Holmes,
2000; Hill and Hill, 2002).

In the case that no sessile organisms or study matrices (apart
from the water column) are present, studies on accumulation as
well as on diversity or abundance of species could be focused
on the study of the colonizing communities of artificial surfaces
previously placed in areas affected by aquaculture activities.

SITE SELECTION

One of the main challenges for the sustainable development
of aquaculture is the distribution of water, land, and other
resources with alternative uses, such as fishing, agriculture, and
tourism. Marine Spatial Planning must consider the zoning of
aquaculture (to define suitable areas for fish farming or mixed
activities) and identifying the most appropriate places for the
specific location of farms (site selection) (Chen et al., 2007).
Environmental impacts of a single farm may not be significant
when considered individually but may be relevant if other farms,
fishing grounds, or activities are located in the same area.
Environmentally sound selections of the site, away from habitats
of ecological interest, together with adequate management, are
the best tools to prevent or minimize the negative environmental
effects of farming (Porporato et al., 2020). Therefore, aquaculture
operators must act as environmental managers to ensure
a pollution-free environment in which to culture healthy
organisms. Impacts on the benthos and water column may
happen because of an improper site selection, administrative

issues, and/or overproduction (Aguilar-Manjarrez et al., 2017;
Shetty et al., 2018).

Geographic Information Systems (GIS), remote sensing, and
modeling are commonly used for aquaculture site selection
because they provide preliminary information on site assessment.
However, they are mainly based on physical variables, e.g., water
temperature and chlorophyll a concentration (chl a) (Huber
et al., 2016; Stelzenmüller et al., 2017). From a sustainable
point of view, the location of farms must consider the ECC
of the waterbody and get in situ background information
(e.g., isotopic signal 15N, biodiversity and metal contents)
to enable the necessary production with the least possible
adverse impact on the environment and consequently, the farm
itself. For this reason, assessment of suitability must consider
conservative estimates (i.e., precautionary principle), presence of
predators, spacing between the proposed site and other farms,
industries, recreational activities, cultural or ecological assets, and
environmental characteristics (FAO, 2018).

In general, more carrying capacity will be achieved at
oligotrophic sites with higher coastal exposure, waves, seafloor
slope, depth, current speed, salinity, dissolved oxygen and
lower temperature, suspended solids, and colonizing capacity
(Garmendia et al., 2012). However, the multifactorial nature
of the ecological capacity makes it difficult to evaluate it
theoretically. Moreover, the contribution of other specific or
diffuse sources of pollution (e.g., wastewater treatment plants,
agricultural activities, river mouths) that occur in a specific
physical space must also be considered.

The requirements for appropriate sites are directly related
to the interplay of the farm with the surrounding environment.
Recirculating Aquaculture Systems (RAS) provide the possibility
to cultivate fish in a closed system, minimizing the threat of
parasites, diseases, and changing environmental conditions.
It also allows for the immediate treatment of waste. As
land-based facilities, RAS may be located almost everywhere
while net cages must be located at protected coasts with high
dispersive capacity and far from other sources of pollution.
However, RAS operations require specific infrastructure
and know-how of the system and have high starting and
operational costs (Badiola et al., 2012). While they are becoming
increasingly important in the aquaculture sector of developed
countries, their successful widespread application needs further
economic and political incentives as well as widespread
sharing of information (Badiola et al., 2012). Unlike offshore
cultures, RAS facilities also compete for land space with
other industries.

Land-based marine fish farms are economically limited by the
pumping of water inside the facilities (elevation from sea) and
need to be located at exposed coasts with high dispersive capacity
(Carballeira et al., 2012). Facilities may be ordered (from the
highest to the lowest) according to the level of site requirements
as follows: Net cages, marine IMTA, land-based, offshore, IMTA
land-based, RAS.

Site selection must also integrate multiple use marine spatial
plans to consider economic and social objectives from all affected
sectors and achieve successful management. Wind farming and
energy production from micro and macroalgae are compatible
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candidates, being the best ones that are based on nutrient removal
(Stelzenmüller et al., 2017).

DEVELOPMENT OF SUSTAINABLE
METHODS

Integrated Multi-Trophic Aquaculture
(IMTA)
An important step towards sustainable aquaculture is to consider
excess food and fecal matter not as a waste product, but as a
resource that contains high amounts of nutrients and essential
fatty acids that should be recycled and not discarded (Bischoff
et al., 2009). Based on this idea the concept of IMTA was created,
which applies a simplified food web structure to a farming
system of fed-species, such as fish and shrimp, together with
extractive organisms, such as molluscs and seaweed that take
up particles and nutrients from the environment (Neori et al.,
2004). Integrated aquaculture also produces higher yields than
mono-species systems in addition to satisfying rising consumer
demands for environmental standards (Neori et al., 2004). The
practice of IMTA aims to perfect this principle by combining
species at different trophic levels for a balanced-ecosystem
approach (Chopin et al., 2007). Reducing the load of nutrients
and organic matter released by IMTA systems, preserves the
quality of the receiving ecosystem, a secondary economic benefit
is obtained and the social image of aquaculture is improved
(Barrington et al., 2009).

Macroalgae are a popular component of IMTA setups and
have a number of advantages over conventional mechanical
or microbial filtration systems. Common nitrifications filters
use up dissolved oxygen and require additional equipment and
monitoring (Chopin et al., 2001). Contrary to this, integrating
algae into an aquaculture system counterbalances nutrients, CO2
levels, acidity, and increases dissolved oxygen while producing
valuable biomass (Chopin et al., 2001; Neori et al., 2003).
Macroalgae are fast and easy to grow, highly productive, with a
higher yield of cultivation than land plants, no need of pesticides
and with great potential for various economic applications (Gao
and McKinley, 1994; Ditchburn and Carballeira, 2019). An
example of ideal seaweed for a biofilter is Ulva lactuca, which
is fast-growing, has high filtration performance, thrives under
high nutrient conditions, tolerates a wide range of water quality,
and has a high market value (Neori et al., 2003, 2004). Sales
of seaweed grown in biofilters can cover the additional costs of
implementation (Neori et al., 2004; Ditchburn and Carballeira,
2019), but economic validity is not always ensured and the area
required can be extremely large (Kang et al., 2003; Shpigel et al.,
2013).

Rearing shellfish may have positive effects on the environment
and promote biodiversity (Ozbay et al., 2014). Oysters and
mussels cultivated close to fish farms benefit from the suspended
organic matter, show improved growth and reduce organic
nutrient load in the water (Sarà et al., 2009; Troell et al.,
2009; Reid et al., 2010) and integrating mussel longline
cultivation to existing operations should be economically viable

(Whitmarsh et al., 2006). Their culture is, however, not a panacea
as particle absorption is restricted to appropriate size ranges
(Wang et al., 2012) and the benefits of bivalve culture
sometimes fail to be achieved at all (Navarrete-Mier et al., 2010).
Moreover, bivalves also produce particulate waste in the form of
pseudofeces, creating a need for further remediation of impacted
sediment (Cubillo et al., 2016).

Particulate waste of fed species or shellfish cultivation can
be used as a source of feed for detritivorous animals such as
polychaetes and sea cucumbers. Some sea cucumber species have
been found to thrive on the debris of fish farms (Ahlgren, 1998;
Slater et al., 2011; Hannah et al., 2013). They can constitute an
additional crop and have beneficial effects on sediments by re-
working upper sediment layers and influencing the development
of microbial communities (Moriarty and Pollard, 1982; Moriarty
et al., 1985; Uthicke, 1999; MacTavish et al., 2012). In closed
aquaculture systems, such bioturbating detritivores can also be
integrated into sand filters where oxic and anoxic conditions in
the sediment become the site of nitrogen conversion and removal
(Palmer, 2010; Robinson et al., 2015).

In the case of land-based farms in the littoral zone, IMTA can
be arranged inside (indoor) or outside (outdoor) of the facilities
(Figure 5). Outdoor systems require the aquatic installation of
devices close to the source of pollution and in the direction
of the prevailing current. This is a complex management
option and may be limited by physiological requirements of
the extractive species to specific seasons or hydrodynamic
conditions. The strong energy of the sea in exposed coasts can
endanger the structures or detach organisms, e.g., Saccharina
is able to withstand strong waves but can only be grown in
winter (Guerrero and Cremades, 2012; Freitas, 2015). On the
contrary, indoor systems with their controlled conditions are
more easily managed and are theoretically the most respectful
option for the environment (Guerrero and Cremades, 2012), but
compete for land space.

Lagooning/Artificial Wetlands
Wastewater lagooning is a highly effective, low-cost solution
(initial installation and maintenance) for purifying wastewater
from land-based farms (Porrello et al., 2003). The treatment
of wastewater consists of a series of physical, chemical, and
biological processes to remove contaminants and separate clean
or at least reusable water and solid waste, which can be used for
a number of industrial or agricultural purposes. Such types of
artificial wetlands are already widely used for the treatment of
municipal waste and are especially effective at removing excess
nitrogen and storing excess phosphorus in the soil (Vymazal,
2010; De Lange et al., 2013; Almuktar et al., 2018). This type
of phytotreatment has already been tested with wastewater
from fish ponds as means of algal ponds and wetlands and
has shown to be an efficient system by reducing nutrient
contents and modifying physico-chemical parameters of water
(Porrello et al., 2003; Adeoye et al., 2009; Omitoyin et al.,
2017).

However, lagooning systems require large surface areas, thus,
competing for land space with other sectors. The installation
of aeration systems makes artificial wetlands more efficient by
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FIGURE 5 | Example of integrated multi-trophic aquaculture outside (OUT) and inside (IN) of a facility.

enhancing the oxidation rate of pollutants and allows reducing
the space needed (El-Kamah et al., 2011; Almuktar et al.,
2018). Using the area for additional production makes this
method more profitable. Various halophytes in different types of
natural and constructed wetlands are already successfully used
as down-stream filters of municipal, industrial, or agricultural
wastewater (Verhoeven and Meuleman, 1999; Vymazal, 2010).
Their use can have great economic benefits when compared to
conventional water treatment and they are being investigated
as possible extractive species in integrated aquaculture as they
are able to utilize high levels of ammonia, which can be toxic
to other plants (Glenn et al., 1991; Cardoch et al., 2000; Kudo
and Fujiyama, 2010). Different species of halophytes have been
successfully cultivated in the effluents of European sea bass
(Dicentrarchus labrax) in RAS (Waller et al., 2015) and can
be integrated in artificial wetlands or cultivated hydroponically

(Singh et al., 2014). While still a niche market, they are gaining
popularity as a delicacy vegetable (Custódio et al., 2017).

Maintaining the integrity and function of ecosystems is
vital for the sustainable spread of aquaculture operations. An
example is the practice of Silvofishery or Integrated Mangrove
Aquaculture, which maintains a certain degree of tree cover in
and around aquaculture ponds constructed in mangrove areas
(Budihastuti et al., 2012; Bosma et al., 2016). Mangroves are
important tropical ecosystems that provide a habitat and nursery
to many species, prevent sedimentation of reefs and seagrass
meadows, protect coasts from storm surges and flooding, and
store atmospheric carbon dioxide (Nagelkerken et al., 2000,
2008). Many mangrove areas globally have already been lost
to the conversion of coastal habitats, including for aquaculture
production (Valiela et al., 2001; Alongi, 2002). Constructing
aquaculture ponds while maintaining a level of tree cover in

Frontiers in Marine Science | www.frontiersin.org 13 April 2021 | Volume 8 | Article 666662

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-666662 April 15, 2021 Time: 19:11 # 14

Carballeira Braña et al. Environmental Sustainability Marine Finfish Aquaculture

and around the ponds is a strategy how to combine food
production with mangrove protection (Yunus et al., 2015).
Sustainable aquaculture is seen as an important way to protect
these ecosystems, preserve their biodiversity and secure their
continued contribution to climate protection (Primavera, 2005;
Ahmed et al., 2016). Such an approach to integrated cultivation
is especially important in the context of tropical developing
countries where the importance of aquaculture goes beyond
intensive production of high-value species and includes its vital
contribution to food production and livelihoods in rural areas
(Harrison, 1996; Edwards, 2000). Especially in Asia, low-input,
integrated fish farming systems have a long tradition (Chen et al.,
2019). Large, government driven projects have small success rates
if they create dependencies and have low adaptation rates by
stakeholders (White et al., 2005). Community-based projects put
local actors in the focus and aim to improve livelihoods through
capacity building, diversification and business development
(Pomeroy, 2012; Yuerlita et al., 2013). Extensive, co-managed
aquaculture operations require low input and technologies while
still being vital sources of income (Partelow et al., 2018; Senff
et al., 2018).

Sustainable Feed Management
Sourcing of aquaculture feed is one of the sustainability core
challenges of marine finfish aquaculture (Klinger and Naylor,
2012). Intensified production and the cultivation of high value
carnivorous fish largely depends upon the use of fish meal and
fish oil as the main feed ingredients, making it a consumer of
capture fisheries products, especially of nontargeted fisheries and
small forage fish (Cao et al., 2015). This has caused environmental
as well as economic concerns, with feed costs being a large part of
total production expenses, and important progress has been made
towards sustainability by improving feed efficiency (Verdal et al.,
2017), turning fish offal into useful silage (Cunha et al., 2019;
Gonçalves et al., 2019) or designing plant-based, polychaete-
based, and insect-based protein feeds (Boyd, 2015; Pahlow et al.,
2015; Rhodes et al., 2016; Gómez et al., 2019; Llagostera et al.,
2019). The challenge has been to replace fish oil with other
alternatives and ensure the high content of highly unsaturated
fatty acids within the feed to maintain the nutritional quality of
the fish for human consumption (Little et al., 2016). While the
use of land-based feed may reduce the pressure on fisheries, it
can significantly increase the pressure on freshwater resources
(water footprint), due to water consumption and pollution in
crop production (Pahlow et al., 2015).

However, recently new approaches have been developed to
reduce excess feed used and loss of food. In intensive fish farming
where feeding is taking place by an automatic system, it is
important to monitor the feeding activity of the fish and adjust
the amount of feed to the feeding behavior. Such monitoring can
be done by using, for example, an underwater camera technology
or other similar methods that detect uneaten feed and stopping
the feeding process (Zhou et al., 2017).

More sustainable feed management can be achieved through
IMTA in a number of ways. Dissolved nitrogen in wastewater
used to promote the growth of micro- or macroalgae replaces
the need for fertilizer or growth media. These extractive species

can in turn be cultivated as a feed source, increasing their
practical value. The macroalgae Ulva lactuca, which has low
economic value when sold directly, provides high quality feed
for abalone or sea urchins (Neori et al., 2000) and microalgae
serve as feed for mussels (Shpigel et al., 1993). Thus, algae
production can be considered as a more sustainable industry
than continuing to harvest fish for fishmeal. It is estimated
that if microalgae were used as fishmeal replacement, the effect
would be to remove 30% of the fishing pressure thereby helping
to conserve marine ecosystems (Beal et al., 2018). Algae may
substitute fish oil, be viable and even improve growth of farmed
fish so it should be considered to reduce harvesting fish for
fishmeal (Sarker et al., 2020).

Effluents can be directly valorised by growing primary
producers (Milhazes-Cunha and Otero, 2017; Wei et al., 2017;
Li et al., 2019). Sludges and effluents from aquaculture activities
may also be bioremediated by decomposers, detritivores, and
biofilms, whose biomass in turn presents a useful resource for
feed production (Martinez-Porchas et al., 2014; Barnharst et al.,
2018; Gómez et al., 2019; Robinson et al., 2019). Solid wastes are
an appropriate feed for polychaetes, which provide protein and
important fatty acids as feed for fish, shrimp, or crab production,
reducing or eliminating the need for manufactured feed based on
farmed crops or fish meal (Brown et al., 2011; Alava et al., 2017;
Pajand et al., 2017). Fish feed can also be supplemented or even
replaced through the application of biofloc technology. In this
approach, microbial growth in the water column of fish tanks
or ponds is stimulated through the addition of carbohydrates
in the form of sugar, starch, or cellulose (Avnimelech, 2012).
Heterotrophic bacteria, using these as a substrate to build
proteins for growth, require nitrogen, which they take from
the surrounding water. Dissolved nitrogen species in the water
are, thus, transformed into bacterial biomass, aggregating into
bioflocs that can be consumed by shrimp or fish (Avnimelech,
2012). Biofloc technology in tilapia ponds can provide 50%
of the protein consumed by the fish (Avnimelech, 2007) and
when used as a protein source in shrimp feed, microbial floc
meal showed the same results or even outperformed soybean
or fishmeal ingredients (Kuhn et al., 2009, Kuhn et al., 2010;
Bauer et al., 2012). Biofloc systems have been mainly used in
freshwater ecosystem and for herbivorous organisms but recent
studies included mullets and pacific shrimp (Legarda et al.,
2019). The successful application of biofloc technology, however,
requires knowledge of the system, close monitoring to maintain
appropriate C:N ratios and microbial densities and upscaling
from laboratory to economic application (Kuhn et al., 2010;
Hende et al., 2014).

Sustainable Use of Chemicals
There is an increasing tendency to develop methods with
the aim of reducing extensive chemical substance use,
and, therefore, minimizing environmental pollution. Such
alternative methods can have other positive effects on production
such as cost minimization for the producer and increased
consumer acceptance.

Methods that have been used vary between several factors
such as the fish species and disease in question as well as the
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FIGURE 6 | Example of precision fish farming system including (a) surface camera, (b) underwater camera with multiparameter water probe, (c) sonar, (d) acoustic
telemetry system with hydrophone, and (e) smart trap (based on Føre et al., 2018).

production methods used and characteristics of the area where
the facility is located. They can be divided as precautionary
methods (e.g., limiting fish density), methods concerning disease
prevention (e.g., immunostimulant feeds and herbal medicine
additives), co-culturing of different marine species which both
benefits from such a production model, different physical
techniques used such as so called “lice skirts,” plankton nets
around the fish cage, to avoid parasite infestations (Stien et al.,
2018) as well as other varying from above mentioned aspects (He
et al., 2016; Haugland et al., 2017; Dawood et al., 2018; Jahangiri
and Esteban, 2018; Escobar-Dodero et al., 2019).

The largest aquaculture producing countries have been using
regulations to report disease occurrence and to limit the fish
density according to those measures because high density of
fish or cages highly increase the risk of disease transmission,
e.g., infectious salmon anemia or infectious pancreatic necrosis
(Escobar-Dodero et al., 2019).

Other methods that have been used include functional feed
additives, which can be administered via feed (He et al., 2016).
They are non-nutritive ingredients that affect fish performance
concerning, for example, feed utilization, survival, and growth
rate (Jahangiri and Esteban, 2018). These additives promote
fish growth and can replace antibiotics in those countries
where it is still used as preventing and growth promotional
measures, and thereby avoiding associated negative effects (Done
et al., 2015). Most widely researched options include probiotics,

prebiotics, synbiotics, acidifiers, plant extracts, nucleotides, and
such immunostimulants as β-glucan and lactoferrin (Dawood
et al., 2018). Chinese herbal medicines can be used as an
alternative in disease prevention in aquaculture because of
antibacterial, antiviral, immunostimulant, and growth promoting
substances (He et al., 2016).

Co-culturing of different fish species can be used to limit
pathogens during production. An example of this could be the use
of cleaner fishes, which can limit the spread of ectoparasites such
as salmon lice (Lepeophtheirus salmonis) because of predation by
those fish species towards these small crustaceans. However, this
implies that appropriate health and welfare conditions must be
provided for both species, as farming together different species
would also generate a risk of common disease spread, e.g.,
amoebic gill disease when lumpfish (Cyclopterus lumpus) are
farmed together with Atlantic salmon (Haugland et al., 2017).

Genetic improvement through selective breeding has been
used in aquaculture mostly to improve growth performance of
fish. In Europe, around 80% of aquaculture originates from
selective breeding mainly because of this reason. However, it is
possible to select fish for other traits such as disease susceptibility
(Yáñez et al., 2014). Also, vaccines are being used to minimize
the need for antibiotic treatments. However, the method can
be associated with some negative effects such as stress caused
to fish during the treatment when handling of fish is involved
(Miccoli et al., 2019).
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FIGURE 7 | Summary of main sustainability issues of marine mariculture and respective methodological (black boxes) and infrastructure based (gray boxes) solutions.

Lytic bacteriophages can be used as therapeutic agents against
marine bacterial diseases such as those associated with vibrios.
However, more research is still needed to apply these viruses
under field conditions and to avoid dispersal of unwanted
genes and effects on fish microbiota (Kalatzis et al., 2018;
Plaza et al., 2018).

Offshore
Generally, mariculture facilities are located close to human
settlements, in protected coasts or inland, with shallow waters
and low hydrodynamic energy. Recently, more aquaculture
facilities are being placed in semi-exposed areas with a potential
of offshore aquaculture development. To have a regular supply
of oxygen and temperature, and to avoid diseases, parasites,
algal blooms, and user conflicts, the aquaculture industry has
been developing new technologies for offshore facilities. Offshore
systems are not environmentally sustainable in the long term
(there is no reduction on contaminant outputs) but are a
more respectful alternative with the environment since the load
capacity increases with the depth and the higher dispersion
of the waste (Kapetsky and Aguilar Manjarez, 2013; Lovatelli
et al., 2013; Gentry et al., 2016). From a spatial perspective,
offshore production has a lot of potential; it may be expanded
to many countries, move away from sensitive marine biocenosis
areas, be combined with wind, oyster, and mussel farms,
increase biodiversity by creating an artificial reef, etc. (Lovatelli

et al., 2013). However, the open sea is considerably rougher
than coastal waters and strong waves can break structures or
detach organisms, worldwide distribution of species is uncertain,
and there are political, technical, and cost-distance limitations
(Troell et al., 2009; Forster, 2013). Free-floating and propelled
installations may be too expensive and improvements on
mooring systems are required to expand farms at deeper areas.

Some finfish farms are already located at open sea, most of
them are round and submersible net cages to dissipate water
currents and to avoid waves (Benetti et al., 2010). Seaweed and
bivalve become profitable more quickly because they do not need
to be fed and operational costs are lower. Several farms including
IMTA have been developed, mainly in Asian countries, but all
at shallow waters and close to the coast (Buck et al., 2018).
Moreover, it is still difficult to avoid the detachment of seaweed
and mussels with traditional longline systems (Troell et al., 2009).

Wind-powered water pumps and solar-powered water heating
systems are proposed to be integrated with offshore systems
because will reduce long-term operating costs and environmental
implications and increase competitiveness and profitability.

For aquaculture to expand, greater social acceptance, adapted
regulations and long-term sustainability are necessary (Kapetsky
and Aguilar Manjarez, 2013; Lovatelli et al., 2013). However,
offshore production development is sometimes limited because
few countries have regulations that explicitly mentions offshore
or open-ocean aquaculture, and fewer still have codified
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definitions of this type of culture (Davies et al., 2019). Sometimes
governance of offshore industries is ambiguous or undefined,
presenting obstacles to allow their activities (e.g., United States
and Australia) (Davies et al., 2019).

Copper Net Cages
Biofouling development reduces the water flow inside the fish
cage forcing farmers to clean and change polymer nets frequently,
or use antifouling coatings, thus, increasing operational costs
(Berillis et al., 2017). Antifouling coatings are discarded every
year producing toxic effects because of the release of their
main active ingredients to the environment (copper oxide,
cadmium, and zinc) (Kalantzi et al., 2016). Organisms grown
inside and outside of trials using copper nets were safe for human
consumption and no accumulation of copper was detected
in sediment, but assessment and environmental monitoring
is needed because copper alloy released more copper to the
surrounding environment and affect the biota more compared to
the conventional net (Kalantzi et al., 2016).

Precision Fish Farming (PFF)
There is a recent sustainable framework of fish farming called
Precision Fish Farming (PFF), which developed from the
concept of Precision Livestock Farming (PLF) (Norton and
Berckmans, 2018) to pisciculture. PLF and PFF use hardware
(e.g., sensors), observers, and intelligent software to improve
animal health and welfare while increasing productivity, yield,
and environmental sustainability (Figure 6). In contrast to
livestock production, intensive fish farming methods are more
recent, crop is largely determined by environmental conditions
and monitoring methods are more expensive and complex at
aquatic ecosystems (Føre et al., 2018).

The majority of components proposed to be included in
PFF systems are already developed (e.g., hydrophones, sonars,
acoustic telemetry systems, cameras) but in many cases they
need to be adapted for mariculture activities. For example,
smart sediment traps will greatly improve knowledge on
particle settling flux data, oceanic nutrient cycles, food efficiency
through online monitoring and detection of temporal changes of
sedimentation rates (Jurg, 1996). Studies of smart traps include
autonomous neutrally buoyant sediment traps (Sherman et al.,
2011) and sedimentation accumulation sensors with a wiper arm
connected to a logger and a transmitter/receiver (Thomas and
Ridd, 2005; Whinney et al., 2017).

Fish farming monitoring knowledge is required to understand
the complex interactions between growing methods and farmed
fish with the aquatic environment. An increase on the knowledge
of behavioral and physiological responses may help reach
sustainability (by reducing feed loose, disease and parasitic
outbreaks, enhance animal vital development, etc.) but it
seems that the general aim is to improve intensive fish
farming conditions from a production perspective instead of
an environmental approach (carrying capacity, feed alternative,
etc.). To apply a more sustainable concept of PFF, predictive
models should include the information supplied by the
application of technological advances to monitor other ecosystem
parameters potentially affected by crops.

CONCLUSION

The key to affordable and sustainable aquaculture practices
lies in the independence from natural resources through
recycling or remediation of fish production wastes. However,
sustainability and the reduction of ecological impacts depend
on the governance of infrastructure and environmental
agencies must improve legislation and regulations worldwide.
Many countries with important aquaculture production have
some environmental regulations but lack clear frameworks
for emerging technologies such as offshore farming. Every
farmer may develop sustainable principles, methodologies, or
practices. Therefore, it is recommended to promote certifications
of good practices.

Environmental monitoring costs may be too expensive
and onerous, hindering its application or interpretation and
make sustainable development more difficult. So that, just
representative, non-redundant, reliable, cost-effective, and
significant measures should be included within environmental
monitoring plans to harmonize production with the ECC of
the selected site.

Different methods are being used to reduce the environmental
impact of aquaculture practices, but further research is still
needed. For example, the use of selective breeding to reduce
the use of chemicals for disease treatment may diminish the
population genetic difference and possibly increase the virulence
of the pathogenic organisms that may specialize in particular
organisms. Also, the use of vaccines represents a sustainable
method but can cause significant stress for the fish during the
vaccination which itself can increase the disease risk.

Land-based IMTA aquaculture with recirculation systems
seems to be the best alternative option in terms of wastewater
reduction and exploitation, prevention of disease outbreaks,
escapees, monitoring costs and efficiency. However, there is a
competition for land space that can be complemented by well-
managed offshore polyculture facilities integrated with solar and
wind farms. Despite those, numerous other sustainable measures
were proposed (Figure 7).

Aquaculture sustainability is an on-going process that requires
integration of all stakeholders. Government, farmers, ecologists,
and consumers should drive aquaculture practices under a risk
assessment approach to reduce wastes, disease outbreaks, and
operational costs enhancing sustainability potential.
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