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In radiative-convective equilibrium simulations, convective self-aggregation (CSA) is the sponta-

neous organization into segregated cloudy and cloud-free regions. Evidence exists for how CSA is

stabilized, but how it arises favorably on large domains is not settled. Using large-eddy simula-

tions, we link the spatial organization emerging from the interaction of cold pools (CPs) to CSA.

We systematically weaken simulated rain evaporation to reduce maximal CP radii, Rmax and find

reducing Rmax causes CSA to occur earlier. We further identify a typical rain cell generation time

and a minimum radius, Rmin, around a given rain cell, within which the formation of subsequent

rain cells is suppressed. Incorporating Rmin and Rmax, we propose a toy model that captures how

CSA arises earlier on large domains: when two CPs of radii ri,j ∈ [Rmin, Rmax] collide, they form a

new convective event. These findings imply that interactions between CPs may explain the initial

stages of CSA.
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I. KEY POINTS9

1. Smaller cold pool radii in large-eddy simulations diminishes the time to reach convective self-aggregation.10

2. We report cold pools’ generation time and suppression radius by evaluating the distance between rain events11

connected in time.12

3. A mathematical model captures the effect of domain size, suppression radius, and maximum cold pool radius in13

convective self-aggregation.14

II. PLAIN LANGUAGE SUMMARY15

Convective self-aggregation (CSA) describes the emergence of persistently dry, cloud-free areas in numerical sim-16

ulations. It has been suggested as a possible mechanism for tropical cyclone formation and large-scale events such17

as the Madden-Julian Oscillation. Some understanding of the persistence of CSA exists. However, how CSA ini-18

tially emerges remains poorly understood. Recently, the dynamics of cold pools (CPs) have been associated with19

the organization of convective events. CPs are radially expanding pockets of dense air that form under precipitat-20

ing thunderstorms. In this work, we ask how weakening CPs could facilitate the emergence of CSA. By analyzing21

high-resolution numerical simulations, we show that reducing rain evaporation shortens the time before CSA starts.22

These simulations demonstrate that CPs reach greater radii when rain evaporation is large. Besides, we find that new23

convective events occur near the point where two CPs collide. Finally, we report a minimum CP radius within which24

CPs are too negatively buoyant to initialize new convective events. Building on these numerical findings, we propose25

a simple idealized mathematical model that approximates CPs as expanding and colliding circles. We show that this26

model can capture the emergence of CSA. We conclude that the lack of CPs facilitates CSA.27

III. INTRODUCTION28

When evaporation of rain from convective clouds is strong, so is the associated sub-cloud cooling and density29

increase [Simpson 1980, Engerer et al. 2008], forcing the resulting cold pools (CPs) to spread more quickly and30

cover larger areas [Romps and Jeevanjee 2016, Torri et al. 2015, Zuidema et al. 2017]. Such pronounced CP activity31

has repeatedly been suggested to hamper convective self-aggregation (CSA) in radiative-convective equilibrium (RCE)32

numerical experiments [Jeevanjee and Romps 2013, Muller and Bony 2015, Holloway and Woolnough 2016, Hohenegger33

and Stevens 2016, Yanase et al. 2020]. In these simulations, the atmosphere gradually organizes from an initially34

homogeneous population of convective updrafts into a segregated pattern with strongly convecting regions and dry,35

precipitation-free regions [Hohenegger and Stevens 2016, Held et al. 1993, Tompkins and Craig 1998, Bretherton et al.36

2005, Wing et al. 2017].37

Generically, CSA is characterized by the appearance of long-lived dry and warm patches within which cloud and38

rain are suppressed [Holloway et al. 2017]. Further drying increasingly occurs through enhanced radiative cooling in39

already dry regions and the resulting subsidence. Later, the dry regions expand and merge, eventually leaving only one40

contiguous moist area with intense low-level convergence feeding convection. Surface latent and sensible heat fluxes41

— which increase under stronger surface wind speed — may further increase such low-level moisture convergence.42
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Physically, CPs spread as density currents along the surface, carry kinetic energy and buoyancy, and modify the43

thermodynamic structure near the CP edges [Tompkins 2001, Langhans and Romps 2015, de Szoeke et al. 2017].44

Thereby, CPs spatially organize the convectively unstable atmosphere, establishing connections between the loci45

where new convective cells emerge and loci at which the previous cells dissipated. In particular, new cells were46

suggested to be triggered by the CP gust front alone or by collisions between gust fronts [de Szoeke et al. 2017,47

Glassmeier and Feingold 2017, Cafaro and Rooney 2018, Fuglestvedt and Haerter 2020]. Inspired by the notion of48

CP interactions, CP representations have been incorporated into large-scale models [Grandpeix and Lafore 2010], and49

conceptual work has formulated CPs as cellular automata [Böing 2016, Windmiller 2017, Haerter et al. 2020]. Recent50

work addressed the diurnal cycle of convection, where CPs effectively increased the typical length scale in the cloud51

field [Haerter et al. 2019]. In such an out-of-equilibrium context, mechanical lifting upon collisions of three CPs was52

found a dominant process, as moist boundary layer air — enclosed by gust fronts laterally — was forced to escape53

vertically. Triggering of new convection in such situations occurs rapidly, usually within one hour after the collision.54

As was shown, the three-CP collision model inevitably leads to decreased CP population over time. In RCE, slow55

thermodynamics processes at gust front collisions are more typical [Tompkins 2001, Fuglestvedt and Haerter 2020].56

Before the onset of CSA, length scales and CP numbers are approximately conserved over time. A simple model,57

discussed below, capable of capturing such conserved length scales requires collisions between two rather than three58

CPs.59

Studies on CSA often argue that sufficiently large domain sizes (≥ 500×500 km2) and coarse horizontal resolutions60

(≥ 2 km) are required for CSA [Muller and Bony 2015, Yanase et al. 2020, Bretherton et al. 2005]. To examine this61

claim more closely, for deliberately small domain sizes (96× 96 km2) and fine horizontal resolution (200 m), we show62

that CSA sets in earlier when CPs are weakened through reductions in rain evaporation — that is, when the CP63

maximal radius, which we term Rmax, is reduced. We track the CP gust fronts to motivate that loci of gust front64

collisions are preferable for subsequent convective rain cells. Dependent on rain evaporation, we further detect a65

minimal distance Rmin — effectively an updraft suppression radius — within which subsequent rain cells are unlikely66

to form, as well as a typical rain cell generation time. Using these findings, we build, simulate, and analyze a simple67

mathematical model, which helps understand CSA formation. We explore this model’s phase diagram and find that68

the transition into convecting and non-convecting sub-regions occurs later for large Rmax, small Rmin, or small domain69

sizes L.70

IV. MATERIALS AND METHODS71

Large-eddy simulations. We conducted a suite of simulations on a (96 km)2 domain using the University of72

California, Los Angeles (UCLA) Large Eddy Simulator. The horizontal model grid is regular, and horizontally periodic73

boundary conditions are applied in both lateral dimensions. Vertical model resolution varies from 100 m below 1 km,74

stretching to 200 m near 6 km, and finally 400 m in the upper layers with 75 vertical levels in total. The Coriolis75

force and the mean wind were set to zero with weak, spatially uncorrelated random initial temperature perturbations,76

sampled uniformly within [−0.2, 0.2] K for each grid box, added as noise to break complete spatial symmetry. At each77

output time step of 10 min, instantaneous surface precipitation intensity, specific humidity, temperature, liquid water78

mixing ratio, and 3D velocities are output at various model levels. We used sub-grid scale turbulence parametrized79
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FIG. 1. The onset of convective self-aggregation. Near-surface specific humidity qv(50 m) the first 10 min of each

simulation day in radiative-convective equilibrium simulations with various degrees of rain evaporation. (A) Realistic rain

evaporation (control simulation). (B) 60%, (C) 20%, (D) 10%, and (E) 0% rain evaporation relative to (A). Note the

pronounced moisture reduction in (A–B) and the weakened moisture reduction in (C–D) within cold pool centers. Further note

the evolving moisture segregation, typical of convective self-aggregation (C–D) and moisture coarsening progression (E).

after Smagorinsky [1963], delta four-stream radiation [Pincus and Stevens 2009], and a two-moment cloud microphysics80

scheme [Stevens et al. 2005]. Rain evaporation is accounted for by Seifert and Beheng [2006]. The five simulations81

have identical setups, except that the ventilation coefficient for hydrometeors is varied by fractions {1.0, 0.6, 0.2, 0.1, 0}82

of its default over all vertical layers, thus influencing the rate of re-evaporation. In the following, these simulations83

are correspondingly labeled as ”Evap=1”, ”Evap=0.6”, etc. All simulations are run for five days, except Evap=0.284

that runs for four days, and Evap=0.1 that runs for three days (see Fig. 1). In both Evap=0.2 and Evap=0.1, the85

onset of CSA could already be distinguished after such shorter periods. Surface temperatures are set constant to 30086

K, and insolation is fixed using a constant equatorial zenith angle of 50◦ to a constant 655 W m−2 [Bretherton et al.87

2005]. Surface latent and sensible heat fluxes are computed interactively and depend on the vertical temperature88

and humidity gradients and horizontal wind speed (bulk formula), approximated using the Monin-Obukhov similarity89

theory. Surface latent heat fluxes are set to 70 percent of those for a water surface. Temperature and humidity are90

initialized using horizontal-mean vertical profiles of temperature and humidity obtained from a prior approximately91

three-day spin-up using 400 m horizontal resolution (see Fig. S1). To explore resolution effects, we supplemented92

these simulations using the settings of Evap=1 repeated using horizontal resolutions of 1 km, 2 km, and 4 km, each93

maintaining the number of 480× 480 horizontal grid boxes.94

Tracking of cold pools. To track CP gust fronts, we follow the tracer particle methodology described in the95
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literature [Haerter et al. 2019, Henneberg et al. 2020] using a threshold of I0 ≡ .5 mm h−1 for the rain intensity within96

the initial surface precipitation patch. As this tracking method is implemented to run ”offline,” it uses only the97

recorded discrete 10 min output time steps of precipitation intensity I and lowest-level horizontal wind velocity (u(5098

m), v(50 m)). To compare the temporal evolution of CP radii transparently between the different simulations (Fig. 2),99

we consider that the time of rainfall onset slightly differs between the simulations (compare curves in Fig. S2B). We100

define the time of rainfall onset as the first time point where one or more pixels have I > I0. We then track all CP gust101

fronts present during the following 18 hours. Each CPs is followed for five hours, and the start time of all tracked CPs102

is aligned to produce composite statistics. The time interval of 18h was found sufficient to yield significant statistics103

on the spreading of each CP but short enough so that not many CP collisions were encountered. Conversely, to study104

collision effects (Fig. 3), we used a late-stage (∼ 4 days after initialization) of the control simulation (Evap=1). For105

Evap=1, CP radii are large, and CPs are thus space-filling. Therefore, any new CP inevitably collides with recent106

CPs in its surroundings.107

Mathematical model. The mathematical model can be described in two sentences: (1) The initial conditions: N1108

randomly located points on a 2D domain of size L× L with double-periodic boundary conditions expand into circles109

(representing cold pools) with equal and constant radial speed, v0. (2) The dynamics: When two circles meet, both110

having their radii lie between Rmin and Rmax (justified in Figs. 4 and 2, respectively), the two circles instantly — at111

their first intersection point — initiate a new point that expands with the same radial speed, v0. In other words, this112

model follows the principles in Haerter et al. [2019] with the major difference that two — instead of three — circles113

can initiate the growth of a new circle.114

The outcome of this model is non-trivial. Since all circles expand with equal and constant speed, v0, the dynamics115

allow us to categorize circles into independent generations that mathematically cannot interact with each other. To116

realize this, let us go through one example: In Fig. 5A snapshot 1, the initially N1 seeded points constitute generation117

one, denoted as g1. At slightly later snapshot 2, these points have expanded into equally sized circles that are all118

smaller than Rmin and therefore do not trigger the growth of a new circle when they collide. In snapshot 3, all g1119

circles have grown beyond Rmin, and some have collided and initiated the start of g2 circles. Since both generations120

continue to expand with v0, circle areas corresponding to generation 2 will always lie within areas corresponding to121

generation 1. Therefore, in general, a gi+1 circle cannot interact with a gi circle.122

Mathematically, we define the center of the circle i as [xi, yi] and its increasing radius as ri. Thereby, two circles, i123

and j, are described by the following set of quadratic equations124

(x− xi)2 + (y − yi)2 = r2i (1)

and125

(x− xj)2 + (y − yj)2 = r2j . (2)

The collision point between the circles i and j is described by adding the distance dr to both of their radii, giving126

(x− xi)2 + (y − yi)2 = (ri + dr)2 (3)

and127

(x− xj)2 + (y − yj)2 = (rj + dr)2 . (4)
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In the model, only collisions that fall onto the straight line between the two circle centers are allowed, assuming that128

this is the collision point with the highest momentum transfer, thus yielding129

y =
x− xi
xj − xi

(yj − yi) + yi . (5)

Eqns. 2–4 have three unknowns (x, y, dr) and two solvable solutions that analytically describe the location (x, y) of130

the collision point and when it occurs (dr). One of these two solutions can be ruled out because it is either negative131

or non-real and, therefore, irrelevant to the model.132

To implement this model computationally, we consider circles belonging to one generation at a time. For each133

generation, we find the pairwise distance between all circle centers. For circles whose pairwise distance is larger than134

2Rmin and smaller than 2Rmax, we calculate their mutual collision point by solving Eqns. 2-4 above. We sort all135

collision points by dr and update the system by inserting circles at collision points that fulfill Rmin < ri, rj < Rmax,136

and are not inside a circle belonging to the current generation. When proceeding to the next generation, we return to137

the time point when the current generation’s first circle was seeded. We note that a circle may collide with multiple138

circles until it reaches Rmax, and when that occurs, the circle has no further effect. We run the model until circle139

generation number 500, which corresponds to roughly 5000h (>200 days) given our measure of a CP generation time140

(∼10 hours) in Fig. 4 and similar finding in Fuglestvedt and Haerter [2020].141

In Fig. 5, all simulations start with N1 = L2/(10R2
min) points. In the supplementary material, we show that the142

model results are independent of the particular choice of N1 (Fig. S3). Besides, we derive that given Rmin = 0 and143

Rmax = ∞, an initial random generation-one population N1 of circles would yield N2 = 2N1 (Text S1). Subsequent144

growth of Ng vs. g would be nearly exponential, and thereby the lack of synchronous circle expansion beyond the145

first generation leads to a slight reduction of replication rate (Fig. S4). In other words, Rmin = 0 would result in146

singularities, that is, infinitely rapid non-realistic replication.147

V. RESULTS148

Weakening cold pools in RCE simulations speeds up the onset of self-aggregation. A control simulation149

with realistic rain evaporation (Fig. 1A) shows no indication of CSA. We check this by computing the inter-quartile150

specific humidity difference (Fig. S2A), finding a weak initial increase when first CPs set in but no further increase over151

time. While leaving the total number of rain cells and domain-average rainfall approximately unchanged (Figs. S2B and152

S5A), decreasing the rate of rain evaporation (Fig. 1B–E) yields a monotonic increase in humidity variation (Fig. S2A)153

and overall higher near-surface temperature (Fig. S2C), along with a systematically earlier onset of persistent dry154

patches, e.g., near day 2 for Evap=0.2 (Fig. 1C). This comparison underlines findings from Jeevanjee and Romps [2013]155

and Muller and Bony [2015], who reported that CPs hamper self-aggregation. The five experiments highlight that156

reducing rain evaporation weakens subsidence drying in the center of CPs (compare dark spots in Fig. 1A–B vs. C–D)157

and visibly reduces CP radii. We also note that intermediate values of evaporation appear to allow for a band-158

like aggregation state, where rain cells form a quasi-one-dimensional chain around one of the horizontal dimensions159

(Fig. 1C on day 4). When rain evaporation is entirely removed (Fig. 1E), any organizing effect through CPs is absent:160

one is left with a coarsening process akin to reaction-diffusion dynamics [Craig and Mack 2013, Windmiller and Craig161

2019], small impurities gradually merging into larger structures.162
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FIG. 2. Maximum radius, Rmax. (A) Tracking all cold pool (CP) gust fronts present during the first 18h of precipitation.

Top-left cartoon: we track a CP gust front (grey rim) by placing tracers (black points) around the rain event (blue spot) and

let the tracers move radially away from the rain event with the horizontal wind (Details: Methods). Each panel shows the

near-surface vertical velocity field 18h after precipitation onset and gust front tracers marked by colors indicating different CPs.

(B) Composite (average) CP radii as the CPs evolve after their emergence (lines) and the 90th radius percentile (dots). Note

that CPs initially grow quickly but monotonically slow and that the maximal CP radii increase with rain evaporation rate.

Measuring the maximum cold pool radius, Rmax. Using a rain cell [Moseley et al. 2019] and CP [Haerter163

et al. 2019, Henneberg et al. 2020] tracking method, we seed tracer particles at the boundary of surface rain patches164

(Fig. 2A, top-left cartoon). We advect these tracers using the radial velocity field, forcing them to gather in pronounced165

convergence areas caused by the CP gust fronts (Details: Methods). Superimposing the resulting pattern of tracers166

onto the near-surface vertical velocity field (Fig. 2A) confirms that the tracers gather along the edge of each CP167

(subsident or featureless vertical wind field). By plotting the average time evolution of the CP radii in each simulation168

(Fig. 2B), we find that for Evap=1, CPs on average expand to 11 km five hours after initiation with the 90th radius169

percentile reaching 23 km. This value is comparable to previous simulation results found on various domain sizes170

[Romps and Jeevanjee 2016, Tompkins 2001] and observational findings [Black 1978, Zuidema et al. 2012, Feng et al.171

2015]. Reducing evaporation results in systematically smaller CP radii: for Evap=0.2, CPs on average reach 8 km in172

radii during the same time with 90th percentile reaching 13 km, and for Evap=0, CP radii equal the corresponding173

surface rain cells, as, without CPs, there is no pronounced wind field to advect the tracers.174

New convective events are initiated in the vicinity of cold pool collisions. What is then the specific role175

of CPs in maintaining domain-wide convection? To explore this, first consider locations of rainfall at a particular176

time step of Evap=1 (Fig. 3A), the associated cloud-base vertical velocity (Fig. 3B), and specific humidity (Fig. 3C).177

Updrafts form shortly before the onset of rainfall. In contrast, specific humidity becomes elevated earlier — in line178

with RCE simulations, where a considerable moisture build-up before any subsequent convective event was reported179

[Fuglestvedt and Haerter 2020]. Second, we determine gust front loci using CP tracer particles, which have been180

shown to gather at the intersections between CPs [Haerter et al. 2019, Henneberg et al. 2020]. The humidity during181

rain event build-up (peak highlighted in Fig. 3C) is elevated by approximately 0.3 to 0.4 g/kg compared to the domain182

mean (bold horizontal line in the panel). Using the tracers to collect, as a comparison, the specific humidity at CP183

gust fronts, it is found that this histogram is similarly shifted to moister values (Fig. 3D, compare green vs. black184

curve). In summary, loci of CP collisions do provide the positive humidity anomalies typical of subsequent convective185

events.186
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FIG. 3. Identifying cold pool collisions. The time t = 0 is defined as 1670 minutes after model initialization, a time

point sufficiently close to the onset of precipitation in Evap=1 (≈ 600 min) but sufficiently long after the onset so that the

histories of rain intensity, vertical velocity, and specific humidity can be tracked. (A) History of rain intensity conditionally

averaged over all grid boxes with rainfall at t = 0 (orange) and domain mean rainfall (black) for the simulation Evap=1. (B)

Analogous to A, but for vertical velocity near the cloud base (w(800 m)). The domain average is zero throughout. Thin lines

mark corresponding 20th and 80th percentiles. The blue bar highlights the time during which updrafts exceed the domain

average. Note the pronounced peak, corresponding to convective updrafts, as is expected before rain onset, and the dip near

t = 0, corresponding to CP-associated downdrafts. (C) Analogous, but for near-surface specific humidity, qv(z = 50 m). The

blue bar highlights the time during which specific humidity exceeds the domain average. Note the relatively long build-up of

humidity before rainfall onset. (D) Histograms of qv(50 m) at t = 0 for all data (black curve) and gust front positions only

(green curve).

New deep convective events are initiated at a certain distance, Rmin, away from earlier events. To187

quantify a possible suppression effect caused by a present rain cell’s CP on subsequent cells forming within the188

surroundings, we examine whether rain events are spaced uniformly after the initial rain onset. A non-uniform189

spacing would imply either suppression (larger distance) or activation (smaller distance), whereas a uniform spacing190

would speak against a direct spatial influence on subsequent rain cell formation. We thus identify all rain events191

within the first 12h after rain onset [Moseley et al. 2013], allowing us to compare non-aggregating simulations with192

aggregating simulations (day 1 in Fig. 1). We measure each rain cell’s distance to its nearest rain event occurring193

within a time window ∆t.194

As a control, we use that the probability for n points to all lie outside a circle of radius d is (1−πd2/L2)n, where L195

is the domain length and n is the number of rain events during ∆t. Differentiating this with respect to −d gives the196

probability density function f(d) = 2nπd(1− πd2/L2)n−1/L2, from which we compute the expected nearest-neighbor197

distance given a uniform distribution of points (orange curves in Fig. 4). Comparing this to the simulation data (blue198

curves in Fig. 4), we find an inhibitory effect causing the nearest neighbor distance to be larger than 5 km for up to199

8h. We refer to this distance as Rmin ≈ 6 km and explain it by CPs being too negatively buoyant to initialize new200
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FIG. 4. Generation time and an effective minimal radius, Rmin. (A–D) The average distance (d) between rain events

occurring within the first 12h past precipitation onset and their nearest neighbor rain event (blue) occurring within a time

window (∆t) for varying evaporation rates (Evap). We contrast that to a control where the same number of rain events are

located uniformly (red). The dotted lines mark the standard deviations. More rain events are included for larger time windows,

causing the distances to be smaller. In (A), note the lack of events within 6 km for up to 8h. (E–H) Analog, but for varying

horizontal resolutions (dx). Note the inhibitory distance increases for coarser horizontal resolutions without changing the time

scale at which it occurs.

convective cells within this distance [Drager and van den Heever 2017, Fournier and Haerter 2019]. We find that this201

spatial scale is independent of the rain evaporation rate (Fig. 4A–D), but it increases for coarser horizontal resolutions202

(Fig. 4E–H). A possible explanation for the latter lies in decreasing rain event number densities (Fig. S5B). A caveat in203

quantifying rain event number densities lies in using a proper definition of rain events at different model resolutions.204

A common intensity threshold, as we have pragmatically used here, can be debated. Tompkins and Semie [2017]205

performed a similar nearest neighbor analysis on RCE simulations with a 2 km horizontal resolution. They found that206

CPs suppress rain events within 20 km of range, supporting our results in Fig. 4G. Besides denoting the suppression207

at small timescales (∆t . 10h) to CPs, they further assigned the activation at larger timescales (∆t & 10h) to CSA208

– an effect we see most clearly in Fig. 4D, which aggregates within three days (Fig. 1D).209

When increasing the time window of included events beyond ∆t = 10h, we find that this suppression effect di-210

minishes; that is, the distribution function approaches a uniform distribution (Figs. 4 and S6). On this time scale,211

the CPs associated with two rain events have time to grow larger than Rmin, collide, and trigger the formation of a212

new, closer rain event belonging to the subsequent generation. We, therefore, interpret the time scale ∼10 hours as213

the generation time of one CP. Our data indicate that this time scale slightly decreases for decreasing evaporation214

rates, likely because those simulations are transitioning to CSA (Fig. S6A–D). Many rain events must be initiated215

within a relatively small area in the self-aggregated state, thus locally driving up the frequency at which new cells are216

generated. Finally, we find that the same time scale slightly increases for coarser horizontal resolution, likely due to217
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higher average rain intensities per rain event triggering stronger CPs that last for a longer time (Fig. S6E–H).218
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FIG. 5. Circle model. (A) Seven snapshots running forward in time from one model run with L/Rmax = 4 and L/Rmin =

50. Snapshots 1–2 show the initial g1 positions. Snapshot 3 shows the emergence of g2 circles (cold pools). Snapshots 4–5

and 6–7 show representative pictures of the high state (NH) and the low state (NL), respectively (Details: Methods). Within

each snapshot, circles of the same color belong to the same generation (g), and white (dark blue) areas correspond to the

most historic (recent) generations. (B) The number of circles (Ng) per generation (g) as 30 simulations with varying initial g1

positions evolve. Three runs are highlighted. The blue curve represents the simulation in (A), and the black dots indicate the

time points of the last four snapshots in (A). Note the existence of two qualitatively distinct states of high and low Ng marked

with green dots as NH and NL, respectively. The red dot, NT , marks the transition point. (C) The distribution of circles

in all generations pooled together for 200 runs. In (A–C), L/Rmax = 4 and L/Rmin = 50. (D) The number of circles in the

low NL and high NH states and at the transition point NT for varying L/Rmax and L/Rmin. (E) The fraction of runs in the

high state as generation number for L/Rmin = 20. Note the logarithmic vertical axes. (F) The characteristic decay time as a

function of L/Rmax and L/Rmin. Note that higher L, higher Rmin, or lower Rmax result in faster decay.

A simple mathematical model captures the onset of self-aggregation. To understand the role of CP collisions,219

we introduce a model consisting of growing and colliding circles that represent the gust fronts of CPs (Details:220

Methods). The reasoning is that in RCE, most new rain cells result from thermodynamic pre-conditioning near the221

gust front collision lines (Fig. 3; see also Fuglestvedt and Haerter [2020]. Besides, the delay between the collision time222

and the initiation of the resultant rain cell is so large (typically several hours) that direct forced lifting can be ruled223

out. In line with the findings in Fig. 4, CPs with r < Rmin are considered too negatively buoyant to initialize new224

CPs [Drager and van den Heever 2017, Fournier and Haerter 2019], and CPs with r > Rmax are considered too weak225

to trigger new events.226

The dynamics during the first two generations are introduced in the Methods section (Sec. IV). After approximately227

ten generations, new circles are initiated throughout the domain with no obvious patterning (Fig. 5A snapshots 4–5)228

— we term this the ”high state” having NH circles. Later, a separation into a circle-filled (convecting) and a circle-229

free (non-convecting) sub-region occurs (Fig. 5A snapshots 6–7) — we term this the ”low state” having NL circles.230

Note the visual similarity with the numerical experiment in Fig. 1C–D. The number of circles Ng in all simulations231

eventually drops from high to low (Fig. 5B). The histogram of N , which is bimodal, confirms the notion of two distinct232

meta-stable states (Fig. 5C). By ”meta-stable state,” we thereby refer to a state resistant to small perturbations but233
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non-resistant to larger perturbations.234

We now explore how the two states depend on the independent model parameters L/Rmin and L/Rmax. We find235

that the number of circles in the low state, NL, scales as NL = L/(2Rmin), whereas that in the high state, NH , scales236

as NH = L2/(10R2
min), both independent of Rmax (Fig. 5D). The transition point occurs at NT ≈ 1.5L/Rmin. The237

linear scaling NL ∼ L is commensurate with band-like, one-dimensional structures (compare Fig. 5A snapshots 6–7238

and Fig. 1C–D on days 2–4). In contrast, NH ∼ L2 is in line with two-dimensional organization. By fitting the fraction239

of simulations in the high state to an exponential function (Fig. 5E), we show that a characteristic time exists when240

the simulations decay to the low state. Thereby, we find that the circle model predicts decreasing Rmax, increasing241

L, or increasing Rmin speed up the characteristic time when the transition occurs (Fig. 5F). Decreasing Rmax is in242

correspondence with the results presented in Figs. 1–2, increasing L has previously been reported to facilitate self-243

aggregation [Muller and Bony 2015, Bretherton et al. 2005], and rising Rmin is due to coarser horizontal resolution244

(Fig. 4E–H) favoring self-aggregation [Yanase et al. 2020, Hirt et al. 2020].245

VI. DISCUSSION AND CONCLUSION246

There is convincing evidence for the crucial role played by radiative feedbacks in increasing and maintaining a hori-247

zontal dry-moist imbalance in a RCE atmosphere [Muller and Bony 2015, Bretherton et al. 2005, Wing et al. 2017,248

Tompkins 2001, Muller and Held 2012, Emanuel et al. 2014]. In particular, Emanuel et al. [2014] presented a simplified249

theoretical model for water vapor-radiation-circulation feedbacks, in which a linear instability exists that can reinforce250

initial moisture imbalance once formed. Muller and Bony [2015] support this view and highlights the role of clouds251

and cold pools. Theories have also been proposed for Turing-instability type coarsening of the RCE atmosphere into252

moist and dry sub-regions driven by feedbacks in radiation and surface fluxes [Craig and Mack 2013]. Yet, these253

classical studies on CSA either use relatively coarse horizontal grid spacing, such as 3 km in Bretherton et al. [2005],254

or assume the boundary layer moisture to be horizontally homogeneous [Emanuel et al. 2014]. These model features255

lead to weakened or absent representation of CP effects, which are crucial in impacting CSA [Jeevanjee and Romps256

2013]. The notion that CP collisions trigger new convective events is well documented [Purdom 1976, Weaver and257

Nelson 1982, Torri and Kuang 2019] and addressed in toy models [Böing 2016, Haerter 2019].258

To capture the potential role of CPs during the onset of CSA, we here explicitly model the two-particle interaction259

resulting from interacting CP gust fronts. To incorporate the buoyancy suppression effect within the center of each260

CP, we introduce the radius Rmin, within which no activation is possible. Such a suppression radius would act against261

any local positive moisture feedbacks that would favor new rain cells to form close to previous ones. Our study262

investigates how Rmin and the maximal CP radius Rmax could influence the ability of an initially scattered rain cell263

and CP population to eventually facilitate dry regions — which could then grow to give rise to CSA. The circle264

model implies that large CPs, as formed by pronounced rain evaporation, become space-filling where CPs fill the265

whole domain, and there is a connected, percolating patch through the domain among CPs from the same generation.266

From hexagonal close-packing, that is, circles organized on a triangular lattice, where each circle exactly touches its267

six neighboring circles, L/(2Rmax) circles can be placed along one dimension, and L/(
√

3Rmax) circles can be placed268

along the other dimension. This gives a lower radius bound for space-filling Rmax > L(2
√

3N)−1/2 ≈ 7.3 km, where269

L = 96 km is the domain length, and N ≈ 50 is the number of CPs per generation (Fig. S5A). For radii smaller than270
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this, areas emerge that newly initialized circles cannot reach — a gap results, and the transition to CSA starts. When271

(realistically) departing from perfect close-packing, the required value of Rmax is larger — commensurate with our272

findings (Fig. 2) and the transition to CSA between Evap=0.6, where Rmax ≈ 11 km, and Evap=0.2, where Rmax ≈273

8 km.274

Similar percolation-based arguments could be made for cloud-resolving numerical experiments carried out at coarser275

horizontal resolution, where CSA was found to be favored compared to fine resolution. At coarse resolution, the number276

of rain cells may be reduced at the benefit of the rain volume achieved by each rain cell. Percolation may thus be277

harder to achieve, and dry patches would be more likely to result (Fig. S5B). However, we point out that a follow-up278

on this point requires careful consideration of how to set a meaningful rain intensity threshold when defining and279

comparing rain events with differing model resolutions.280

Our model simplifies CP expansion by assuming constant radial expansion speed, v0. In reality, CPs initially grow281

quickly, and their expansion speed decreases gradually over a few hours (Fig. 2B) [Grant and van den Heever 2016,282

2018]. Introducing a smoothly varying gust front speed into our model would require a time-dependent expansion283

speed factor, and a numerically approximate approach is more practicable [Haerter et al. 2019]. The presented model284

does not reach a final, fully-aggregated state, where a small fraction of the domain intensely convects indefinitely.285

This sustained activity might be obtained by adding spatial noise (displacing new circles slightly away from the286

exact geometric collision point) and systematically increased triggering probabilities for decreased overall rain area287

[Haerter 2019]. Extensions could include explicit incorporation of the ”super-CP” [Windmiller and Hohenegger 2019]288

and radiatively driven CP [Yanase et al. 2020, Coppin and Bony 2015], constituting the two components of the final289

large-scale circulation. This model extension would allow triggering events at the edges of the intensely convecting290

sub-region due to convective CPs colliding with the opposing radiatively driven CP — a mostly dynamics effect. Such291

circulation feedbacks may well be essential in stabilizing the final steady-state but may not be required to develop292

the first dry patches and their initial growth, which we have focused on in this work.293

Nearly conserved rain cell numbers (Fig. S5A) and rain intensities (Fig. S2B) are supported by radiation constraints294

on precipitation in RCE [Held and Soden 2006]. This conservation can be reached by accounting for an additional295

feedback mechanism: triggering new rain cells by existing CPs may be more dynamic, as the convective instability296

within the moist convective sub-region will likely be increased at the expense of the subsiding dry sub-region. The297

time delay between CP collisions and dynamical triggering of new convective cells takes O(1h) [Haerter et al. 2019],298

which is an order of magnitude less than the entire generation time of CPs during the early non-aggregated state,299

O(10h) (Fig. 4 and Fuglestvedt and Haerter [2020]). Our model could be further developed to explicitly incorporate a300

time delay between any CP collision and the initiation of the subsequent CP expansion at the location of the collision.301

For example, this time delay could be chosen proportional to the number of CPs present at a given time.302

In conclusion, our simple model captures various characteristics of the onset of convective self-aggregation (CSA):303

reduced rain evaporation and larger domain sizes speed up the start of CSA in cloud-resolving simulations, consistent304

with reduced Rmax and increased L in our circle model. Finally, our model makes the testable prediction that increased305

suppression radius Rmin promotes an early onset of CSA. A corresponding exploration of the parameter space in large-306

eddy and cloud-resolving simulations would be computationally costly, as not only a range of system sizes and rain307

re-evaporation rates would need to be explored. Additionally, each parameter combination would require an initial308

condition ensemble due to the potentially stochastic transition between the high and low CP density states. Our309
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results could guide an exploration of the parameters mentioned. In particular, the exponentially decaying residence310

likelihood in the high state (Fig. 5E) implies a stochastic process, where a transition is possible at equal probability311

r within each generation, that is, ṄH ∼ −rNH . Such a stochastic process could be probed within a reduced set of312

large-eddy or cloud-resolving simulations. If verified, it should be explored, if such a stochastic process also carries313

over to spatially-independent CP processes, at a scale properly chosen to be significantly larger than the typical CP314

diameter — that is, if cavities can emerge at any sub-region of the model domain statistically-independently of other315

sub-regions. Physically, one could alternatively perform a scale analysis of the larger-scale circulation at different316

vertical levels to characterize the long-wavelength modes that are present immediately before the onset of CSA. If317

such long-wavelength modes are well below system size, one may be able to conclude that local processes, such as CP318

effects, indeed constitute the cause of initial dry patch formation.319
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