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Abstract
1. Trait- based approaches are increasingly used to study species assemblages and 

understand ecosystem functioning. The strength of these approaches lies in 
the appropriate choice of functional traits that relate to the functions of inter-
est. However, trait– function relationships are often supported by weak empirical 
evidence.

2. Processes related to digestion and nutrient assimilation are particularly challeng-
ing to integrate into trait- based approaches. In fishes, intestinal length is com-
monly used to describe these functions. Although there is broad consensus 
concerning the relationship between fish intestinal length and diet, evolutionary 
and environmental forces have shaped a diversity of intestinal morphologies that 
is not captured by length alone.

3. Focusing on coral reef fishes, we investigate how evolutionary history and ecol-
ogy shape intestinal morphology. Using a large dataset encompassing 142 species 
across 31 families collected in French Polynesia, we test how phylogeny, body 
morphology, and diet relate to three intestinal morphological traits: intestinal 
length, diameter, and surface area.

4. We demonstrate that phylogeny, body morphology, and trophic level explain 
most of the interspecific variability in fish intestinal morphology. Despite the 
high degree of phylogenetic conservatism, taxonomically unrelated herbivorous 
fishes exhibit similar intestinal morphology due to adaptive convergent evolution. 
Furthermore, we show that stomachless, durophagous species have the widest 
intestines to compensate for the lack of a stomach and allow passage of relatively 
large undigested food particles.

5. Rather than traditionally applied metrics of intestinal length, intestinal surface 
area may be the most appropriate trait to characterize intestinal morphology in 
functional studies.
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1  | INTRODUC TION

Characterizing the relationship between form and function provides 
information on the evolutionary history of species, their potential to 
adapt to new environmental conditions, and their role within ecosys-
tems. Form and function are often closely related (Wainwright, 1988), 
as is evident across a wide variety of taxonomic groups, such as in-
vertebrates (Griffen & Mosblack, 2011; Wang et al., 1997) and large 
mammals (Ekdale, 2016; Hutchinson et al., 2011). However, deter-
mining whether the relationship between form and function is driven 
by evolutionary processes (Banavar et al., 2014; Westneat, 1995) or 
environmental conditions (Herrel et al., 2008; Naya et al., 2014) re-
mains difficult to pinpoint.

Intestinal morphology is central to one of the most import-
ant organismal processes— the digestion of prey sourced from the 
environment— and as such likely to have tight links to functional roles. 
Indeed, characteristics of the intestine and other digestive organs 
are associated with energy assimilation (Battley & Piersma, 2005; 
Cleveland & Montgomery, 2003) and thus the persistence of pop-
ulations (Brewster et al., 2020). Further, intestinal morphology is 
strongly related to diet in both vertebrate and invertebrate groups 
(Griffen & Mosblack, 2011; Steinberg, 2018). For instance, intes-
tinal length is negatively correlated with trophic level in mammals 
(Korn, 1992; Wang et al., 2003), birds (Al- Dabbagh et al., 1987; Battley 
& Piersma, 2005; Ricklefs, 1996), reptiles (O’Grady et al., 2005), am-
phibians (Naya et al., 2009), and fishes (Kramer & Bryant, 1995b; 
Elliott & Bellwood, 2003; reviewed in Steinberg, 2018). Primary 
consumers generally require long intestines because they need to 
acquire energy and nutrients from plants with low nutritional value 
and high fiber content (Horn, 1989). However, building and main-
taining a long intestine has high evolutionary and physiological costs 
(Cant et al., 1996). Intestinal morphology therefore represents a 
trade- off between the benefits of nutrient acquisition and the costs 
of maintaining a large organ.

Beyond diet, evolutionary processes also play a role in shaping 
intestinal morphology (Lauder, 1981). Phylogenetic conservatism 
has been identified across several taxa (Davis et al., 2013; German 
et al., 2010; Hunt et al., 2019), suggesting that evolution can con-
strain intestinal morphological variation within certain size ranges. 
However, species can overcome phylogenetic conservatism through 
phenotypic flexibility, which allows organisms to adapt to local en-
vironmental conditions (Piersma & Lindström, 1997). For example, 
some vertebrates can respond to changing environmental con-
ditions by adjusting the structure and physiology of their gastro- 
intestinal tracts (Battley & Piersma, 2005; Dala- Corte et al., 2017; 
Herrel et al., 2008; Starck, 2003). Intestinal structural flexibility has 

been observed in response to fasting (Starck & Beese, 2002; Zaldúa 
& Naya, 2014), increased food intake (Dykstra & Karasov, 1992; 
Starck & Beese, 2001), changes in diet (Naya et al., 2007; Olsson 
et al., 2007), and through ontogenetic development (Kramer & 
Bryant, 1995a).

Coral reefs host an extraordinary diversity of species. Among 
these species, fishes are the most diverse and prominent verte-
brates, exhibiting a wide array of morphologies and trophic strat-
egies (Alfaro et al., 2007; Cowman et al., 2009; Floeter et al., 2018; 
Parravicini et al., 2020; Price et al., 2011, 2013; Siqueira et al., 2020). 
Given this multitude of feeding behaviors, reef fishes represent an 
ideal group to study how evolutionary and ecological mechanisms 
influence intestinal morphology.

Reef fish intestinal morphology has been related to the quality of 
their diet (Al- Hussaini, 1947; Elliott & Bellwood, 2003; Emery, 1973). 
However, several limitations have hampered a full understanding of 
the nature and strength of this relationship. First, previous studies 
are often limited to single taxonomic families (Berumen et al., 2011; 
Wagner et al., 2009). Second, most studies focus on intestinal length, 
which, alone, does not fully describe intestinal morphology (Elliott & 
Bellwood, 2003). Third, evolutionary constraints on intestinal mor-
phology have only been considered across a limited number of taxo-
nomic groups (Davis et al., 2013; Wagner et al., 2009). Fourth, while 
intestinal traits have always been corrected for allometry, no study 
has accounted for body shape. Lastly, other digestive organs, such as 
the stomach, may impact this relationship, but this has never been 
investigated. Thus, a better understanding of the digestive traits and 
trophic roles of reef fishes may come from a broader, more diverse, 
and multifaceted assessment of digestive traits in reef fishes.

Here, we assess the main drivers of variability in the intestinal 
morphology of coral reef fishes. We investigate differences in in-
testinal length, diameter, and surface area of 1,208 individuals be-
longing to 142 species and 31 families collected in Mo'orea, French 
Polynesia. Specifically, we use Bayesian phylogenetic hierarchical 
analysis to disentangle the relationship among intestinal morpho-
logical traits and phylogeny, body size, body shape, diet, and the 
presence of the stomach. Further, we investigate the body size rela-
tionship at both the inter-  and intraspecific level.

2  | MATERIAL S AND METHODS

2.1 | Data collection

A total of 1,208 individuals from 142 species were collected from 
reefs around Mo'orea, French Polynesia, in the lagoon, pass, and 
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outer reef slope (Appendix S2: Table 1), between 2018 and 2019. 
We primarily targeted adult fishes, but a wider size range was col-
lected for a subset of species. The selection of species cover all the 
major trophic guilds of coral reef fishes (i.e., corallivores, herbivores, 
invertivores, piscivores, and planktivores). All individuals were col-
lected by spearfishing between 10:00 and 15:00 hours and trans-
ferred to the laboratory on ice. In the laboratory, each individual was 
measured and weighed, and the intestine was unraveled and photo-
graphed on a tray, using a ruler for a size reference. A minimum of 
three individuals per species was examined. The collection of fishes 
for this project was approved by the Ministry of the Environment of 
French Polynesia (permit #681/MCE/ENV).

We measured the length and the external diameter of the in-
testine using the software Fiji/ImageJ (Schindelin et al., 2012). The 
length was measured from the pyloric outlet to the anus in the pres-
ence of a stomach and from the esophagus to the anus in stomachless 
fishes (Elliott & Bellwood, 2003; Karachle & Stergiou, 2010; Kramer 
& Bryant, 1995a, 1995b). The average diameter was calculated with 
measurements taken at ten equal intervals along the entire length 
of the intestine (Elliott & Bellwood, 2003). The external intesti-
nal surface area (IS) was used as a proxy for mucosal surface area 
(Cleveland & Montgomery, 2003; Lassuy, 1984; Montgomery, 1977), 
and it was estimated using the following formula:

where r is the mean outer radius of the intestine, and IL is the intes-
tinal length. Notably, scraping and excavating species of parrotfishes 
(genera Chlorurus and Scarus, n = 10 species) have ileal sacculations 
(Clements & Choat, 2018), leading to a potential underestimation of 
their intestinal surface area by this formula; yet, all other species ex-
amined in this study have a smooth external intestinal surface, sug-
gesting accurate quantifications via the applied formula. Thus, while 
our calculation is a coarse estimation of mucosal surface area that does 
not account for mucosal folding, it can be considered a valid indica-
tor of general intestinal surface area across most species (Cleveland & 
Montgomery, 2003; Lassuy, 1984; Montgomery, 1977).

Each species was classified based on the presence or absence 
of a functional stomach. We considered both gastric and muscular 
(gizzard- like, n = 5) stomachs to be functional stomachs because 
they contribute to food digestion. In contrast, sac- like stomachs 
(e.g., Tetraodontidae) were considered nonfunctional stomachs. 
Furthermore, species were classified as either durophagous or not 
durophagous depending on whether their diet consisted of hard- 
shelled prey items (e.g., corals, crabs, molluscs, and sea urchins). 
We compiled this dataset according to the literature (Fagundes 
et al., 2016; Koide & Sakai, 2021; Ray & Ringø, 2014; Sorenson 
et al., 2013; Wilson & Castro, 2010), authors’ knowledge, and direct 
observation of the dissected fishes.

We used trophic level as a continuous measure of diet. Data were 
retrieved from FishBase using the R package rfishbase version 3.0.4 
(Boettiger et al., 2012). In FishBase, a species’ trophic level is cal-
culated by adding one to the mean trophic level of all food items 

consumed, weighted by their contribution (Froese & Pauly, 2000). 
Two estimates of trophic level are available: one based on diet com-
position and the other based on food items. The diet- based index is 
only available for a few of our species, so the food item- based index 
was used as a measure of trophic level and, when unavailable, the 
mean value of the genus (n = 14) or family level (n = 1) was used.

Since food item- based trophic levels reflect temporal snapshots 
of gut contents, they may not represent a species’ entire dietary 
breath. To assess whether trophic levels of our species were indic-
ative of their diet in Mo'orea, we investigated the relationship be-
tween trophic level and nitrogen stable isotope ratio (δ15N), which 
represents diet over longer periods of time (Hesslein et al., 1993). 
Using δ15N values available for a subset of species (n = 83) from 
Mo'orea, we found a strong positive relationship between δ15N 
and trophic level after accounting for body size and phylogenetic 
relationships (see Appendix S1). These results are consistent with 
previous observations (Kline & Pauly, 1998) and suggest that food 
item- based trophic level is a reasonable indicator of diet, thus sup-
porting its use in our analysis.

FishBase was also used to retrieve species- level data on body elon-
gation (i.e., standard length divided by maximum body depth). Similar 
to trophic level, when elongation was unavailable, the mean value of 
the genus (n = 1) was used. We used body elongation to account for 
body shape as it is the major axis of body shape variation among reef 
fishes (Claverie & Wainwright, 2014). Moreover, body elongation is 
strongly related to abdominal cavity depth and the space available to 
accommodate the intestine and other organs (Burns, 2021).

2.2 | Data analysis

To investigate the relative contribution of phylogeny, body mor-
phology, and diet in determining intestinal traits, we fitted Bayesian 
phylogenetic hierarchical linear models. We extracted the phylog-
eny for the 142 species sampled in Mo'orea from the Fish Tree of 
Life (Rabosky et al., 2018) using the R package fishtree version 0.3.2 
(Chang et al., 2019). For species without verified phylogenetic infor-
mation (n = 3), we used the fishtree_complete_phylogeny() function 
to retrieve the pseudo- posterior distribution of 100 synthetic sto-
chastically resolved phylogenies, with missing species placed using 
stochastic polytomy resolution.

Using this phylogenetic information, we constructed a phyloge-
netic relatedness matrix (Hadfield & Nakagawa, 2010) and we tested 
whether phylogeny, body size, trophic level, body elongation, the 
presence/absence of the stomach, and a durophagous diet explain 
intestinal traits using Bayesian phylogenetic hierarchical linear mod-
els. To account for both inter and intraspecific scaling, we included 
a fixed slope on the average measured standard length (SL) per spe-
cies (i.e., the interspecific variance of SL) and a random slope on the 
species- mean- centered SL (i.e., the individual SL minus the average 
SL of the species; the intraspecific variance of SL). We also included 
an interaction term between stomach and durophagy to obtain 
an estimate for each of the four possible combinations. Thus, the 

(1)IS = 2�r × IL,
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intestinal trait of the ith individual of the jth species is estimated as 
follows:

with β0j and β3j defined as:

where γ00 is the estimated average intercept, u0phy and u0j represent 
deviations from the model intercept attributable to species- level vari-
ation related and unrelated to the phylogeny, respectively, β1 and β2 
are the slopes of the species- mean SL and trophic level (TL), respec-
tively, γ30 is the average slope for the species- mean- centered SL, u3j 
represents deviations from γ30 attributable to species- level variation, 
β4, β5, and β6 are the slopes for the body elongation (EL), stomach 
presence (ST), and durophagous diet (DU), respectively, and β7 is the 
slope of the interaction between stomach and durophagy. All intesti-
nal traits, fish SL, and elongation were natural- log- transformed prior 
to the analyses. All continuous predictors were centered and scaled to 
provide a meaningful interpretation of the intercept (i.e., it represents 
the intestinal trait at the mean body size, trophic level, and elongation 
for stomachless, non- durophagous species) and allow comparison be-
tween the slopes.

For each intestinal trait, we mapped the predicted mean values 
onto a phylogenetic tree, including the 139 species with verified 
phylogenetic positions, using the R package ggtree version 2.2.4 (Yu 
et al., 2017). We further visualized the predicted intestinal traits in 
two- dimensional morphospace to characterize the length and di-
ameter of fish intestines and observe the partitioning of intestinal 
morphology among reef fish families and trophic guilds, which were 
determined using an unbiased, reproducible trophic categorization 
scheme (Parravicini et al., 2020). In both the phylogenetic tree and 
morphospace, parrotfishes (Labridae: tribe Scarini) are depicted 
separately from other Labridae species since they occupy distinct 
trophic niches.

To assess the phylogenetic signal (i.e., the tendency of traits in 
related species to resemble each other more than in species drawn 
at random from the same tree), we calculated the phylogenetic her-
itability index, H2, which is defined as the ratio of the phylogenetic 
component to the total variance (Lynch, 1991) and is equivalent 
to Pagel's λ (Pagel, 1999). As such, values can vary between zero, 
for traits that have no phylogenetic component, and one, for traits 
evolving according to a Brownian motion (random walk) process 
(Nakagawa & Santos, 2012).

To investigate the intraspecific scaling of intestinal traits, we ex-
tracted the random effects on the slopes from our models, which 
describe their relationship with body size for each species. From 
the 142 species- specific slopes for each intestinal trait, we retained 
those with a 95% credible interval (CI) above zero that belong to spe-
cies with a minimum of ten sampled individuals whose size range 

covered at least 25% of the reported maximum body size (retrieved 
from FishBase). This threshold is necessary to provide reliable esti-

mates of scaling parameters. Isometric scaling (i.e., a proportional 
relationship with body size during growth) for intestinal length and 
diameter is defined by a slope of β = 1 and for intestinal surface 
area the slope is β = 2. Conversely, slopes that deviate from isometry 
represent allometric relationships. Thus, slopes below these defined 
values have negative allometry and slopes above them have positive 
allometry.

To assess the robustness of the results despite intraspecific vari-
ability in morphological traits, we used a sensitivity procedure. All 
analyses were repeated using two subsets of the complete dataset: 
(1) 122 species with a minimum of five sampled individuals per spe-
cies and (2) 69 species with a minimum of eight sampled individuals 
per species.

2.3 | Model specifications

We fitted equation 2 using the R package brms version 2.14.4 
(Bürkner, 2017) to derive posterior distributions and associated 
95% CIs for the fitted parameters. We used a Student- t error 
distribution and weakly informative, normally distributed priors 
with means of zero: N(0, 10) for the intercept and N(0, 5) for fixed 
effects and species- level deviations from model intercept and 
species- mean- centered SL mean slope. The posterior distributions 
of model parameters were estimated using Markov chain Monte 
Carlo (MCMC) methods by constructing four chains of 8,000 
steps with a warm- up of 2,000 steps. For all models, we inspected 
the MCMC chains for convergence and model fit (Appendix S2: 
Figure 1). We used Bayesian R2 to estimate the amount of ex-
plained variation from each model (Gelman et al., 2019). All analy-
ses were performed in the software program R (version 4.0.2; R 
core team, 2020).

3  | RESULTS

3.1 | Phylogenetic conservatism

We detected evidence for phylogenetic signal for all intestinal traits. 
However, phylogeny accounted for a higher variability in intesti-
nal length and surface area (H2 = 0.90 [0.80, 0.94] and H2 = 0.76 
[0.50, 0.90], respectively, mean and 95% CI) than intestinal diam-
eter (H2 = 0.34 [0.12, 0.59]). Intestinal morphology varies markedly 
across the phylogenetic tree, with increases in intestinal length and/
or diameter, and, consequently, in surface area, occurring across dif-
ferent lineages (Figure 1). For example, long intestines evolved in-
dependently in Acanthuridae, Chaetodontidae, Pomacanthidae, and 
the tribe Scarini in the Labridae.

(2)ln(y)ij = �0j + �1ln (SL)j + �2TLj + �3j
(

ln(SL)ij − ln (SL)j
)

+ �4ln(EL)j + �5STj + �6DUj + �7ST × DUj ,

(3)�0j = �00 + u0phy + u0j ,

(4)�3j = �30 + u3j ,
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3.2 | Partitioning of intestinal morphology

The distribution of species based on intestinal morphology (Figure 2) 
marks a continuum that ranges from short and narrow intestines (pis-
civores; e.g., Cephalopholis argus, Serranidae: 14.26 cm and 0.25 cm, 
mean estimates of intestinal length and diameter at SL = 15 cm) 

to long and wide intestines (herbivores; e.g., Acanthurus guttatus, 
Acanthuridae: 95.55 cm and 0.72 cm, mean estimates of intes-
tinal length and diameter at SL = 15 cm). Some species also have 
short and wide intestines (e.g., invertivorous wrasses, Labridae) 
or long and narrow intestines (e.g., corallivorous butterflyfishes, 
Chaetodontidae).

F I G U R E  1   Phylogenetic reconstruction of the 139 reef fish species collected in Mo'orea (generated from the Fish Tree of Life, Chang 
et al., 2019) with each surrounding ring indicating mean fitted intestinal traits at a standardized fish standard length (SL = 15 cm). Intestinal 
trait predictions were obtained from Bayesian phylogenetic hierarchical linear models. Colored tip points represent species’ trophic 
level. Each external arc represents a reef fish family, with silhouettes included for the most speciose families (sourced from Schiettekatte 
et al., 2019)
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Fish families vary in their distribution across the intestine mor-
phospace and the clearest separation occurs between Acanthuridae, 
Chaetodontidae, Serranidae, and Labridae (non- Scarini) which 
have four distinct intestinal morphologies (i.e., each of these fami-
lies occupy one of the four quadrants of morphospace; Figure 2a). 
However, within- family variation drives overlaps among certain 
families. Labridae is the most extreme example and presents a clear 
distinction in intestinal morphology between parrotfishes (Labridae: 
tribe Scarini) and other wrasses. Conversely, other families with a 
comparable sample size (e.g., Acanthuridae) have lower within- 
family variation in intestinal morphology.

Overlaps are also visible among trophic guilds, despite notable 
differences in intestinal length (Figure 2b). Herbivores, corallivores, 
and sessile invertivores have longer intestines than crustacivores 
and piscivores, while the other trophic guilds have an intermediate 
intestinal length. Moreover, piscivores generally have a narrower in-
testine than fishes belonging to other trophic guilds.

3.3 | Interspecific scaling and relationships with 
body shape and trophic level

Our model (Eq. 2) explained 92% of the variation in intestinal 
length and surface area and 85% of the variation in intestinal diam-
eter. Species mean SL consistently had the highest absolute effect 
size across all intestinal traits (Appendix S2: Table 2) and all traits 
scaled isometrically across species, with a tendency toward nega-
tive allometry for intestinal diameter and surface area (intestinal 
length: β = 0.97 [0.82, 1.13]; intestinal diameter: β = 0.93 [0.83, 
1.03]; intestinal surface: β = 1.87 [1.65, 2.09], mean and 95% CI). 
After accounting for the other fixed and random effects, all traits 
decreased with body elongation (intestinal length: β = −0.78 
[−1.05, −0.52]; intestinal diameter: β = −0.42 [−0.56, −0.28]; intes-
tinal surface: β = −1.20 [−1.54, −0.85]; Figure 3a,c,e). Additionally, 
all intestinal traits decreased with trophic level (intestinal length: 
β = −0.38 [−0.53, −0.24]; intestinal diameter: β = −0.17 [−0.25, 

F I G U R E  2   Partitioning of intestinal 
morphology among (a) reef fish families 
and (b) trophic guilds (as predicted by 
Parravicini et al., 2020). Dots (i.e., species) 
(n = 142) are ordered in a morphospace 
based on intestinal length and diameter 
and are size- coded to represent variation 
in intestinal surface area. Intestinal traits 
are mean fitted values at a standardized 
fish standard length (SL = 15 cm), 
estimated through Bayesian phylogenetic 
hierarchical linear models. Dashed lines 
represent the estimated average intestinal 
length and diameter of non- durophagous 
fishes with a stomach (model intercept at 
SL = 15 cm). Colored polygons show the 
minimum convex hull plotted per (a) family 
and (b) trophic guild. Dots are colored 
according to (a) families represented by 
at least three species and for which a 
convex hull could be drawn (for clarity of 
presentation) and (b) trophic guilds. Gray 
dots depict (a) species (n = 22) belonging 
to families represented by less than three 
species and (b) species (n = 3) for which 
Parravicini et al. (2020) did not predict 
a trophic guild. Fish silhouettes were 
sourced from Schiettekatte et al. (2019). 
HMD, herbivores, microvores, and 
detritivores
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−0.07]; intestinal surface: β = −0.55 [−0.81, −0.31]; Figure 3b,d,f), 
showing a decrease of 59.5% in intestinal length, 32.5% in intes-
tinal diameter and 72.9% in intestinal surface area over the ob-
served trophic levels (from 2.00 to 4.38). The sensitivity analysis 
confirmed the robustness of the results, even when models were 
fitted with <50% of the species (Appendix S2: Tables 3– 4 and 
Figure  2).

3.4 | Influence of stomach presence and durophagy

The presence of a functional stomach and a durophagous diet did 
not show any interactive effect on intestinal morphology (Figure 4). 
However, durophagous fishes had a slightly shorter and wider intes-
tine than nondurophagous fishes, irrespective of stomach presence, 
which resulted in no difference in intestinal surface area. Conversely, 
fishes with a stomach had a slightly shorter and narrower intestine 
than stomachless fishes, irrespective of diet. Thus, stomachless fishes 
had, on average a larger intestinal surface area. The most noticeable 
difference was observed between stomachless, durophagous spe-
cies and fishes with a stomach and a non- durophagous diet, with the 
former having a larger intestinal diameter. These results remained 
consistent under our sensitivity analysis (Appendix S2, Figure  3).

3.5 | Intraspecific scaling

From the 142 species- specific scaling parameters obtained for each 
intestinal trait (Appendix S2: Table 5), our selection resulted in 19 re-
liable estimates for intestinal length, 18 for intestinal diameter, and 
20 for intestinal surface area (Figure 5). Considering the 80% CIs, 
three species (16%) showed allometric scaling of intestinal length, 
including two negative (Balistapus undulatus: β = 0.51 (0.26, 0.75); 
Chromis xanthura: β = 0.61 (0.31, 0.91); median and 80% CI) and one 
positive allometric relationships (Chaetodon ornatissimus: β = 1.40 
(1.21, 1.57); median and 80% CI). Although no species had positive 
allometry for intestinal diameter, a negative allometry was found for 
eight out of 18 species (44%). Lastly, intestinal surface area exhibited 
allometry in nine species, including one positive scaling (Aulostomus 
chinensis: β = 2.72 (2.13, 3.32); median and 80% CI). The remaining 
11 species did not deviate from an isometric relationship (β = 2).

4  | DISCUSSION

We investigated the relationship between reef fish intestinal mor-
phology and phylogeny, body morphology, and diet using a large 
dataset of 142 species and 1,208 individuals. Our results indicate 

F I G U R E  3   Relationship between three 
intestinal traits and body elongation (a, c, 
e) and trophic level (b, d, f) for 142 species 
of coral reef fishes. Thick, darkened 
lines represent the mean predicted fits 
of Bayesian phylogenetic hierarchical 
linear models after controlling for the 
remaining fixed and random effects. 
Categorical variables were set to their 
most common value (stomach = present, 
durophagy = non- durophagous). Thin 
lines represent 1,000 draws randomly 
chosen from the posterior fits and show 
model fit uncertainty. Model predictions 
are for natural- log intestinal traits, but 
are transformed here to show the fitted 
function on the original scale of the data. 
Raw data are displayed as marks along the 
x- axis
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that, although intestinal traits in coral reef fishes are phylogeneti-
cally conserved, they are strongly related to body size, body elonga-
tion, and trophic level. Among species, intestinal length, diameter, 
and surface area are negatively correlated with trophic level and 
body elongation, and they generally scale isometrically with body 
size. Similarly, within species they predominantly scale isometrically. 
Furthermore, our analysis shows that intestinal diameter is related to 
stomach presence and a durophagous diet.

4.1 | Phylogenetic conservatism

Reef fish intestinal morphology exhibits a high degree of phyloge-
netic conservatism. The strong phylogenetic signal observed for 
intestinal length is consistent with previous studies on fishes of 
the family Cichlidae and Terapontidae (Davis et al., 2013; Wagner 
et al., 2009), but our analysis revealed less conservatism for intestinal 
diameter. Further, we confirm that convergent evolution of long and/
or wide intestines occurred several times across different lineages 
(Davis & Betancur- R, 2017; Davis et al., 2013; Wagner et al., 2009). 
Chaetodontidae, Pomacanthidae, and herbivorous taxa evolved 
long intestines with large surface area to exploit trophic niches 
with nutritionally poor food resources. Conversely, Labridae and 
Tetraodontiformes, which generally lack a true stomach (Fagundes 
et al., 2016; Ray & Ringø, 2014; Wilson & Castro, 2010), evolved 
wide intestines to overcome limitations arising from the lack of food 
storage and processing inside the stomach. Furthermore, these 
species have a durophagous diet and well- developed teeth and/
or pharyngeal jaws that grind food into smaller fragments, partly 

replacing the function of the stomach (Gromova & Maktotin, 2019; 
Wainwright et al., 2012). The size of these particles remains, how-
ever, too large to be funneled through a thin intestine and may re-
quire a thicker intestinal wall to protect from mechanical damage 
(Fagundes et al., 2016). Although we cannot discern whether the 
large external intestinal diameter in Labridae and Tetraodontiformes 
is the result of a wider intestinal lumen, thicker intestinal wall, or a 
combination of the two, it appears that wide intestines have evolved 
multiple times, along with specializations of the feeding apparatus 
(Wainwright et al., 2012), to exploit trophic resources otherwise 
unattainable.

Additionally, phylogenetic conservatism can be clearly observed 
within the Labridae. Within this family, parrotfishes (Labridae: tribe 
Scarini) have a larger intestine than other species. Evolutionary his-
tory has mainly led to an increase in the intestinal length and surface 
area in parrotfishes; however, intestinal diameter is conserved at the 
family level (see Appendix S2: Figure 4). The large intestine, together 
with cranial specializations (Gobalet, 2018), could have played a sub-
stantial role in the initial divergence of the Scarini clade (Streelman 
et al., 2002), allowing them to adapt to an herbivorous diet and diver-
sify rapidly (Siqueira et al., 2020), whereas other wrasses remained 
carnivores (Cowman et al., 2009; Floeter et al., 2018).

4.2 | Interspecific scaling and relationships with 
body shape and trophic level

Among coral reef fishes, intestinal traits scale isometrically with 
body size after accounting for variation in body shape. Correction 

F I G U R E  4   Effects of a stomach and durophagous diet on (a) intestinal length, (b) diameter, and (c) surface area for 142 species of 
coral reef fishes. Estimates are posterior medians (circles), 50% credible intervals (CIs; thick lines) and 95% CIs (thin lines) from Bayesian 
phylogenetic hierarchical linear models after controlling for the remaining fixed and random effects. Posterior densities are also displayed 
(shaded regions)
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for body shape, in addition to allometry, is important because larger 
fishes have long body plans (Friedman et al., 2019), which in turn 
have relatively small abdominal cavities (Burns, 2021) that may not 
accommodate large intestines. For instance, the two most distinc-
tively elongated species in our dataset, Aulostomus chinensis and 
Fistularia commersonii, both of which are strict piscivores, had the 
lowest values across all intestinal traits.

Regardless of taxonomic identity, body size, and elongation, 
trophic level strongly influences intestinal morphology. The nega-
tive relationship between intestinal length and trophic level is con-
sistent with previous work on marine and freshwater fishes (Elliott 
& Bellwood, 2003; Kramer & Bryant, 1995b; Wagner et al., 2009). 
Furthermore, we found that the same negative relationship holds 
true for other intestinal traits, providing the first quantitative evi-
dence that intestinal diameter, as well as length, varies as a function 
of trophic level. However, while carnivores and herbivores have the 
widest intestine and corallivores the narrowest across three reef fish 

families (Elliott & Bellwood, 2003), a clear relationship between in-
testinal diameter and diet has not yet been established. We observed 
a significant decrease in diameter with increasing trophic level. 
Fishes with the highest trophic level (4.38) had a 32.5% narrower 
intestine than herbivorous fishes. Beyond the larger number of fam-
ilies sampled here, using a continuous variable to delineate reef fish 
diet (i.e., trophic level) helped uncover this relationship as opposed 
to the use of categorical trophic groups (Elliott & Bellwood, 2003). 
These results suggest that intestinal diameter is useful to further 
delineate fish diet partitioning, and intestinal surface area, which in-
corporates variability in both length and diameter, may be a better 
descriptor of interspecific differences in intestinal morphology than 
intestinal length alone.

On average, the predicted intestinal surface area of herbivorous 
fishes in Mo'orea was four times that of fishes that occupy the high-
est trophic level. While this difference is determined by the increase 
in both intestinal length and diameter, the different rate of variation 

F I G U R E  5   Species- specific scaling parameters of three natural- log intestinal traits against natural- log fish standard length for 21 species 
of coral reef fishes. Estimates are posterior medians (circles), 80% credible intervals (CIs; thick lines) and 95% CIs (thin lines) from Bayesian 
phylogenetic hierarchical linear models. Vertical dashed lines represent isometric scaling (β = 1 for intestinal length and diameter; β = 2 for 
intestinal surface area). Colored intervals indicate allometric scaling, indicating that more than 90% (if 80% CIs) or 97.5% (if 95% CIs) of the 
posterior density was either above (blue; positive allometry) or below (red; negative allometry) the isometric scaling parameter, whereas gray 
intervals indicate that they overlap the parameter. For each trait, species were selected based on a minimum sample size of ten individuals 
whose size range covered at least 25% of the reported maximum body size (retrieved from FishBase) and a posterior 95% CI above zero to 
provide reliable estimates of scaling parameters. This selection resulted in missing estimates for one or two traits in five species
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in these traits leads to intestinal elongation with decreasing trophic 
level. This increases the intestinal surface available for the absorp-
tion of nutrients, but it also increases food retention time, which is 
known to favor the digestion of food with low nutritional quality 
(Lassuy, 1984; Sibly, 1981).

4.3 | Intraspecific scaling

In the present study, we provide estimates of scaling parameters for 
at least one intestinal trait of 21 reef fish species. Our results show 
that two thirds of these species exhibit allometric scaling in one or 
more traits, with several taxa decreasing the relative size of their 
intestinal diameter or surface area with increasing body size. For the 
remaining species, our data do not show any significant deviation 
from isometry. Widespread allometric elongation of the intestine 
has been observed in both marine and freshwater fishes (Karachle 
& Stergiou, 2010; Kramer & Bryant, 1995a; Ribble & Smith, 1983). 
In contrast, we found positive allometry in intestinal length only for 
C. ornatissimus, while most species showed isometry. Our results 
highlight a tendency toward negative allometry in intestinal diam-
eter and surface area. Thus, while the relative length of the intestine 
may remain constant or increase throughout an individual's lifetime, 
it generally becomes narrower and decreases in surface area. These 
results are consistent with the decrease in relative intestinal surface 
area observed in some herbivorous fishes (Al- Hussaini, 1949; Gohar 
& Latif, 1959; Horn, 1989; Montgomery, 1977) and the negative al-
lometry in intestinal mass and metabolic capacity reported for two 
species of Cyprinidae (Goolish & Adelman, 1988) and are potentially 
related to decreases in growth with increased size.

4.4 | Intestinal morphology and function

Our results highlight the tight link between intestinal morphology 
and the digestive and assimilating functions in reef fishes. Intestinal 
traits are clear indicators of fish trophic roles and thus suitable for 
trait- based ecological research (Villéger et al., 2017). While intes-
tinal length is commonly used in fish functional studies (Mouchet 
et al., 2013; Villéger et al., 2010; Zhao et al., 2019), we show that 
intestinal diameter provides an important addition to better seg-
regate fish dietary habits and should therefore be considered. The 
intestine also plays an important role in other fish functions, such 
as the absorption of nutrients (Crossman et al., 2005) and carbonate 
excretion (Wilson et al., 2002), which are key contributors to nutri-
ent cycling and inorganic carbon cycling. Therefore, the intestinal 
traits presented herein could be used to explore relationship with 
these functions in future studies.

In the present study, we mainly focused on interspecific variabil-
ity in intestinal morphology. However, in Mo'orea, the fishes were 
collected around the entire island, including a great span of habitats 
(lagoon and slope; coral- dominated and algae- dominated reefs), and 
across multiple seasons. While these variables were not explicitly 

accounted for in our analysis due to limited replication, our models 
explained 85% to 92% of the variation in the data, demonstrating that 
intraspecific variability, independent of body size, was minor com-
pared to interspecific variability in our dataset. Nevertheless, spatial 
and temporal variation in food availability and/or nutritional qual-
ity may lead to intraspecific variability (Olsson et al., 2007; Wagner 
et al., 2009). Therefore, these factors should be considered in future 
studies to fully understand the relationship between intestinal mor-
phology and diet and assess the extent of intraspecific variability.

5  | CONCLUSION

Our findings show that intestinal traits are highly conserved across 
reef fish phylogeny. We also demonstrate that via adaptive con-
vergent evolution, intestinal flexibility permitted the occupation of 
trophic niches characterized by the uptake of food resources with 
low nutritional quality across diverse phylogenetic groups. Further, 
trophic level is strongly related to intestinal diameter, as well as 
length, in coral reef fishes. Species that occupy low trophic levels 
surmount the low nutritional value of food items by increasing in-
testinal absorptive surface and maximizing nutrient intake. This is 
achieved with a differential increase in the length and diameter of 
the intestine, which results in an elongate alimentary tract that pro-
longs food retention. Thus, for trait- based ecological studies, intes-
tinal length and diameter should be used together. Alternatively, if 
using a single trait, intestinal surface area may be a better descriptor 
of inter and intraspecific differences in diet than intestinal length.
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