
1. Introduction
A large uncertainty regarding tropical precipitation and its evolution in a warming climate is related to 
convective organization and its response to warming. The spatial organization of deep convection at mesos-
cales, that is, hundreds of kilometers, is ubiquitous in the tropics in the form of Mesoscale Convective 
Systems embedded in larger scale perturbations such as the Madden-Julian Oscillation (Jiang et al., 2020). 
Convective organization has important societal impacts, notably as it is associated with extreme precipita-
tion (Rossow et al., 2013). A recent observational study (Tan et al., 2015) finds that recent trends in tropical 

Abstract This work explores the effect of convective self-aggregation on extreme rainfall intensities 
through an analysis at several stages of the cloud lifecycle. In addition to increases in 3-hourly extremes 
consistent with previous studies, we find that instantaneous rainrates increase significantly (+30%). We 
mainly focus on instantaneous extremes and, using a recent framework, relate their increase to increased 
precipitation efficiency: the local increase in relative humidity drives larger accretion efficiency and lower 
re-evaporation. An in-depth analysis based on an adapted scaling for precipitation extremes reveals that 
the dynamic contribution decreases (−25%) while the thermodynamic is slightly enhanced (+5%) with 
convective self-aggregation, leading to lower condensation rates. When the atmosphere is more organized 
into a moist convecting region and a dry convection-free region, deep convective updrafts are surrounded 
by a warmer environment which reduces convective instability and thus the dynamic contribution. The 
moister boundary-layer explains the positive thermodynamic contribution. The microphysic contribution 
is increased by +50% with aggregation. The latter is partly due to reduced evaporation of rain falling 
through a moister near-cloud environment, but also to the associated larger accretion efficiency. Thus, 
a potential change in convective organization regimes in a warming climate could lead to an evolution 
of tropical precipitation extremes significantly different than that expected from thermodynamical 
considerations. The relevance of self-aggregation to the real tropics is still debated. Improved fundamental 
understanding of self-aggregation, its sensitivity to warming and connection to precipitation extremes, is 
hence crucial to achieve accurate rainfall projections in a warming climate.

Plain Language Summary Heavy precipitation and floods are frequent in the tropics. The 
spatial organization of weather systems is often associated with these events. Our study investigates the 
case of convective self-aggregation which is a particular type of cloud systems' organization observed 
in idealized numerical simulations. We find that convective self-aggregation tends to increase rainfall 
intensities by 30%–70%. There are several processes involved in the formation of heavy rainfall: vertical 
motion air, condensation into cloud droplets, growth of these droplets into precipitating drops, collection 
of other cloud-droplets through their descent and partial re-evaporation between cloud base and the 
ground. We examine the contribution of each of these processes and find that the increase in rain rates 
with convective self-aggregation is related to both lower rain re-evaporation and more efficient cloud 
droplet collection by rain drops through their descent. It is still unclear how heavy rainfall will evolve 
in a warming climate. While the relationship between temperature and water vapor suggests that heavy 
rainfall will increase by 7% per 1K, our result shows that a hypothetic change in the organization of 
weather systems could potentially lead to more dramatic changes in heavy rainfall in a future warming 
climate.
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precipitation can be linked to changes in the frequency of occurrence of organized mesoscale cloud systems. 
Here we will briefly mention the different modes of organization and review the mechanisms involved in 
the amplification of heavy rainfall with warming—with and without organization—, before focusing on an 
highly idealized case of organization in this study, convective self-aggregation.

Mesoscale convective organization can be forced by dynamical processes on large scales (namely, scales 
similar or larger than mesoscales), for instance vertical wind shear or land-ocean contrasts and can take the 
form of mesoscale convective systems or squall lines. It can also arise from internal feedbacks linked to the 
interaction of clouds with their environment, in the form of large and moist convective areas surrounded 
by dry subsiding areas (Bretherton et al., 2005; Muller & Held, 2012). In the latter case, spontaneous inho-
mogeneous spatial clustering of clouds is triggered in otherwise homogeneous unforced environments, a 
process called self-aggregation of convection, mainly diagnosed in models so far (Wing et al., 2017). It is 
important to note that this “clean” mode of organization (in large environments deprived from wind shear, 
rotation and sea-surface temperature (SST) gradients) can be far from most situations currently observable, 
but such a self-aggregated state is argued to be an alternate stable state of radiative-convective equilibrium 
(RCE) that could be reached by the tropics as a whole in a warmer future (Emanuel et al., 2014). Links were 
also made between some of the processes involved in self-aggregation simulations and those observed in 
the real world (Holloway et al., 2017). A natural question that we address here is then: how could precipita-
tion extremes be impacted by self-aggregation, and why? We will address it using idealized cloud-resolving 
simulations run in non-rotating RCE, and in the absence of wind shear. This “clean” modeling setup will 
allow a robust attribution of the processes involved, in order to serve as a starting point for integrating more 
complexity and realism in future modeling experiments.

Several studies have investigated the response of precipitation extremes to warming using idealized sim-
ulations of disorganized convection. Two different cloud-resolving models (CRMs) showed increases in 
precipitation extremes close to low-tropospheric moisture (Muller et al., 2011; Romps, 2011). The fact that 
precipitation extremes follow low-tropospheric humidity and not column-integrated humidity can be un-
derstood using a theoretical scaling for precipitation extremes, first introduced in Betts (1987) and O'Gor-
man and Schneider (2009a), and refined to connect it to microphysics (Muller & Takayabu, 2020; Muller 
et al., 2011). It relates the changes of precipitation extremes to three contributions: a thermodynamic contri-
bution related to water vapor, a dynamic contribution related to vertical mass flux in extreme updrafts, and 
a microphysic contribution related to precipitation efficiency. The thermodynamic component, dominant in 
disorganized convection, is not always the prevailing term when convection is organized.

Mechanisms advanced for changes in extremes are sensitive to the mode of organization analyzed. In ideal-
ized squall line simulations, Singleton and Toumi (2013) find an amplification of precipitation extremes ex-
ceeding significantly the thermodynamic theoretical expectation, when the warming is uniform in height. 
In the tropics, one expects the atmosphere to warm following a moist adiabat, with larger warming aloft. If 
instead the warming is uniform with height, a situation which might be more relevant to the mid latitudes, 
atmospheric instability is enhanced (Loriaux et al., 2013). Consistently, faster updrafts contribute positive-
ly to the dynamic contribution, yielding a larger amplification of precipitation extremes with warming 
than the thermodynamic contribution would entail (Attema et  al.,  2014; Singleton & Toumi,  2013). We 
note though that the link between stability and precipitation extremes is not necessarily straightforward. 
Differences in atmospheric stability may result in differences in convection, but extremes in precipitation 
intensity do not necessarily follow the atmospheric stability (Hamada et al., 2015).

The increase of precipitation extremes with warming for a given degree of convective organization was 
also investigated in Muller (2013) but with a warming following the moist adiabat, as expected in tropical 
atmospheres. In that study, vertical wind shear of varying amplitude is used to organize convection into 
squall lines. As well as for disorganized convection, precipitation extremes also increase at about 7% 𝐴𝐴 K−1 
of warming for a given degree of convective organization, consistent with the thermodynamic theoretical 
expectation from the Clausius-Clapeyron equation (Held & Soden, 2006). However, a change in the degree 
of convective organization can lead to up to a doubling of extreme rainfall rates. Thus the increase of pre-
cipitation extremes from a change in convective organization is larger than that associated with warming 
by several degrees.
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In the case of self-aggregation, it appears useful to separate the role of warming from the occurrence of 
aggregation itself when studying the response of extreme rain. Pendergrass et al. (2016) document an SST 
threshold over which convection self-aggregates, and the change from unorganized to self-aggregated con-
vection is associated with an increase of precipitation extremes largely exceeding the Clausius Clapeyron 
law (super-CC). Similarly, using CRM experiments, Fildier et al. (2020) also observe a jump in precipitation 
extremes from disorganized to aggregated simulations. Moreover, they note that super-CC regimes can oc-
cur within aggregated convection but not within the disorganized convection. They link these super-CC 
rates to changes in precipitation efficiency. Bao and Sherwood (2019, BS19) also investigate self-aggregation 
and precipitation extremes, using a different cloud-resolving model (WRF). They find that self-aggregation 
has a small impact on extreme instantaneous precipitation, but affects strongly daily precipitation extremes. 
Similarly to Fildier et al.  (2020), they note that extreme instantaneous precipitation is more sensitive to 
microphysical processes. Our work builds on these recent studies, using the theoretical scaling (Muller & 
Takayabu, 2020) to further investigate and quantify the physical processes associated to the change of pre-
cipitation extremes with self-aggregation. Of particular interest are the following questions:

1.  Does convective self-aggregation only affect rainfall intensities accumulated over time, or also instanta-
neous rain rates?

2.  Which contribution mainly explains the effect of aggregation on extreme rain rates? Is it the thermody-
namic, dynamic, or microphysic contribution?

3.  Through which physical mechanisms can the change in precipitation efficiency affect rain extremes 
under convective self-aggregation?

The next section (§2) describes the cloud-resolving model and simulations used. Results are presented in §3. 
The thermodynamic and dynamic contributions to extreme precipitation are analyzed in §4, followed by the 
microphysic contribution in §5. Conclusions, as well as key implications of our results in a warming climate 
and outstanding open questions, are discussed in §6.

2. Cloud-Resolving Simulations
2.1. Cloud-Resolving Model

The cloud-resolving model used here is the System for Atmospheric Modeling, or SAM. This model solves 
the anelastic conservation equations for momentum, total water and energy. There are six water species in 
SAM (vapor, liquid cloud water, cloud ice, liquid rain, graupel, snow). The prognostic thermodynamic vari-
ables of the model are liquid/ice water static energy, total non-precipitating water (vapor, liquid cloud water, 
cloud ice), and total precipitating water (liquid rain, graupel, snow). The longwave and shortwave radiative 
cooling rates are computed using the radiation code from the National Center for Atmospheric Research 
(NCAR) Community Atmosphere Model version 3 (CAM3; Collins et al., 2006). As in numerous previous 
studies of self-aggregation with SAM, we use the 1-moment microphysics package. Further details about 
the model can be found in Khairoutdinov and Randall (2003).

All the runs are in doubly-periodic geometry starting from homogeneous initial conditions, and with an 
imposed sea-surface temperature of 300 K. The resolution is 3 km and the domain size 768 km in both 
horizontal directions. This relatively small domain size and low resolution do not allow to resolve all con-
vective processes and dynamics and their nonlinear interactions over a wide spectrum range, only from 
tens to hundreds of kilometers. The vertical grid has 64 levels with the first level at 37.5 m and grid spacing 
gradually increasing from 80 m near the surface to 400 m above 5 km. To reduce gravity wave reflection and 
buildup, Newtonian damping is applied to all prognostic variables in the upper third of the model domain 
(18–27 km altitude).

2.2. Simulations

We perform two simulations. The first (CTRL) with interactive radiative cooling rates (calculated every-
where in the domain at each time step), but these are horizontally homogenized at each time step and 
height in order to remove radiative feedbacks and thus prevent convective self-aggregation. In this sim-
ulation, convection is somewhat randomly distributed, and precipitating events can occur everywhere in 
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the domain, with convection resembling “pop-corn” convection (Figures 1a and 1b). Such simulations are 
occasionally referred to as disorganized RCE.

The second simulation (AGG) has fully-interactive radiation, namely radiative cooling rates are resolved 
in 3D space and applied to the temperature tendency at each time step, and self-aggregates. Conditions 
favoring convective organization are still a subject of active research, but large domains and the presence of 
a radiative feedback on the atmospheric circulation are often identified as sufficient conditions for self-ag-
gregation in models (Muller & Bony, 2015; Muller & Held, 2012). In that case, convection and precipitating 
events are confined to the moist circular region of the domain (Figures 1c and 1d).

In both cases, the model is run to non-rotating radiative-convective equilibrium, or RCE, reached after 
about 50 days, and the simulations are run for 100 days. Only the last 30 days of the simulations are used for 
our analysis (day 70 until day 100). Non-rotating RCE is an idealization of the tropical atmosphere, in which 
the Earth's rotation is neglected (a reasonable approximation in the tropics where the Coriolis parameter is 
small), and in which the large-scale motion (larger than the domain) is neglected. Thus there is no import 
or export of moist-static energy into or out of the domain, and in the domain-mean, the net atmospheric 
radiative cooling (top of atmosphere minus surface) balances the input of energy into the atmosphere at the 
surface, namely latent and sensible heat fluxes. The solar irradiance is fixed to 𝐴𝐴 413 W.m−2 (same as Shame-
kh et al., 2020), therefore removing diurnal oscillations of convection in the simulations.

3. Impact of Convective Aggregation on Precipitation Extremes
3.1. Significance for Both Instantaneous and 3-Hourly Rain

We first investigate the effect of convective aggregation on the frequency of precipitation and on its dis-
tribution. The occurrence frequency of both instantaneous and 3-hourly precipitation over the domain 
is shown in Figure  1 for both AGG and CTRL simulations. Instantaneous precipitation is not properly 
”instantaneous” but refers to an accumulation over a very short time corresponding to the model time 
step (less than 10 s). Any event is counted as rainy when instantaneous (resp. 3-hourly) precipitation is 
strictly positive. Non-zero thresholds were also tested without giving any significant changes. The CTRL 
simulation displays frequencies of precipitation rather uniform within the domain, for both instantane-
ous (Figure 1a) and 3-hourly precipitation (Figure 1b). As a reference, a perfect white noise sampled over 

Figure 1. Occurrence frequency of rain over the domain for CTRL (a), (b) and AGG (c), (d) simulations and for both 
instantaneous (a), (c) and 3-hourly (b), (d) precipitations.
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a sufficiently long period of time would be perfectly uniform spatially. 
Frequencies of precipitation range from 0%–10% for instantaneous pre-
cipitation and reach 20%–30% when precipitation is accumulated over 
3 h. This increase of precipitation frequency with accumulation time is 
expected and reflects the increased likelihood of observing precipitation 
with longer timescales.

The differences are striking when one compares with the frequencies of 
the AGG simulation (Figures 1c and 1d). While precipitation occurrence 
displays no particular pattern in the CTRL simulation, rainy events are 
concentrated on a circular core in the AGG simulation, where frequency 
of instantaneous precipitation can reach 60%. Conversely, the regions that 
are far from this circular core, exhibit very low occurrences of precipita-
tion, often even zero (Figure S1 in Supporting Information S1). Because 
no large-scale horizontal wind spontaneously develops in the domain, 
the moist region is almost steady in space, but its size slightly oscillates 
in time. In both simulations, the spatial distribution of deep convective 
clouds (and of intense cloud condensation rates) exhibits qualitatively 
similar patterns than those of precipitation shown in Figure 1 (Figure S2 
and S3 in Supporting Information S1).

When one performs a spatial average of the precipitation frequencies 
over the whole domain, it is found that there are fewer rainy events in the 

AGG simulation than in the CTRL simulation. Because of the RCE constraint, and similar domain-averaged 
radiative cooling rates between the two simulations, mean precipitation only slightly increases from the 
non-aggregated to the aggregated simulation (from 3.4 to 3.9 mm/day). Therefore, one could expect a gener-
al increase of rainfall rates (when strictly positive) in the AGG simulation compared to the CTRL. In other 
words, we find that precipitation is less frequent (from a frequency of 7.3%–8.8% between both simulations) 
but heavier in the AGG simulation, for a similar domain-mean precipitation.

Differences in the number of rainy events between both simulations are related to the size of the convection 
core relative to the dry area in the AGG simulation. It is probable that model settings have an influence on 
the size of the aggregate and thus on rainfall frequencies. For instance, it has been shown that the ability of 
convection to self-aggregate in a cloud-resolving simulation is dependent on the domain size (Jeevanjee & 
Romps, 2013; Muller & Held, 2012). Nevertheless, we expect that qualitatively, the decreased frequency and 
increased intensity of precipitation with aggregation is robust.

We now turn to the full distribution of precipitation in those two simulations. Figure 2 displays the prob-
ability density functions (PDF) of instantaneous and 3-hourly precipitation for both CTRL and AGG sim-
ulations. Since our interest lies in precipitation intensity in regions where it rains and its response to ag-
gregation, rather than differences in the area affected by precipitation, we consider the PDF of grid points 
with strictly positive instantaneous or 3-hourly precipitation. It corresponds to 7.3% (15.5%) of the total 
number of grid points in the AGG simulation against 8.8% (29.8%) in the CTRL simulation for instantane-
ous (3-hourly) precipitation. Figure 2 shows an increase in the intensity of strong precipitation events, that 
is, of the high precipitation percentiles, in the AGG simulation. The increase is more pronounced (in rela-
tive values) for 3-hourly precipitation (Figure 2b) than for instantaneous precipitation (Figure 2a). This is 
consistent with Figure 1 which makes clear that rain accumulates locally over time in AGG, and with BS19 
who show that time accumulated (daily in their analysis) precipitation is sensitive to the degree of aggrega-
tion. Such hypothesis could be verified using averaged rain intensities on hourly or sub-hourly outputs and 
computing the duration of rain events at these high percentiles, unfortunately that is not doable with the 
present data sampled every three hours.

Unlike the recent study of BS19, we find that instantaneous rainfall rates also increase significantly with 
aggregation, at a rate of about 30% 𝐴𝐴 ± 8% (here 𝐴𝐴 ± means one standard deviation for each percentile bin, com-
puted following Fildier et al. (2018), Equation (6) or Appendix C, for estimating the 𝐴𝐴 𝐴𝐴 -error on fractional 
changes between any pairs of simulations) as shown in Figure 3. This figure shows relative differences of 

Figure 2. Probability density functions of instantaneous (a) and 3-hourly 
(b) precipitation intensity for aggregated (dashed) and unorganized (solid) 
simulations (Note that only rainy points are included here, which explains 
the different y-ranges, as 3-hourly precipitation is more often non zero 
than instantaneous precipitation).
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instantaneous precipitation as a function of precipitation percentiles. At 
a fixed percentile rank (e.g., the 99.9th percentile, the threshold in rain 
intensity for the most intense 1/1000 rainy points), this value increases 
by 30%, meaning that the most intense 1/1000 rainy points become 30% 
more intense. As previously, only instants with strictly positive instanta-
neous precipitation were selected for analysis. Albeit slightly lower, we 
also find significant increases of instantaneous precipitation extremes in 
the AGG simulation when including non-rainy instants (not shown).

The rest of the analysis will thus be devoted to understanding this signifi-
cant and perhaps surprising increase of instantaneous extreme precipita-
tion in the AGG simulation.

3.2. Decomposition Into Thermodynamic, Dynamic, and 
Microphysic Contribution

The analysis is based on an adaptation of the O'Gorman and Schnei-
der (2009a) scaling of precipitation extremes, which was used in many 
studies (Loriaux et al., 2017; Muller, 2013; Muller & Takayabu, 2020; Mul-
ler et al., 2011):

𝑃𝑃 = 𝜖𝜖 ∫ −𝜌𝜌𝜌𝜌
𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 = 𝜖𝜖 𝜖𝜖
⏟⏟⏟

scaling

, (1)

where 𝐴𝐴 𝐴𝐴 is precipitation efficiency, 𝐴𝐴 𝐴𝐴 is air density, 𝐴𝐴 𝐴𝐴 is vertical velocity, 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 is the saturated water vapor 
mixing ratio, the derivative is following a moist-adiabatic parcel ascent, and the integral is performed over 
positive vertical velocities, thus is a proxy of (gross) condensation rate (which will be replaced by 𝐴𝐴 𝐴𝐴 from 
now). In the tropics, the atmosphere is close to a moist adiabat and the parcel moves along the vertical to 
first order, therefore in practice, we used the local derivative

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

as an approximation for the derivative following a parcel ascent. This scaling can be interpreted from a 
water budget perspective, where a fraction 𝐴𝐴 𝐴𝐴 of the total condensation rate 𝐴𝐴 𝐴𝐴 reaches the ground as surface 
precipitation 𝐴𝐴 𝐴𝐴  . The remaining fraction of condensates either accumulates as clouds in the column, is ad-
vected away, or evaporates either as cloud or precipitation before reaching the ground. This scaling allows 
to distinguish the contributions to the fractional change in rain intensities, at any percentile, between the 
CTRL and AGG simulations:

Δ𝑃𝑃
𝑃𝑃

= Δ𝜖𝜖
𝜖𝜖

⏟⏟⏟
microphysic

+ Δ𝐶𝐶
𝐶𝐶

,
 (2)

where 𝐴𝐴 Δ denotes difference between AGG and CTRL (AGG minus CTRL) and denominators are calculat-
ed using the average of the CTRL and AGG values. We now focus on the second term and will investigate 
microphysical contributions (changes in precipitation efficiency) in Section 5. We first separate the vertical 
mass flux contribution from the humidity contribution by neglecting second order terms:

Δ𝐶𝐶
𝐶𝐶

≈
∫
(

−𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
Δ𝜌𝜌𝜌𝜌𝑑𝑑𝑑𝑑

𝐶𝐶
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dynamic

+
∫ (𝜌𝜌𝜌𝜌)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶Δ−𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐶𝐶
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

thermodynamic

 (3)

The first term of the right-hand side is the change of condensation rate due to dynamic changes and the 
second term is the change of condensation rate due to thermodynamic changes.

Figure 3. Relative differences of instantaneous precipitation between the 
aggregated and the unorganized simulation as a function of instantaneous 
precipitation percentiles for rainy events. Dashed lines and gray shadings 
correspond to the signal 𝐴𝐴 ± one standard deviation.
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This equation associates extreme precipitation values with a vertical profile of vertical velocities and satu-
ration mixing ratio. Both of these profiles can be significantly modified with moist convection, and particu-
larly through the formation of precipitation. Indeed, precipitation evaporation has a cooling effect which 
can both create downdrafts and reduce saturated mixing ratio. It is therefore not obvious that the vertical 
profile of vertical velocities and the one of the saturated mixing ratios when there is an extreme of surface 
precipitation, is representative of the earlier processes that led to this extreme.

Figure 4 displays composites of cloud condensate mixing ratio around points of extreme condensation rate, 
extreme cloud condensate mixing ratio (both vertically integrated), and extreme surface precipitation for 
both simulations. If one supposes that these three extremes correspond to a particular time of a same ex-
treme precipitation event, this figure illustrates the changes of clouds properties in between the time of 
these extremes. In fact, those composites are indeed consistent with the classical cloud lifecycle. First, con-
comitant with extreme condensation rate, upward motion is initiated in the low troposphere (Figures 4a 
and 4d). Second, concomitant with extreme cloud amount, vertical updrafts reach the equilibrium level 
and cloud droplets grow in size and start to precipitate (Figures 4b and 4e). Third, concomitant with ex-
treme surface precipitation, latent cooling from rain evaporation generates intense downdrafts indicated by 
descending arrows and a higher cloud base above the extreme of surface precipitation (Figures 4c and 4f). 
Extreme condensation rates were found in only 16% (CTRL) and 27% (AGG) of the clouds at this last stage 
(Figure S4 in Supporting Information S1). To first order, the cloud lifecycle is well reproduced and visually 
similar in both simulations. Slight differences can be seen: in the aggregated case, condensate mixing ratios 
span a larger vertical range in the earlier stage of the lifecycle and a smaller vertical range later on; and ver-
tical velocities are smaller in earlier stages and larger later, suggesting again that extreme rain events may 
last longer with aggregation. We note that this seems to appear when comparing composites, but individual 
events can strongly vary around the mean (Figure S5 and S6 in Supporting Information S1).

When evaluating the different contributions of the scaling in Equations 2 and 3, the time chosen to evaluate 
variables that correspond to extreme surface precipitation is therefore important to have the best estimation 
for the scaling of precipitation extremes. The vertical velocity of extreme condensation prior to precipita-
tion, is for instance the most relevant to extreme surface precipitation, as it is the effective upward motion 
that created the extreme of precipitation and which happened earlier in the cloud lifecycle. In the following, 

Figure 4. Composites of cloud condensate mixing ratio sections for extremes condensation rates (C; (a), (d)), cloud condensate mixing ratio (b), (e), and 
surface precipitation (Pr; (c), (f)) for the aggregated (a), (b), (c) and unorganized (d), (e), (f) simulations. Extremes are defined by events above the 99th 
percentile. Vertical arrows shows vertical velocity. The horizontal axis represents the distance from the grid point that experienced the extreme, and the vertical 
axis is in pressure coordinates.
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condensation rate, thermodynamic and dynamic contributions will be calculated at the extreme of conden-
sation rate, judged more representative of the peak of vertical velocity and condensation preceding extreme 
precipitation (Section 4). Microphysic contributions will be calculated introducing extreme conversion rates 
(Section 5) and diagnosed using variables calculated at extreme precipitation (e.g., for rain evaporation; Sec-
tion 5.1) and at extreme cloud amount (e.g., for autoconversion and accretion in evaporation; Section 5.2).

4. Thermodynamic and Dynamic Contributions
This section investigates the contribution of the changes in condensation rates (𝐴𝐴 Δ𝐶𝐶∕𝐶𝐶 in Equation 2) to the 
changes in precipitation extremes seen in the previous section (𝐴𝐴 Δ𝑃𝑃∕𝑃𝑃  in Equation 2) between self-aggre-
gated and unorganized convection. Figure 5 displays relative differences of condensation rate between the 
AGG and the CTRL simulations as well as its thermodynamic and dynamic contributions as a function of 
condensation rate percentiles. Since we selected only the rainy instants to assess the differences of extreme 
precipitation, we now select the cloudy instants (defined as instants for which the vertically integrated 
cloud mixing ratio is strictly positive) for assessing the contributions from both the thermodynamic and dy-
namic. These curves are calculated using mean of variables over 100 samples centered on one condensation 
rate percentile.

For the calculation of condensation rates (see Equation 1), instead of computing the integral of the mean 
of the products (Figure 5 in black), one could have computed the integral of the product of the means as 
represented in magenta in Figure 5. While the former shows the actual condensation rate composited across 
all events, the latter is more adapted for comparison with the thermodynamic and dynamic contributions. 

Figure 5. Relative differences of condensation rate (𝐴𝐴 Δ𝐶𝐶 , full black line, Equation 1) between the AGG and the CTRL simulations as well as their dynamic 
(𝐴𝐴 Δ𝜌𝜌𝜌𝜌 , full blue line) and thermodynamic (𝐴𝐴 Δ𝜕𝜕𝜕𝜕∕𝜕𝜕𝜕𝜕 , full red line) contributions as a function of condensation rate percentiles (both computed following 
Equation 3). Dashed lines correspond to relative differences calculated between the 70th and 85th days whereas dot dashed lines correspond to relative 
differences calculated between the 85th and the 100th day. The magenta lines are the relative differences of condensation rate calculated as the integral of the 
product of mean (in each percentile bin) dynamical times mean thermodynamical terms (𝐴𝐴 Δ𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , unlike 𝐴𝐴 Δ𝐶𝐶 obtained from the mean of the product).
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This idea is similar to Fildier et al.  (2018), showing that on the scale of a GCM grid box, the scaling in 
Equation 1 can be computed equivalently before or after compositing on extreme rainfall events. Here, on 
convective scales, we see on Figure 5 that both calculations give similar relative differences, indicating that 
non-linear terms do not act much, and thus validating our separation between dynamic and thermodynam-
ic contributions.

Relative differences have been calculated over all the 30 days but also separately over the first 15 days and 
the last 15 days to evaluate the uncertainty (gray shadings in Figure 5). It shows small changes between the 
first 15 and last 15 days for both contributions, giving us confidence that extremes have converged and that 
results are robust.

One can see a decrease of about −20 𝐴𝐴 % in extreme condensation rate in the AGG simulation compared to 
the CTRL simulation. This negative contribution is also shown in Figure 6, which summarizes the main 
contributions to the changes in precipitation extremes between both simulations according to Equation 3. 
The decrease in extreme condensation rate is explained by a decreased dynamic contribution (−25%) in the 
AGG simulation, while the thermodynamic contribution remains similar or even slightly higher in the AGG 
simulation (+5%).

4.1. Thermodynamic Contribution Driven by Surface Humidity Changes

In order to explain positive and negative contributions of the thermodynamics and dynamics, changes in 
boundary layer water vapor mixing ratio (QBL) and Convective Available Potential Energy (CAPE) are 
displayed as a function of C and CAPE percentiles in Figures 7a and 7b. Indeed, the former is related to the 
thermodynamic contribution, and the latter to the dynamic contribution (Muller & Takayabu, 2020). For 
consistency with the previous analysis, QBL was calculated only for cloudy instants.

One can observe an increase of about +10% of QBL in the AGG simulation for extreme C. This is qualita-
tively consistent, though slightly larger, than the thermodynamic contribution. A positive thermodynamic 
contribution is expected since self-aggregation is associated with the confinement, and thus increase, of 
moisture in the convective region (Figure 1). This increase in QBL is also consistent with a warming of a 
few degrees with aggregation if we assume the boundary layer saturated (which is a reasonable assumption 
in regions with high condensation rates).

As precised in Betts (1987); O'Gorman and Schneider (2009a), the moist-adiabatic derivative of saturation 
specific humidity does not increase (in absolute value) as quickly as does the saturated specific humidity 

Figure 6. Relative differences at the 99.9th percentile of: instantaneous precipitation from a direct calculation (𝐴𝐴 ΔPr ) 
and from the scaling used in Equation 3 (𝐴𝐴 Δ(𝜖𝜖C) ), condensation rates (𝐴𝐴 ΔC ), precipitation efficiency (𝐴𝐴 Δ𝜖𝜖 ), conversion 
efficiency (𝐴𝐴 Δ𝛼𝛼 ) with the contribution from accretion efficiency, and sedimentation efficiency (𝐴𝐴 Δ1 − 𝛽𝛽 ).
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with temperature. This may explain the higher rate of QBL changes compared to the thermodynamic con-
tribution. This observation implies that in the process of cloud formation, part of the water vapor raised 
from the boundary layer remains not condensed at the top of the cloud, and particularly in the AGG simula-
tion which is warmer and exhibits lower cloud tops than in the unorganized simulation (Figures 7c and 7d).

Another potential reason explaining the discrepancy between the QBL relative differences and the value 
of the thermodynamic contribution is the limit of our method. Indeed, at the time of extreme C, QBL may 
not be representative of water vapor mixing ratio used for condensation which might result in unexplained 
differences. The scaling itself is also not perfect, local vertical variation of water vapor mixing ratio is only 
an approximation of the variation of water vapor mixing ratio that a parcel would experience when being 
raised: horizontal advection and losses by entrainment are not taken into account in this simplified scaling. 
Yet, we believe that the more humid boundary layer with aggregation is responsible for the increased ther-
modynamic contribution.

Figure 7. Relative differences in boundary layer water vapor mixing ratio (QBL, (a)) and Convective Available 
Potential Energy (CAPE, (b)) between the aggregated and the unorganized simulations as a function of condensation 
rate (C) and CAPE percentiles (resp.). Dashed lines correspond to relative differences calculated between the 70th and 
85th days whereas dot dashed lines correspond to relative differences calculated between the 85th and the 100th day. 
Environmental and parcel vertical profiles of temperature for the aggregated and unorganized simulations (c) and 
differences of these profiles between both simulations (d), for events above the 99.9th percentile of CAPE.
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4.2. Dynamic Contribution Driven by Changes in Local CAPE

Changes of CAPE between each simulation are shown as a function of CAPE percentiles since part of the 
CAPE is already consumed at extreme C, although this results in only small differences between each sim-
ulation at extreme C (not shown). Only strictly positive CAPE events were selected for analysis, in order to 
avoid the dry region of the AGG simulation (as done previously for precipitation, C, and QBL). At extreme 
CAPE, there is a decrease of about −30% of the CAPE in the AGG simulation, which would be consistent 
with a −15% decrease in extreme vertical velocities (proportional to the square root of CAPE). This value is 
thus smaller but qualitatively consistent with the dynamic contribution decrease of −25%. With the use of 
similar idealized simulations, Windmiller and Hohenegger (2019) showed that in such consecutively active 
regions, convection is preferentially triggered at the edge, where the CAPE is not maximal. This would im-
ply that retaining the highest CAPE percentiles in the AGG simulation may overestimate the actual energy 
involved in the formation of extreme precipitation in this simulation, explaining the slight mismatch be-
tween the dynamic contribution and the one expected from CAPE differences at extreme CAPE percentiles.

The decrease in CAPE can be understood by considering temperature profiles of a near-surface parcel rising 
adiabatically, and of its near-environment (Figures 7c and 7d). The parcel temperature is somewhat similar 
with and without aggregation. The environmental temperature profile on the other hand is much warmer 
in the aggregated simulation. In other words, the atmosphere is closer to a moist adiabat with aggregation. 
This is expected, as with aggregation, convection and moisture are confined to a long-lasting moist region. 
So the entrained air at the edge of clouds is relatively moist, leading to a small net effect of turbulent en-
trainment at the edge of rising plumes (as the entrained air has properties close to the rising air; Singh and 
O'Gorman (2015)). Thus the atmospheric temperature is closer to an undilute moist adiabatic profile of the 
parcel, leading to smaller CAPE.

The extreme condensation rates are thus lower in the AGG simulation because of less favorable atmospher-
ic instability, barely tempered by increased low-level moisture. These processes occur in the early stages of 
precipitation extreme formation and are followed by microphysical effects allowing the evolution of cloud 
drops to precipitating drops reaching the surface. The contribution of these effects to the enhanced precip-
itation extremes in the AGG simulation are discussed in the next section.

5. Microphysic Contribution
This section investigates the contribution of the changes in precipitation efficiency (Δ�∕� in Equation 2) to 
the changes in precipitation extremes seen in Section 3 (Δ�∕�  in Equation 2) between self-aggregated and 
unorganized convection. Figure 8 shows relative differences of precipitation efficiency between the AGG 
and the CTRL simulation as function of precipitation percentiles. Precipitation efficiencies were calculated 
dividing precipitation by a corresponding condensation rate. More precisely, bins of 100 samples were done 
for precipitation keeping only precipitation events and for condensation rates keeping only cloudy events. 
Both precipitation and condensation rate bins were classified in ascending order of precipitation or conden-
sation rate (respectively). Since some clouds do not precipitate, the number of bins of condensation rate is 
higher than the one of precipitation. Therefore, the lowest condensate rate bins were removed and consid-
ered to not produce precipitation. It resulted in an equal number of bins for precipitation and condensation 
rate. Precipitation efficiencies were calculated dividing the mean of each precipitation bin by the mean of 
the corresponding condensation rate bin (i.e., percentile by percentile).

The precipitation efficiency is found to be the largest contribution to the change of precipitation extremes 
between both simulations, with an increase of +50% in the AGG simulation (Figures 6 and 8). The values 
of precipitation efficiency at the 99.9th percentile reach about 0.48 in the AGG simulation against 0.28 in 
the CTRL simulation (Figure S7 in Supporting Information S1; we note in passing that these values are 
within the range of existing estimates in the literature for similar simulations (Fildier et al., 2020; Lutsko & 
Cronin, 2018), though the precise values are somewhat sensitive to the microphysics and to the percentile 
of precipitation considered). In order to further investigate this change in precipitation efficiency, we follow 
Lutsko and Cronin (2018) and split the precipitation efficiency 𝐴𝐴 𝐴𝐴 into a term involving cloud to rain conver-
sion efficiency 𝐴𝐴 𝐴𝐴 , and a term involving rain to surface precipitation efficiency 𝐴𝐴 (1 − 𝛽𝛽) :
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𝜖𝜖 = 𝑃𝑃
𝐶𝐶

=
∫ 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 𝑑𝑑𝑑𝑑

𝐶𝐶
× 𝑃𝑃

∫ 𝜌𝜌𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 𝑑𝑑𝑑𝑑
= 𝛼𝛼 × (1 − 𝛽𝛽), (4)

where 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝  is the source (in kg 𝐴𝐴 kg−1 s−1 ) of precipitating condensate amount 𝐴𝐴 𝐴𝐴𝑝𝑝 from the microphysics, and is 
directly diagnosed in the model outputs.

In other words, 𝐴𝐴 𝐴𝐴 is the rate of conversion from cloud to precipitating condensate 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝  , normalized by the 
rate of conversion from water vapor to cloud condensate 𝐴𝐴 𝐴𝐴 . Therefore, 𝐴𝐴 𝐴𝐴 is called conversion efficiency (Lut-
sko & Cronin, 2018). The conversion efficiency 𝐴𝐴 𝐴𝐴 increases by about +20% with aggregation, for extreme 
precipitation events (Figures 6 and 8). The extremes of 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝  were evaluated at 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝  percentiles to reflect the 
intermediate stage between the maximum in cloud condensation and the maximum in surface precipitation 
reached in a typical cloud lifecycle.

The other term, 𝐴𝐴 (1 − 𝛽𝛽) , referred as sedimentation efficiency (Lutsko & Cronin, 2018), represents the frac-
tion of source of precipitating condensate from microphysics which reaches the ground as surface precip-
itation. This fraction is typically less than unity because of rain evaporation as precipitating condensates 
falls through subsaturated air. The increased sedimentation efficiency clearly dominates the precipitation 
efficiency increase, contributing approximately to +30% (Figures 6 and 8).

In the next sections we investigate these changes of sedimentation (𝐴𝐴 1 − 𝛽𝛽 ) and conversion (𝐴𝐴 𝐴𝐴 ) efficiency 
between both simulations in more details.

5.1. Changes in Rain Evaporation From Changes in Saturation Deficit

The term 𝐴𝐴 1 − 𝛽𝛽 is influenced by precipitation evaporation and precipitation transport (detrainment or en-
trainment). In the following, we assume that precipitation evaporation is the leading factor explaining the 
ratio 𝐴𝐴 1 − 𝛽𝛽 .

In SAM, the rate of precipitation evaporation

−
𝜕𝜕𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕 𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝

∝ (1 −𝑅𝑅𝑅𝑅)𝑓𝑓 (𝑒𝑒𝜕𝜕, 𝐷𝐷) 

Figure 8. Relative differences of precipitation efficiency (𝐴𝐴 Δ𝜖𝜖 , full black line) between the AGG and the CTRL 
simulations as well as their contribution from the conversion of precipitation (𝐴𝐴 Δ𝛼𝛼 , full dark red line) and from the 
evaporation of precipitation (𝐴𝐴 Δ𝛽𝛽 , full green line) as a function of surface precipitation percentiles. Dashed lines 
correspond to relative differences calculated between the 70th and 85th days whereas dot dashed lines correspond to 
relative differences calculated between the 85th and the 100th day.
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is proportional to the distance to saturation 𝐴𝐴 1 −𝑅𝑅𝑅𝑅 and to a function 𝐴𝐴 𝐴𝐴 (𝑣𝑣𝑡𝑡, 𝐷𝐷) of both the condensate ter-
minal velocity (𝐴𝐴 𝐴𝐴𝑡𝑡 ) and the mean diameter of precipitation particles (𝐴𝐴 𝐴𝐴 ): 𝐴𝐴 𝐴𝐴 (𝑣𝑣𝑡𝑡, 𝐷𝐷) = 𝑎𝑎𝐷𝐷 + 𝑏𝑏𝐷𝐷

√

𝐷𝐷𝑣𝑣𝑡𝑡 . Where 
a and b can be considered as constants in our case. This latter term involves the so-called ventilation factor 
and accounts for the surface of precipitation particle available for evaporation. These variables, along with 
liquid, graupel and snow mixing ratios, are plotted in Figure 9.

It shows that the evaporation of precipitation is less important in the aggregated simulation than in the 
unorganized simulation. The decrease in precipitation evaporation in the aggregated simulation is particu-
larly significant in the lowest parts of the troposphere, where most of the precipitation evaporation occurs. 
Indeed, we found a decrease close to −50% in the lowest 200 hPa of the atmosphere in the aggregated case. 
At these altitudes, the saturation deficit is about 68% less important in the aggregated simulation than in the 
unorganized simulation. Thus, the moister environment of the aggregated precipitation extremes largely 
explains the reduced precipitation evaporation near the surface. Finally, increased precipitation terminal 
velocity and diameter in the aggregated simulation, tends to temper (through 𝐴𝐴 𝐴𝐴 (𝑣𝑣𝑡𝑡, 𝐷𝐷) ) the differences of 
precipitation evaporation between both simulations by nearly 19% in the lowest 200 hPa of the troposphere 
(Figures 9c, 9i and 9o).

Figure 9. Composites of (a), (g), (m) rain evaporation, (b), (h), (n) distance to saturation, (c), (i), (o) ventilation function 𝐴𝐴 𝐴𝐴 (𝑣𝑣𝑡𝑡, 𝐷𝐷) = 𝑎𝑎𝐷𝐷 + 𝑏𝑏𝐷𝐷
√

𝐷𝐷𝑣𝑣𝑡𝑡 , (d), (j), 
(p) rain mixing ratio, (e), (l), (q) graupel mixing ratio, (f), (l), (r) snow mixing ratio at times of extreme surface precipitation. The top panels show the CTRL 
simulation and the middle panels the AGG simulation in the vicinity of the extreme precipitation event (located at 𝐴𝐴 𝐴𝐴 = 0 ). The bottom panels show the profiles 
at the extreme precipitation location (i.e., at 𝐴𝐴 𝐴𝐴 = 0 ).
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Thus, consistent with BS19, we also find faster terminal velocities with aggregation, but in our case it is not 
due to a change in graupel. Instead, it is due to increased rain and decreased snow amounts (consistent with 
the warmer temperatures), with little change in graupel (Figures 9d–9f). BS19 further note that the faster 
terminal velocities, and associated shorter residence times, of rain compared to graupel or snow, imply 
reduced rain evaporation in their simulations. But for instantaneous precipitation rates, we believe that the 
instantaneous rain evaporation (Figure 9a) is more relevant, which instead increases with terminal velocity 
(Figures 9c, 9i, and 9o) due to the aforementioned ventilation effect. This effect partially offsets the reduced 
rain evaporation from increased humidity (Figures 9b, 9h, and 9n).

5.2. Larger Conversion Efficiency Due to More Efficient Accretion

We noted that the conversion efficiency of extreme events 𝐴𝐴 𝐴𝐴 increases by about 20% in the aggregated simu-
lation. Since we also showed that extreme condensation rates decrease by 20% in the aggregated simulation, 
it implies that the extreme conversion rates remain similar in both simulations. This is indeed what we ob-
serve in average when comparing the vertical profiles of extreme conversion rates between both simulations 
(Figures 10a, 10e and 10i), although the conversion rates are higher near the surface and smaller aloft for 
the aggregated simulation compared to the unorganized simulation.

In the 1-moment microphysics scheme that we use (Khairoutdinov & Randall, 2003), conversion from cloud 
to precipitating condensate is quantified as the sum of two microphysical processes:
 𝐴𝐴 ∙ Accretion of precipitating type 𝐴𝐴 𝐴𝐴𝑝𝑝 due to collection of cloud condensate 𝐴𝐴 𝐴𝐴𝑛𝑛 :

(

𝜕𝜕𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

)

𝑎𝑎𝑎𝑎𝑎𝑎
∝ 𝜕𝜕𝑛𝑛𝜕𝜕𝑎𝑎𝑝𝑝 

Figure 10. Composites of (a), (e), (i) precipitation source from microphysics, (b), (f), (j) non-precipitating condensates, (c), (g), (k) precipitating condensates, 
and (d), (h), (l) 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐴𝐴𝐴𝐴𝜌𝜌  at times of extreme cloud amount. The top panels show the CTRL simulation and the middle panels the AGG simulation in the 
vicinity of the extreme event (located at 𝐴𝐴 𝐴𝐴 = 0 ). The bottom panels show the profiles at the extreme location (i.e., at 𝐴𝐴 𝐴𝐴 = 0 ).
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where the exponent 𝐴𝐴 𝐴𝐴 depends slightly on the precipitation type (rain, graupel or snow in SAM) but is typ-
ically close to 1.
 𝐴𝐴 ∙ Autoconversion and aggregation of cloud liquid and ice condensates (resp.)

(

𝜕𝜕𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

)

𝑎𝑎𝑎𝑎𝜕𝜕𝑎𝑎
∝ (𝜕𝜕𝑛𝑛 − 𝜕𝜕𝑛𝑛𝑛0)+ 

where the coefficient of proportionality and threshold 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛0 are different for cloud liquid and cloud ice, and 
where subscript 𝐴𝐴 + indicates that negative values are replaced by zero.

Decomposing 𝐴𝐴 𝐴𝐴 into contributions from both processes (through the decomposition of 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝  into an accretion 
plus an autoconversion tendency in Equation 4), we see that the increase of 𝐴𝐴 𝐴𝐴 in the aggregated simulation 
is almost entirely due to the first process, namely accretion, with a contribution of +18.7% among the +20% 
(Figure 8b). We thus draw the vertical profiles of cloud condensates, precipitation, and their product as an 
estimation of the accretion rate vertical profiles for both simulations (Figures 10b–10d and 10–10h). The dif-
ferences between the simulations change sign with altitude. In the highest altitudes (above 700 hPa), there 
is more cloud condensates and more precipitation in the unorganized simulation, which leads to higher 
accretion and conversion rates.

This increased condensate load aloft can be attributed to the increased condensation rates in the unorgan-
ized simulation. The result is an increase of auto-conversion rates at first which creates more precipitation 
particles, which combined with the increased condensate loads, provides a further increase of precipitation 
conversion through accretion in the unorganized simulation. The situation is different closer to the surface 
(in the lowest 200 hPa) where one can observe increased cloud condensates and precipitation particles, 
leading to increased accretion in the aggregated simulation. While we do not have evidence for this, the 
increased cloud condensates likely comes from the lower cloud bases in the aggregated simulation (a con-
sequence of the increased surface relative humidity) and/or the longer cloud lives in the aggregated simu-
lation (as can be expected from the comparison of 3-hourly vs. instantaneous precipitation differences in 
Figure 2). But the main increase of accretion rates near the surface arises from the increased precipitation 
explained by reduced evaporation in the aggregated simulation (Figures 9a, 9g, and 9m).

These differences between low and high altitudes tend to compensate each other and make averaged ex-
treme accretion rates rather similar between both simulations. The effect is thus an increase of the accretion 
efficiency 𝐴𝐴 𝐴𝐴 in the aggregated simulation.

6. Discussion and Conclusions
The spatial organization of deep-convective clouds is ubiquitous in the tropics and often leads to extreme 
weather. Importantly, one must question the extent to which models and idealized experiments can repro-
duce observed organized features and inform the rain changes that they induce. Two opposite types of or-
ganization are often studied in CRMs: regular cloud structures versus convective clusters or moist patches, 
and metrics exist to test which type is more prevalent (Tompkins & Semie, 2017). Both organization types 
are sensitive to horizontal mixing in various ways (Craig & Mack, 2013; Piotrowski et al., 2009; Tompkins 
& Semie, 2017; Windmiller & Craig, 2019) and are controlled by different mechanisms occurring in the 
real atmosphere. By suppressing numerical dissipation, Piotrowski et al. (2009) observed that an original 
round feature of organized convection is not maintained, suggesting that some models cannot host con-
vective organization without diffusion (numerical or through the turbulent scheme). Regular organization 
structures are controlled by cellular convection and cold pool interactions in the boundary layer (Feingold 
et al., 2010; Haerter, 2019). Instead, clustering, or aggregation, is driven by feedbacks that couple radiative 
cooling and convection, and wind effects on surface evaporation, leading to atmospheric instabilities in 
RCE (Bretherton et al., 2005; Emanuel et al., 2014). Here we focus on the latter, in a highly idealized man-
ner. Although idealized self-aggregation of convection as modeled in square homogeneous RCE domains 
may be scarcely met in the current tropics, such states may be reached after a certain degree of warming 
(Wing & Emanuel, 2012) and some links with real world cloud clustering are already observable in current 
climate (Holloway et al., 2017). The present work does not address this question, but instead undertakes 
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a detailed analysis of the mechanisms through which self-aggregation could affect precipitation extremes, 
once it occurs, if it occurs.

To do so, we analyze two idealized simulations using the SAM cloud-resolving model. In the first simu-
lation, the atmosphere is organized into a moist convecting core and a dry convection-free region while 
in the second simulation convection is disorganized. We find that convective aggregation significantly in-
creases precipitation extremes, by 70% for the 99.9th percentile of 3-hourly precipitation consistent with 
earlier studies, but also surprisingly by a significant 30% increase for the 99.9th percentile of instantaneous 
precipitation.

To investigate the processes responsible for the increase of instantaneous precipitation extremes with ag-
gregation, we use an adapted scaling of precipitation extremes which accounts for the lifecycle of deep 
convective clouds. Previous studies using the scaling of precipitation extremes associated surface precip-
itation extremes with condensation rates and precipitation efficiencies co-located in time and space (Lo-
riaux et al., 2017; Muller, 2013; Muller et al., 2011; O'Gorman & Schneider, 2009b). We argue that such 
spatio-temporal association may not be the most accurate method for investigating the causes of extreme 
precipitation, the latter significantly modifying the vertical profiles of thermodynamical and dynamical 
variables at their onset. Instead, one may evaluate the scaling variables a few minutes or hours before the 
extreme of precipitation (Fildier et al., 2020, e.g.,). Although this alternative method would likely produce 
a more accurate relationship between precipitation, precipitation efficiency, and condensation rates, a 
bulk application is difficult since the location and time of the perfect scaling variables of one extreme pre-
cipitation event likely differ between these events. Here, we adopt another approach allowing to address 
this issue in a bulk manner and consisting in associating extreme precipitation percentiles with extreme 
percentiles of condensation and conversion rates, which mimicks different stages in the lifecycle of indi-
vidual deep convective clouds. We use a decomposition of precipitation efficiency in a conversion and an 
evaporation term (as done in Lutsko and Cronin (2018)) and further investigate the role of the main mi-
crophysical variables. It is worth noting that such analyses could be reproduced in many other simulation 
or observational contexts.

Within this framework, we find that precipitation extremes are mainly increased through larger precipita-
tion efficiency with convective aggregation. The contribution from the dynamics is largely negative with 
−25% while the thermodynamic contribution accounts for a comparatively small +5% contribution.

The increased thermodynamic contribution comes from enhanced moisture confinement in the boundary 
layer of the moist region for the case of aggregated convection, enabling convective updrafts to carry more 
water. The decreased dynamic contribution similarly derives from the moisture confinement in the moist 
convecting region, which reduces the effect of turbulent entrainment of environmental air at the edge of 
clouds. This results in an atmosphere closer to a moist adiabat, thereby reducing the strength of convective 
updrafts through a decrease of their buoyancy. Among these two opposite effects, the dynamical effect is 
the most important, and causes a 20% reduction of cloud condensation rates in convectively aggregated 
extreme events.

The microphysic contribution is the leading contribution to precipitation extremes enhancement, with a 
50% increase of precipitation efficiency when convection is aggregated. Reduced rain evaporation contrib-
utes about 30% because of the moister environment of falling rain with aggregation. This is particularly 
true in the lowest 200 hPa where we find a 50% reduction of evaporation rates with aggregation. Increased 
accretion efficiency contributes another 20% increase in aggregated extreme precipitation.

The present results should be interpreted with care. It must be acknowledged that convective aggregation 
is sensitive to the modeling setup and forcing conditions chosen; this analysis is only one of a few starting 
points to study the response of extreme rain to changes in the organization of convection. Of particular im-
portance is the sensitivity to the choice of modeling setup and subgrid-scale parameterizations, increasingly 
well-known and documented in the community. For instance, the degree of aggregation can be affected 
by the domain size and shape (rectangle vs. square, or long-channel domains; Cronin and Wing (2017)), 
thus affecting extreme precipitation intensities (Abbott et  al.,  2020). Coarse resolutions can also reduce 
the reevaporation of rain in downdrafts: that can inhibit cold pools and thus trigger aggregation (Jeevanjee 
& Romps, 2013). The representation of low clouds and the degree of convective mixing is also affected by 
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the coarse resolutions and the turbulence scheme (Holloway et al., 2017; Tompkins & Semie, 2017) which 
 affects the strength of aggregation, either through a moisture-memory feedback (Tompkins & Semie, 2017) 
or through a reduction in the radiative feedback (Muller & Held, 2012). This non-exhaustive list of mode-
ling knobs that can trigger or inhibit aggregation is pursued by a whole field of research to further study the 
conditions in which self-aggregation can affect the real atmosphere, now and in the future.

Our results are qualitatively consistent with recent results from BS19, in the sense that the microphysics has 
a leading role in explaining extreme instantaneous precipitation in self-aggregated simulation. However, 
their idealized WRF simulations only exhibit a small change of instantaneous precipitation with aggrega-
tion. This may reflect the fact that microphysics is not well constrained in observations and models. There-
fore, more work is desirable to investigate how precipitation efficiency affects precipitation extremes with 
convective aggregation, and how sensitive these results may be to the microphysics formulation in models. 
Three microphysics schemes exist in the System for Atmospheric Modeling used here: a single-moment 
scheme developed in the original version of the model and used for our simulations (Khairoutdinov & 
Randall, 2003), and two double-moment microphysics schemes from Morrison et al. (2005) and Thompson 
et al. (2008). Knowing which microphysics scheme is most realistic should also be investigated, although 
the single-moment scheme used here has also been used in Global Cloud-Resolving Model experiments, re-
sulting in model outputs that are visually indistinguishable from satellite observations (Stevens et al., 2019). 
The use of a spectral bin microphysics scheme would certainly provide a further step towards realism. 
Despite their high computational cost, such schemes have proven their better accuracy compared to bulk 
microphysics schemes (Khain et al., 2015). In an interest of making simulations closer to the real atmos-
phere, many other sensitivity tests must also be performed, by testing other parameterizations and model 
configurations as mentioned above.

The present work uses the surface-based CAPE to understand the decreased strength of convective updrafts 
when convection is aggregated. While we were mostly interested in a diagnosis rather than a precise esti-
mation, it is worth noting that this metric may not be a good representation of every convective potentials. 
More elaborated metrics may be tested for that purpose such as the Most-Unstable CAPE, the mixed-layer 
CAPE, the generalized CAPE (Steinacker, 2017) or the Potential Energy Convertibility (Yano et al., 2005). 
The improvement of the metrics allowing to determine the potential intensity of convection is desirable for 
a better understanding of the changes in precipitation extremes with convective organization.

In a warming climate, one may expect an increase of precipitation extremes according to the Clausius-Cla-
peyron law which relates each degree of warming by an increase of about +7% of precipitation extremes. 
Our results suggest that this increase could be even more dramatic depending on the change of convective 
organization with temperature. Recent studies investigated the change of convective aggregation with SST 
under similar idealized settings. It is generally admitted that high SSTs favor convective self-aggregation 
(Pendergrass et al., 2016). Shamekh et al. (2020) showed that SST gradients are important as well for trigger-
ing convective aggregation. Overall the response of convective aggregation to warming remains uncertain 
and still an area of active research (Wing, 2019).

Data Availability Statement
The simulation data set is freely available at https://figshare.com/s/5ff1811271b1f3643004.
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