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A B S T R A C T

One of the most applied tools to create ecosystem models to support management decisions in the light of
ecosystem-based fisheries management is Ecopath with Ecosim (EwE). Recently, its spatial routine Ecospace has
evolved due to the addition of the Habitat Foraging Capacity Model (HFCM), a spatial-temporal dynamic niche
model to drive the foraging capacity to distribute biomass over model grid cells. The HFCM allows for con-
tinuous implementation of externally derived habitat preference maps based on single species distribution
models. So far, guidelines are lacking on how to best define habitat preferences for inclusion in process-oriented
trophic modeling studies. As one of the first studies, we applied the newest Ecospace development to an existing
EwE model of the southern North Sea with the aim to identify which definition of habitat preference leads to the
best model fit. Another key aim of our study was to test for the sensitivity of implementing externally derived
habitat preference maps within Ecospace to different time-scales (seasonal, yearly, multi-year, and static). For
this purpose, generalized additive models (GAM) were fit to scientific survey data using either presence/absence
or abundance as differing criteria of habitat preference. Our results show that Ecospace runs using habitat
preference maps based on presence/absence data compared best to empirical data. The optimal time-scale for
habitat updating differed for biomass and catch, but implementing variable habitats was generally superior to a
static habitat representation. Our study hence highlights the importance of a sigmoidal representation of habitat
(e.g. presence/absence) and variable habitat preferences (e.g. multi-year) when combining species distribution
models with an ecosystem model. It demonstrates that the interpretation of habitat preference can have a major
influence on the model fit and outcome.

1. Introduction

Habitat preference of species is a widely known concept in ecology;
first defined as the tendency of a species to choose one resource over
another if both are equally available (Johnson et al., 1980). Since then,
multiple definitions and extensions of the concept have been suggested
(e.g. Rosenzweig and Abramsky, 1986; Hall et al., 1997; Aarts et al.,
2008), next to numerous definitions of habitat itself and whether it
comprises only abiotic factors or biotic relationships as well (e.g.
Darwin, 1859; Allee et al., 2000; Valentine et al., 2005). These different
interpretations of habitat and habitat preferences or lack of a common
definition might lead to miscommunication between and mis-
interpretations by scientists (Hall et al., 1997). Additionally, there are

still ongoing discussions about how to quantify habitat preferences in
the light of their use and availability (Beyer et al., 2010). modeling
these preferences faces certain problems, such as an unequal access of
individuals to all habitats and areas as well as variations of habitat
availability and quality over time (Garshelis, 2000). Combining a spa-
tially resolved trophic ecosystem model with habitat preference maps
based on single species distribution models (SDM) can be a solution to
better account for habitat preferences within the ecosystem model.

In the recent years, spatially explicit ecosystem models are in-
creasingly being applied to study the effects of climate change, spatial
fisheries management or to support marine spatial planning (e.g.
Romagnoni et al., 2015; Alexander et al., 2016; Bossier et al., 2018).
Therefore, it is necessary to establish best practices when it comes to
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working with spatially explicit ecosystem models as well as protocols
on how to best combine these ecosystem models with SDMs. A popular
ecosystem modeling approach with an increasing number of models
worldwide is implemented in the Ecopath with Ecosim software (EwE,
Christensen et al., 2004; Colleter et al., 2015; Heymans et al., 2016).
EwE encompasses three modeling components: the static, mass-ba-
lanced Ecopath that is used to construct a ‘snapshot’ of the trophic food
web of individual species or functional groups (FGs), originally pro-
posed by Polovina (1984) and further developed since (Christensen and
Pauly, 1992). The temporal simulation module Ecosim uses the Ecopath
parameterization as a baseline to assess ecosystem dynamics over time,
with the main goal to evaluate the impact of environmental stressors
and fisheries on the ecosystem (Walters et al., 1997, 2000). Ecospace
adds the spatial dimension to the model (Walters et al., 1999;
Christensen et al., 2014), providing a routine which allows for impact
analysis of spatial management measures such as marine protected
areas and physical structures like wind farms (Christensen and
Walters, 2004). Many Ecopath and Ecosim models have been published
in the past, while publications applying Ecospace are comparably rare,
but increase in appearance recently (Colleter et al., 2015).

In recent releases of the EwE software, the options to inform
Ecospace about habitat preferences have become very flexible. One of
the first possibilities was to assign absence/presence preferences con-
nected to static habitat layers implemented in the basemap. To include
multiple environmental stressors, a new habitat foraging capacity
model (HFCM) was implemented that allowed the user to implement
continuous rather than binary habitat preferences (Christensen et al.,
2014). The foraging capacity of a cell is based on the foraging arena
theory implemented in Ecosim, defining the capacity of a cell for a
predator to forage on a prey (Ahrens et al., 2012). It is used as a mul-
tiplier to the search area (A) in the foraging arena equation
(Christensen et al., 2014). From here on, multiple, cumulative en-
vironmental drivers could also affect the computed foraging capacity of
the FGs in a given cell, implemented via environmental preference
functions. This increased the variation between the cells to distribute
the FGs over the map where they are most likely to occur
(Christensen et al., 2014). Furthermore, it opened the opportunity to
close the gap between SDMs and ecosystem models, by allowing the
user to implement environmental response functions derived from
SDMs (Grüss et al., 2016). One of the most recent improvements to
relate FGs’ distributions in Ecospace directly to scientific surveys, is the
possibility to implement scaled habitat preferences predicted by ex-
ternal SDMs directly as foraging capacity maps into Ecospace (Fig. 1).
This increases the interchangeability between different model types
further.

Thus far, temporal abundance changes of each FG in Ecosim are
reproduced in each grid cell of Ecospace. The new spatial-temporal data
framework allows for time-dynamic inclusion of geospatial data such as
habitat maps during each Ecospace run (Steenbeek et al., 2013). In-
cluding dynamically changing environmental driver maps, and a dy-
namic redistribution of biomass based on species environmental pre-
ferences allows for a better representation of changes in the physical
habitat (Christensen et al., 2014). This also allows implementing time-
dynamic foraging capacity maps based on external SDMs during the
Ecospace run. This enables the modeler to bypass the necessity to enter
environmental preference functions in Ecospace. Implementing these
maps can be done, just like the environmental driver maps, in different
temporal frequencies, e.g. seasonally, annually or once every few years.
To integrate them with the computed foraging capacity and to account
for shifts in habitat preferences over the period of the model run in-
creases the realism in distributing the biomass of FGs over the grid cells.

Combining the single species distribution modeling approach with a
trophic ecosystem model in this way bears potentials to increase our
knowledge on impacts of changes in biotic and abiotic factors on spe-
cies and fisheries yield. This increases Ecospace usefulness as a support
tool for spatial management decisions. The application of this approach

to many FGs simultaneously in a strongly exploited ecosystem like the
North Sea has so far not been reported. Neither has the test for the
sensitivity of different implementation frequencies of external foraging
capacity maps, which might show how inertia and sensitivity of the
ecosystem model differs with forcing frequencies.

Therefore, this study aims to analyze which representation of ha-
bitat preference best serves to create foraging capacity maps and is
capable to interact with the information contributed by the tropho-
dynamic model. Furthermore, the sensitivity of the updating frequency
of foraging capacity maps (e.g. seasonal, annual, multiannual) on
Ecospace's biomass and catch predictions compared to the empirical
data is being evaluated.

2. Material and methods

2.1. Ecopath with Ecosim model of the southern North Sea

Our Ecospace model is based on a previously published EwE model
(Stäbler et al., 2016), representing the ecosystem of the southern North
Sea in the base year 1991 up to 2010 (statistical areas IVb and IVc,
defined by the International Council for the Exploration of the Sea
(ICES)). The southern North Sea model has a focus on commercially
important species and higher trophic levels, and comprises 68 groups of
which 35 represent multi-species groups and 30 single species. Parti-
culate organic matter, dissolved organic matter and discards are re-
presented in three additional groups. Life history changes are im-
plemented for seven commercially important species, cod (Gadus
morhua), whiting (Merlangius merlangus), haddock (Melanogrammus ae-
glefinus), herring (Clupea harengus), sole (Solea solea), plaice (Pleur-
onectes platessa) and brown shrimp (Crangon crangon) through the
multi-stanza approach (Walters et al., 2010). These stanzas characterize
juvenile and adult life stages of the fish species, while brown shrimp
was split according to the body size they need to reach to be targeted by
the fishery. Fishery exploitation is implemented in the model through
twelve fleets, representing the diversity of the fishing sector in this
region.

There have been several adaptations to the original Ecopath and
Ecosim model of the southern North Sea. These were changes in the diet
matrix and the addition of off-vessel prices in Ecopath, as well as some
changes to the reference time series in Ecosim. For more detail, see
Appendix A. To account for these alterations in Ecopath and Ecosim, we
used the new stepwise fitting routine to fit predator/prey vulnerabilities
and primary production anomaly splines that resulted in the lowest
discrepancies between the model and the observed time series
(Scott et al., 2016). The fitting routine automatically repeats the sen-
sitivity search and Ecosim runs with an increasing number of vulner-
ability parameters. These different parameterizations towards reference
time series were fitted; the resulting measures of fit include residual
sum of squares (SS, log-scaled biomass, catches) and Akaike informa-
tion criterion (AIC; Akaike, 1974). The Ecosim settings with the lowest
AICs (AICs that differed more than 2 compared to the lowest AIC were
excluded) were then tested for their model efficiency (see Table 2,
Stow et al., 2009) in reproducing the reference time series of biomass
and catch. For further information on this Ecopath and Ecosim model of
the southern North Sea, see Stäbler et al., 2016, 2018, 2019 and Ap-
pendix A.

2.2. Ecospace of the southern North Sea

The software used to construct the Ecospace model is EwE version
6.6, professional edition, and fit to time series for the period 1991 -
2010 and run in monthly time steps. As a basis for distributing bio-
masses simulated by Ecosim in space, a basemap of the study area was
constructed as a georeferenced Esri American Standard Code for
Information Interchange map (Esri ASCII), with a resolution of 0.125°
per edge length of each grid cell. The bounding box for the study area
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ranged from −4° to 9° longitude and from 51° to 57.25° latitude. We
assigned static habitats to the basemap encompassing various sediment
structures, a distance to coast measure and fishing habitats. All habitat
maps were binary, defined by 1=present and 0=not present. Sediment
types were derived from the European Marine Observation and Data
Network (EMODnet, 2017) using a seabed substrate map that includes
five substrate classes (mud to muddy sand, sand, coarse sediment,
mixed sediment, rock and boulders). To account for seabirds living
close to the coast to breed on land, the habitats “near coast” and
“marine” were added. The 12 nautical mile zone representing territorial
waters of each surrounding country was used as a proxy to separate
coastal from offshore areas. Additionally, depth was included as an
environmental driver, ranging from 0 to 100 m. Data used to reproduce
the bathymetry of the study area was retrieved from the General
Bathymetric Chart of the Oceans (General Bathymetric Chart of the
Oceans (GEBCO), 2019). These have a higher resolution than Ecospace;
therefore, within each grid cell the mean depth was taken and then
classified into ten discrete depth categories in ten meter intervals,
starting with 5 m.

Fishing effort allocation across the grid implements the effect of
spatially explicit exploitation (Christensen et al., 2008; Christensen and
Walters, 2004; Walters et al., 1999). Usually, fishing fleets are assigned
simply to the same habitats as FGs targeted in order to distribute fishing
effort on the basemap. We attempted a more realistic representation of
the spatial dynamics of the fisheries using spatially resolved effective
fishing effort data (Scientific, Technical and Economic Committee For
Fisheries, 2017). However, for a few fleets that have very specific target
FGs (like sandeel and nephrops trawlers) the fleets follow the dis-
tribution of these FGs, while all others were assigned to the before
mentioned habitat structures. Mean annual primary production was

added to the basemap as a static layer, based on Moderate Resolution
Imaging Spectroradiometer (MODIS) ocean color data; from 2002 to the
present (Behrenfeld and Falkowski, 1997; http://www.science.or-
egonstate.edu/ocean.productivity/index.php) and was kept constant
over time to solely examine the influence of varying foraging capacity.

Ecospace takes a habitat preference approach and allocates Ecosim's
biomass dynamically over a basemap of grid cells with respective pre-
ferred and non-preferred habitats. The spatial allocation of the biomass
is based on the foraging capacity for each FG within a cell. Within cells
with preferred habitats, FGs have increased feeding rates (allowing for
increased growth rate) and survival rates. Outside of these cells, dis-
persal rates, which depict random movement within the model area,
may be higher to escape the non-preferred habitats (Christensen et al.,
2008). In the HFCM, the computed foraging capacity within Ecospace
can be overwritten by external foraging capacity or multiplied by cell
specific habitat capacity and environmental capacity. As external
foraging capacity, scaled habitat preference maps predicted by SDMs
can be integrated into Ecospace directly. These maps have the same
spatial extent and resolution as the Ecospace basemap and each grid
cell has a specific foraging capacity between 0 and 1 assigned to. From
here on, habitat preferences refers to the predicted results of the SDMs,
while they are referred to as external foraging capacity as soon as they
enter Ecospace to overwrite the computed foraging capacity. In addi-
tion, Ecospace can calculate foraging capacity from FGs affinity for
given habitats and from FGs functional responses to environmental
conditions. Habitat capacity is based on the habitat layers implemented
in the basemap (here sediment and distance to coast). Each habitat type
gets a proportion assigned of how suitable the habitat is for a certain
FG. Environmental capacity is based on environmental driver maps
(here depth). It is being ascertained by applying an environmental

Fig. 1. Biomass maps created within the southern North Sea Ecospace model for all FGs. Colors depict high (red) to low (blue) relative biomass. Thirty-two of these
functional groups were driven via external foraging capacity maps based on habitat preferences derived from species distribution models (SDMs), indicated by the
white star.
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response function specific to each FG to the environmental driver map.
All aforementioned possibilities within Ecospace can be applied in-
dividually or combined (Fig. 2).

In this study, foraging capacity for most FGs was pre-defined by
external foraging capacity maps, while for some FGs the foraging ca-
pacity was calculated from affinity for habitats and/or environmental
preferences. Distributions for six FGs were affected though habitat af-
finities, while for eleven FGs an environmental response function de-
pending on depth was implemented. Foraging capacity maps for 32 FGs
were driven from external habitat preferences through the spatial-
temporal data framework (see Fig. 1). The multi-stanza modus of
Ecospace computes the distributions of multi-stanza groups to be highly
correlated within each group, which sometimes leads to a better fit if

only one of the stanzas is distributed by temporarily changing the
foraging capacity. We followed this approach for the FG plaice, where
only the distribution of the juvenile stanza was driven by its foraging
capacity. The adult stanzas distribution was a result of the distribution
of juveniles as well as presence of predators and prey. For crangon, the
stanza smaller than commercial catch size followed the distribution of
the stanza targeted by fisheries.

In Ecospace, biomass is time-variant within a cell even if no external
forcing occurred since a fraction of biomass is always dispersing ran-
domly around the basemap, represented by the dispersal rate (km/
year). The base dispersal rate set as default within Ecospace is 300 km/
year, except for detritus (Christensen et al., 2008). For our model, we
chose five different dispersal rates to represent the mobility of FGs

Fig. 2. Foraging capacity options in Ecospace.
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based on their life form, i.e. 1000 km/year for fast top predators,
600 km/year for pelagic FGs, 300 km/year for faster moving demersal
fish FGs, 30 km/year for mainly flat fish and zooplankton FGs, 3 km/
year for nearly stationary or sessile groups (primarily benthic FGs).
These dispersal rates were chosen based on the general “300–30–3″ rule
(similar to Chen et al., 2009), expanding the classes for more differ-
entiation in speed. Using a custom built plug-in for EwE, each Ecospace
run was started with a 10-year spin-up (or burn-in) period to stabilize
FG distributions. For more details about the Ecospace structure, see the
Appendix A.

2.3. Species distribution models

The new spatial temporal data framework within Ecospace allows
for the implementation of time dynamic foraging capacity maps. These
are habitat preferences generated by SDMs prior to implementation and
then applied directly as foraging capacity, with a range of 0–1. This
method was applied for thirty-two FGs, representing most single species
FGs, including six multi-stanza groups, and eleven multi-species FGs
(see Appendix A). These groups represent mainly commercially im-
portant species and also groups that were well represented within the
scientific surveys that sampled the data used for the SDMs. Data on
species abundance for this analysis was gathered from two different
surveys, due to the different catchability of the surveys for certain
groups. Catch-per-unit-effort data (CPUE, number_per_hour) from
quarter 3 (Q3, only sampled quarter) of the ICES Beam Trawl Survey
(BTS) from 1991 to 2010 was used for juvenile and adult sole (Solea
solea), brill (Scophthalmus rhombus) and turbot (Scophthalmus maximus),
long-rough dab (Hippoglossoides platessoides) and monkfish (Lophius
piscatorius). For the remaining 25 FGs, CPUE data was used for quarter
1 (Q1) and Q3 of the ICES International Bottom Trawl Survey (IBTS)
from 1991 to 2010 (see Appendix A). For the chosen timeframe, Q1 and
Q3 are the only two quarters that were sampled continuously.

One of the major aims of this study is to identify the best re-
presentation of habitat preference when combining an SDM with a
trophic food web model. We tested two representations in this study: a
more general representation based on binary data (presence/absence
model) versus one that accounts for gradations in quality by con-
sidering abundance (hurdle model). The idea is to identify if a sig-
moidal or an exponential response is best suited when combined with
the trophic model. The hurdle model contains binary (presence/ab-
sence) and continuous response (abundance) sub models that are ap-
plied to the data separately and the predicted distribution resulting
them are being multiplied at the end (Cragg, 1971; Maunder and
Punt, 2004). A hurdle model approach is widely used in SDMs due to its
ability to deal with data sets that contain a high number of zeros (i.e.
'zero-inflated').

In their recent published paper, Coll et al. (2019) used Bayesian
models (integrated nested laplace approximation; INLA) to create single
FG distribution maps. We tested the applicability of INLA for our study
against the fitting method commonly used for generalized additive
models (GAM;Hastie and Tibshirani, 1986), i.e., PIRLS (Penalized
Iteratively Re-weighted Least Squares). The GAMs were created using
the ‘mgcv’ package (Wood, 2009), while INLA was applied with the ‘R-
INLA’ package (Rue et al., 2009). Due to high computational costs, we
modelled only key groups with either high commercial importance or a
small sample size (cod (adult), whiting (adult), starry ray & others, sole
(adult) and plaice (adult)). Both modeling approaches were fitted to
presence/absence (PA) data and a combined hurdle model. For the
hurdle model, a GAM was fitted to CPUE (with CPUE>0) data using the
classical approach (PIRLS) and using INLA and the resulting predictions
were subsequently multiplied with the results of the PA model. To
consider time dependency, both the GAM and R-INLA were run for each
year separately. A k-fold cross-validation approach with 4 folds was
applied to compare the predictive skill of the different model types. The
fit was assessed with the area under the response curve (AUC;

Swets, 1988) for the presence/absence and with the root mean squared
error (RMSE) for the hurdle model. The results of this assessment
showed that for this study, INLA does not outperform the less time-
consuming fitting method used in a GAM. Therefore, GAM was chosen
and will be described in more detail in the following paragraph. For
more information about the comparison of these two SDMs, see Ap-
pendix 1.

Presence/absence data were modelled using a GAM with the cano-
nical link logit. For the hurdle model, also CPUE data was modelled
with a non-zero abundance GAM (CPUE^ =CPUE>0) using the gamma
distribution with a log link to assess the abundance:

= =logit PA s lat lon k( ^ ) ( , , 10), (1)

and

= =log CPUE s lat lon k( ^ ) ( , , 10), (2)

with lat and lon representing sampling locations, PÂ and CPUE^ being
the modelled dependent variables, respectively. The s(lat, lon)
smoother is a thin plate regression spline (Wood, 2003), using the basis
dimensions k (Wood, 2017). The results were then used to predict the
occurrence and the presence in survey catches on a spatial grid im-
plemented in Ecospace (i.e., 0.125° x 0.125°). Consequently, the hurdle
model (hurd) was applied, combining the resulting predictions of the
two models, PÂ and CPUE^ :

= ×hurd PA CPUE^ ^ . (3)

Finally, all model predictions were standardized between 0 and 1,
dividing all predictions by their annual maximum for the later use in
Ecospace. In some cases the annual CPUE was n<=10 and could not be
modelled for these specific years (pertains six FGs) even though over all
the species were well represented within the data. In these cases, maps
from the previous year were taken (see Appendix B).

2.4. Ecospace scenarios

Eight scenarios were tested to evaluate the influence of the different
habitat preferences representations (PA versus hurdle) and to address
the second aim of the paper, the analysis of the best input frequency.
Each representation was applied at each frequency (Table 1). The
baseline scenario was used to compare the originally static version of
Ecospace to the time dynamic foraging capacity.

For each scenario, skill assessments for the model predictions of
biomass and catch have been conducted for all FGs that have been fitted
to time series in the underlying Ecosim (Table 2, see Appendix B for a
list of FGs used for the skill assessment). Before calculating fit statistics,
these biomass and catch time series were smoothed by applying a GAM
to represent general trends. Furthermore, since the reference time series
of biomass and catch are relative measures only, they were scaled to the
absolute values resulting from Ecospace (for more information see
Appendix B). We used a set of measures for the skill assessment. They
inform about either the temporal, the spatial or the spatial-temporal fit
of Ecospace. The root mean square error (RMSE) describes the distance
between simulated and observed time series. Model efficiency (MEF) is
a measure of model skill with respect to the range of natural variations.
A value >0 indicates a close match between the time series, while
values <0 indicate that a constant value would be a better predictor
than the simulations (Stow et al., 2009). In this study, for biomass and
catch the MEF was calculated in relation to the biomass or catch value
of the base year 1991. To assess the spatial fit of the different scenarios,
the Schoener's D index was used. It serves as a metric to calculate
spatial niche overlap, and therefore enabling the spatial comparison
between the SDMs and Ecospace. It is based on the probability of oc-
currence, ranging from 0 (no match) to 1 (maps are identical;
Schoener, 1968; Warren et al., 2008). Here we applied the hurdle-based
habitat preference maps from the SDM models a second time. Not as
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input maps into Ecospace, but as a reference of observed habitat pre-
ferences. We used the hurdle maps rather than the PA maps, because
they include species abundance (here: survey-based CPUE) and not just
presence/absence and the resulting maps in Ecospace are representing
biomass rather than just presence/absence distributions. To avoid
confusion with the hurdle scenarios, it will be called abundance re-
ference from here on. The overlap was therefore calculated between the
Ecospace biomass distributions at the end of every year and the abun-
dance reference.

Spatially resolved catch data for the entire time period in this study
was not available. Therefore, a comparison between observed fishing
distribution and spatially disaggregated Ecospace catch results was not
an option. We calculated the Pearson correlation (PEAR) between re-
ference time series used in Ecosim for catch and catch results derived
from Ecospace as an additional metric to evaluate the fit of the model in
terms of spatially aggregated catch.

Thresholds were applied to assess the number of FGs that achieve a
good fit in relation to a satisfactory threshold. Some of the thresholds
were chosen ad hoc, others were defined based on their general range
(like Schoener's D index). Additionally, a Taylor diagram (Taylor, 2001)
was created between the abundance reference and the scenario outputs,
to directly evaluate the spatial-temporal fit. Each grid cell of each year
for each FG was compared between observation and scenario output to
account for differences in space and time.

3. Results

3.1. Comparison of Ecospace scenarios - Biomass

The model fit of Ecospace was evaluated for three aspects (temporal,
spatial and spatial-temporal fit) and for two variables (catch and bio-
mass). Results for the skill assessment metrics evaluating the temporal
fit of the mean biomass revealed, that scenarios forced with capacity
maps from PA GAMs provide better fits than the scenarios that were
forced with capacity maps from the hurdle model (Table 3). Among the
PA forced scenarios, the multi-year scenario achieved the best results
for MEF and RMSE, while the static baseline scenario performed worst
in terms of RMSE. In contrast to the PA scenarios, the temporally
variable hurdle scenarios performed worse than the static baseline
scenario in the case of metrics that evaluate the temporal fit. The sea-
sonal hurdle scenario had to be excluded from all following skill as-
sessments, since it resulted in the depletion of the FG mature herring,
implying a bad fit already within the Ecospace run.

When comparing the spatial distribution of the abundance reference
with the Ecospace maps, the Schoener's D index showed the best results
for the temporally variable hurdle scenarios. All PA scenarios followed
this and the worst fit was achieved with the static hurdle baseline
scenario. Evaluating individual Schoener's D indices on FG level re-
vealed only small differences within the PA or hurdle scenarios.
Therefore, in the following, only the example of the PA annual scenario
is discussed in detail (see Appendix B for the other individual results).
Only two of the thirty-two FGs with foraging capacity maps displayed
medians below the threshold of 0.5 for the individual Schoener's D
indices (Fig. 3). Gurnards and herring (adult) had the worst fits in all PA
scenarios with time dynamic maps. Some FGs showed a large range of

Table 1
Scenarios of implementing habitat preference maps at different temporal frequencies. Each frequency was tested twice, once with habitat preference maps based on
the presence/absence model, once with maps based on the hurdle model.

SDM Scenario name Frequency Data Input

presence/absence Seasonal Every 6 month, implemented in January and July IBTS FGs: maps for Q1 and Q3
BTS FGs: maps only for Q3, starting map for the first half of 1991

presence/absence Annual Annually, implemented in January IBTS: Mean map of Q1 and Q3
BTS: map of Q3

presence/absence Multi-years Every 5 years (1991, 1996, 2001, 2006) IBTS and BTS: Mean map for 5 years (1991–1995, 1996–2000, 2001–2005, 2006–2010)
presence/absence Baseline Once before the run IBTS: Mean map of 1991

BTS: Q3 map of 1991
hurdle Seasonal Every 6 month, implemented in January and July IBTS FGs: maps for Q1 and Q3

BTS FGs: maps only for Q3, starting map for the first half of 1991
hurdle Annual Annually, implemented in January IBTS: Mean map of Q1 and Q3

BTS: map of Q3
hurdle Multi-years Every 5 years (1991, 1996, 2001, 2006) IBTS and BTS: Mean map for 5 years (1991–1995, 1996–2000, 2001–2005, 2006–2010)
hurdle Baseline Once before the run IBTS: Mean map of 1991

BTS: Q3 map of 1991

Table 2
Skill assessment metrics. Thresholds mark the breaking point above which the
results were classified as satisfying. Sim represents the smoothed mean biomass
or catch results of Ecospace extracted at the end of each year; obs refers to the
equivalent time series implemented in Ecosim. Except for Schoener's D, all
values were log-transformed. psim represents probability values in the annually
extracted Ecospace results for each cell and pobs probability values in each cell
of the reference maps.

Metric Formula Threshold

Root mean squared
error (RMSE)

∑ = −i
N obs

N
1(sim )2 RMSE<=0.25

Model efficiency
1991 (MEF)

∑ = − − ∑ = −

∑ = −

i
n obs obs i

n sim obs

i
n obs obs

( 1( 1991)2
1( )2

1( 1991)2
MEF>0

Pearson correlation
(PEAR)

Cov sim obs
Var sim Var obs

( , )
( ) * ( )

PEAR>=0.75
PEAR<=−0.75

Schoener's D − ∑ −psim pobs1 | |i
1
2

Schoener's D>=0.5

Table 3
Model efficiency (MEF) and root mean squared error (RMSE) were used to
assess the temporal fit, and Schoener's D index was applied to evaluate the
spatial fit. All metrics show the skill assessment based on biomass averaged over
all FGs for each scenario. Results marked with * represent the best results in
terms of the overall mean. The numbers within the brackets display percentage
of functional groups that exceeded the thresholds (MEF threshold= 0, RMSE
threshold= 0.25, Schoener's D index= 0.5). .

Scenario\Skill MEF biomass RMSE biomass Schoener's D biomass

PA Seasonal 0.497 (92.2) 0.4123 (33.3) 0.6695 (96.9)
PA Annual 0.5358 (94.1) 0.4065 (33.3) 0.6734 (93.8)
PA Multi-years 0.5719 (92.2)* 0.3986 (37.3)* 0.6587 (93.8)
PA Baseline 0.5421 (96.1) 0.4145 (29.4) 0.6214 (87.5)
Hurdle Annual −0.2413 (70.6) 0.5466 (17.6) 0.7503 (93.8)*
Hurdle Multi-years 0.0518 (70.6) 0.5198 (19.6) 0.7182 (93.8)
Hurdle Baseline 0.551 (94.1) 0.423 (31.4) 0.5454 (68.8)
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values in between years (e.g. monkfish, norway pout, thornback and
spotted ray), while others showed ‘outliers’, identified by the boxplot.
There was no evident correlation between the trophic level and the fit
of the model. In addition, there was no evident difference between FGs
for which the foraging capacity was forced by habitat preference maps
based on data of the IBTS and the BTS survey. Due to sampling design,
the former were forced by a mean map between Q1 and Q3, while maps
based on data collected in Q3 only forced the latter. Multi-stanza FGs
displayed no pattern within these results.

Ranking MEF of all scenarios (1 – best to 7 – worst) for the different
FGs individually revealed differences in the best fitting scenarios
(Fig. 4). The PA multi-years scenario showed the worst fit for only two
FGs, which also reflected the general trend towards the multi-year
scenario as the one with the best fit for biomass. FGs for which this
scenario had the worst fit were nephrops and sandeels. For most FGs,
the temporally variable hurdle scenarios ranked lowest among the MEF,
as expected based on the summarized results over all FGs. Nevertheless,
some FGs seemed to benefit from these scenarios, the majority being
mostly FGs with quite low trophic levels. The PA baseline scenario also
showed fifteen ranks five and higher, while the hurdle baseline scenario
shows twenty-three ranks five and higher. This indicates that adding

variability in the foraging capacity during the run by updating the
habitat maps increases the MEF. Overall, the preference for scenarios
between the different FGs was quite diverse. There was no evident
pattern or clustering based on trophic levels or ecological niches. What
became apparent was the dominance of the PA scenarios over the
hurdle scenarios when condensing the FGs into larger groups and cal-
culating the mean rank for the MEFs of the scenarios. The hurdle
baseline or the hurdle multi-year scenario have a positive effect only on
other demersal fish and crustaceans, the latter being the only group
where solely a hurdle scenario is beneficial.

Mean biomass over time evaluated for four commercially important
FGs (mature cod, whiting, sole and plaice) as examples, revealed dis-
tinctive patterns for each scenario (Fig. 5). These displayed FGs were
subjected to different kinds of spatial-temporal forcing. The foraging
capacity of cod (adult) and whiting (adult) was based on the IBTS
survey; thus, the maps varied for Q1 and Q3. They were therefore the
class of FGs that were directly influenced by changing foraging capacity
within the seasonal scenario. For sole (adult) on the other hand the
distribution was based on the BTS survey, so solely on Q3. Plaice (adult)
is shown as an example of FGs, which was only forced by the dis-
tribution of the connected stanza plaice (juvenile) and a static basemap.

Fig. 3. Schoener's D index as a measure of niche overlap from 1991 to 2010 for each functional group forced with annually changing PA habitat capacity maps. Thick
black line marks 0.5, the threshold above which the fit was considered acceptable. The boxplot indicate median, upper, and lower quartile for each group. Lines
below and above the boxes indicate values outside the middle 50% range while dots represent outliers.
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Therefore, within these four FGs there was an increase in complexity of
forcing. All four revealed that the hurdle scenarios, which represented
the abundance-based maps, underestimated the biomass for these FGs
in most cases, especially in the beginning of the run. Only in the case of
cod (adult) the annual and multi-years hurdle biomass exceeded the
reference time series after 2000. In most cases for the PA scenarios, the
trend depicted in the Ecospace scenarios matched those of the time
series and with increased periodicity of map input, the peaks of the
reference time series were being matched. What did become apparent,
especially in the case of PA scenarios, was that steep and abrupt
changes in biomass were not accounted for in all Ecospace scenarios.
The steep decrease of cod (adult) biomass beginning in 1998 was not
represented. Additionally, there was a lack of biomass decrease for
plaice (adult) and sole (adult) in the beginning of the time series.

To evaluate the temporal and spatial fit in combination, the corre-
lation and the centered root mean squared error (RMSE) between
Ecospace biomass layers and the abundance reference for all scenarios
were evaluated with a Taylor diagram (Fig. 6). Within this diagram, the
abundance reference is represented by the circle labeled “observation”.
Therefore, the closer a symbol for the scenario is to the observation, the
better the fit. For this analysis, the variation between the standard
deviation of the Ecospace output and the observed abundance reference
was smaller for the hurdle scenarios. This was to be expected, since the
abundance reference is the output of the hurdle SDM. Therefore, the
spatial overlap is closely related. Yet, the PA scenarios result in better
RMSE and correlation than the hurdle scenarios. Within the hurdle
scenarios, the annual scenario had the best correlation and RMSE,
which were quite similar for the other two scenarios. Yet these two

Fig. 4. Ranked model efficiency for biomass per functional group per scenario with the best (1) to worst (7) fit, from dark to light blue. Scenarios from left to right:
S= Seasonal, A= Annual, M= Multi-years, B= Baseline. Functional groups are sorted by trophic level. Species silhouettes represent different ecological groups,
colors represent the scenario with the best fit (mean rank over all functional groups within the group). From top to bottom: marine mammals & birds, elasmo-
branches, gadoids, forage fish, other demersal fish, flatfish, crustacean (commercially important), zooplankton and benthos. If a group has multiple colors, it points to
multiple best fits. .
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scenarios (hurdle multi-years and hurdle baseline) perform better in
terms of standard deviation. For PA, the three temporally variable
scenarios reached quite similar results, while the static baseline sce-
nario had a better standard deviation but a worse correlation and
RMSE.

3.2. Comparison of Ecospace scenarios - Catch

Since the distribution of catch was not based on a GAM and has
therefore no spatially resolved maps to compare to, the catch skill as-
sessment only evaluates the temporal fit. It is based on a comparison
between the observed relative time series included in Ecosim and the
mean catch values obtained from the different Ecospace scenarios
(Table 4). The metrics used to distinguish between the fits of the models
shown here were MEF, RMSE and PEAR. Similar to biomass, the time
dynamic hurdle scenarios showed the worst fit in all metrics, while the
hurdle baseline scenario comes close to the results achieved with the PA
scenarios. Overall, the seasonal as well as the multi-years PA scenario
showed the best fit, supporting once more the decision towards a multi-
year PA scenario.

A more concise picture emerged based on the ranked MEF for the
single FGs (Fig. 7). Similar to biomass and expected based on the skill
assessment metrics table, the temporally variable hurdle scenarios
showed the worst fit for most of the FGs. Only for a few foraging fish,
demersal fish and flatfish the fit was better for these scenarios. Espe-
cially for the higher trophic levels, the annual hurdle scenario almost

always resulted in the worst overall MEF. This was also reflected in the
grouped MEF ranks displayed by the FG silhouette in different colors.
The PA seasonal and the PA multi-years scenario showed the best fit for
most of the ecological groups (three times red (PA seasonal) and four
times orange (PA multi-years)). The hurdle baseline scenario had a
good fit for three of the ecological groups, but also received the lowest
rank seven times. This shows a high variation in model fit for the dif-
ferent scenarios among the ecological groups, especially when it comes
to the hurdle scenario. The two annual scenarios and the hurdle multi-
years scenario did not achieve the best grouped MEF for any ecological
group.

Mean catch over time was analyzed for the same FGs as for biomass
in Section 3.1, they therefore underlie the same foraging capacity for-
cing (Fig. 8). The increasing variability over time was visible here as
well, but not quite as apparent as for biomass. The PA based scenarios
matched the time series especially in trend and in most cases, they
matched the observations. Yet, here again the southern North Sea
Ecospace model failed to account for strong changes in the catch time
series, as it was visible for biomass time series comparison of cod
(adult). The hurdle scenario on the other hand completely under-
estimated the catch for cod, plaice and sole, especially in the beginning
of the time series. In most cases, even the trend was not that precise
within the hurdle scenarios.

Overall, the results showed, that the fit of these scenarios differed
between the different metrics applied and that each aspect had to be
taken into account, temporal, spatial and spatial-temporal. Even

Fig. 5. Mean biomass [t/km2] over all cells per year for selected commercially important functional groups. Left: PA scenarios, right: Hurdle scenarios. Different
colors represent the different scenarios, while the black line represents the observations scaled by the FGs biomass entered in Ecopath.
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between catch and biomass, the scenarios with the best fit differed. Yet,
one concise result was the dominance of varying foraging capacity over
time and the necessity of a broader definition of this capacity by ap-
plying maps based on presence/absence (Table 5).

4. Discussion

4.1. Goals, insights and uncertainties

Within the spatial-temporal framework of EwE, it is now possible to
combine habitat preference maps based on SDMs with Ecospace and
update these maps during its execution. One of the main goals of this
study was to analyze the effect of implementing either presence/ab-
sence or abundance-based maps as habitat preferences into a mechan-
istic trophic food web model. Our study showed that the interpretation
of habitat preference could largely affect model's outcomes and fits. We
demonstrate that it is necessary to select SDM settings that can inform
habitat preference maps without overly constraining trophic or other
processes to be addressed by the food web model. This can be achieved
by choosing a model with a sigmoidal response (for instance, the lo-
gistic model), which leads to a spatial distribution allowing a broader
foraging capacity than with a model with exponential response (as the

hurdle model). Furthermore, the aim was to evaluate and illustrate the
benefits of accounting for changes in habitat preferences over time. All
modeling performance metrics employed showed that accounting for
changes over time leads to better fits than static maps. Additionally, we
displayed a way of how to assess the performance of an Ecospace model
outside of EwE.

This Ecospace model is also subject to structural and parameter
uncertainties. Building on two other components, Ecopath and Ecosim,
Ecospace already inherits uncertainties introduced by these, like data
on diets that stem from a single year only (Stäbler et al., 2016) or
missing processes as encountered for the stock dynamics of cod (Fig. 5).
These uncertainties may increase when combining SDMs and models
with trophic interactions. There is a wide range of species distribution
models (Guisan and Zimmermann, 2000), of which we tested two ap-
proaches to find the best model for our purposes.

Furthermore, it is an important issue that there is no standard
routine to optimize Ecospace parameterizations. While for Ecopath and
Ecosim there are implemented routines to evaluate the model fit and
uncertainties (Steenbeek et al., 2018), Ecospace models have to be as-
sessed outside of EwE. We tried to overcome this shortcoming by
creating a routine outside of EwE to evaluate the fitting performance of
different scenarios by temporal and spatial comparisons to empirical
data. We were able to give insight into problems and pitfalls when
combining SDM based distribution maps with trophodynamic modeling
in Ecospace, which is quite a new approach. Therefore, this work may
serve as basis for further case studies and developments in this field.

4.2. Defining habitat capacity in combination with trophodynamic
modeling

Implementing SDMs into Ecospace can be a good asset to make food
web modeling more robust. A recently published approach by
Coll et al. (2019) implemented results from a Bayesian SDM model,
either as foraging capacity maps or as environmental forcing function.
For their data-poor case study, the combination of both modeling
techniques increased the fit compared to an Ecospace that is not in-
formed via SDM. Before the possibility of implementing foraging ca-
pacity maps, SDMs could only be incorporated by applying a response
curve to environmental layers based on the SDM results
(Chagaris, 2013). For these it has to be decided on which factors to
include and all chosen drivers have to be incorporated into Ecospace
separately (Grüss et al., 2018). This envelope approach expects a cer-
tain mechanistic understanding of the different abiotic drivers that in-
fluence habitat preferences, which brings about the possibility that
certain influencing factors might be missed by this method. Never-
theless, one advantage of this method is the flexibility of changing
abiotic driver maps to existing preference functions to test, for example,
climate change scenarios. Also it poses a good approach for models in
populations and areas that are data poor (Coll et al., 2019).

For areas with good data availability, like the southern North Sea,
the need for previous knowledge about mechanistic processes can be
overcome by applying SDMs with latitude and longitude as predictors,
bypassing the necessity to include other abiotic factors that drive the
distribution. This may be sufficient to evaluate e.g., the impact of a
closed area under the assumption of non-changing foraging capacity.
However, the way the single species GAMs were built for this study does
not allow to test the influence of different environmental parameters in
predictions and forecasts based on varying environmental factors (e.g.
analysis of the influence of climate change). However, other environ-
mental factors can easily be incorporated into the GAMs for future
endeavors (e.g. Núñez et al., 2019).

Compared to Coll et al. (2019), we used the spatial-temporal fra-
mework to update the habitat preferences derived from SDMs directly
as foraging capacity maps during the execution of Ecospace, rather than
inducing changes in the abiotic driver maps connected to forcing
functions. Implementing habitat preference maps within the spatial-

Fig. 6. Ecospace-simulated biomass vs. observed abundance (CPUE) by sce-
nario in terms of correlation (right arch), RMSE (green arch) and Standard
Deviation (x and y axis). Both biomass and abundance data are log-transformed,
and log-abundance values were re-scaled with a parameter q, derived for each
unique scenario and FG. Comparisons were made per cell per year per func-
tional group.

Table 4
Model efficiency (MEF), root mean squared error (RMSE) and Pearson corre-
lation (PEAR) based on catch assessment for each scenario displaying the mean
over all functional groups. Results marked with * represent the best results in
terms of the overall mean. The numbers within the brackets display percentage
of functional groups that exceeded the thresholds (MEF threshold= 0, RMSE
threshold= 0.25, Schoener's D index= 0.5).

Scenario/Skill MEF catch RMSE catch PEAR catch

PA Seasonal 0.4829 (89.7)* 0.5016 (28.2) 0.478 (64.1)*
PA Annual 0.4664 (89.7) 0.4931 (33.3) 0.4289 (64.1)
PA Multi-years 0.4489 (89.7) 0.4885 (33.3)* 0.4393 (61.5)
PA Baseline 0.4065 (92.3) 0.4937 (30.8) 0.4141 (61.5)
Hurdle Annual 0.1385 (76.9) 0.6043 (12.8) 0.2364 (38.5)
Hurdle Multi-years 0.3182 (79.5) 0.5557 (15.4) 0.2287 (53.8)
Hurdle Baseline 0.428 (89.7) 0.5024 (30.8) 0.4572 (59.0)
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temporal framework opens the possibility to account for different in-
fluences and their strength over time (Steenbeek et al., 2013). Yet there
is no common agreement on what habitat preferences to incorporate
(e.g. which abiotic and biotic factors) and there are no clear guidelines
on how to include these preferences into a complex ecosystem model
where trophic interactions and fishing pressure have to be accounted
for. It was demonstrated that presence/absence based habitat pre-
ferences overall performed better than the abundance weighted hurdle
model based preferences. This might be an effect of the data used, as
survey data constitute a representation of spatial abundance distribu-
tions in a single point of time, but we would argue that it is rather a
general effect of the mathematical profile underlying the models.

The presence/absence model was fitted with a logit link, resulting in
a sigmoidal profile, while the presence only model was fitted with a log
link, which results in an exponential profile. Combining these two

models leads to an exponential profile for the final hurdle model. While
the sigmoidal profile allows a more general representation of distribu-
tion, the exponential profile highlights the areas with high abundances.
Both profiles come with benefits but also restrictions. Combining the
sigmoidal profile with a trophodynamic model allows for enough flex-
ibility for further interactions that might influence the habitat pre-
ference of a species. Moreover, even though the hurdle scenarios
yielded better results for the Schoener's D index, it showed that the
more general approach of implementing the presence/absence maps
was able to represent the distribution of the single FGs as well when
combined with the ecosystem model. Yet this profile lacks the oppor-
tunity to include known hot spots with high interests for the species and
good foraging opportunities (example maps in Fig. 9). The skill as-
sessment of the hurdle model on the other hand showed, that the im-
plementation of maps based on an exponential profile creates too much

Fig. 7. Ranked model efficiency for biomass per functional group per scenario with the best (1) to worst (7) fit, from dark to light blue. Scenarios from left to right:
S= Seasonal, A= Annual, M= Multi-years, B= Baseline. Functional groups are sorted by trophic level. Species silhouettes represent different ecological groups,
colors represent the scenario with the best fit (mean rank over all functional groups within the group). From top to bottom: elasmobranches, gadoids, forage fish,
other demersal fish, flatfish, squid and cuttlefish, crustacean (commercially important) and benthos. If a group has multiple colors, it points to multiple best fits.
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spatial restriction. This constraint can have multiple effects within a
spatial food web model. It can induce perfect overlap with the predator
and fleets, which leads to high pressure on the FG and not much space
to escape. Alternatively, as opposed to this, there can be no or hardly
any overlap with predators and fleets, which in turn leads to an un-
controlled increase in biomass. Furthermore, there can be no or just
minimal overlap with the own prey, which can lead to starvation.

Implementing these habitat preferences into Ecospace during the
run raised the question on the best periodicity. Our results show that
accounting for changes in distribution of species over time increases the
overall fit of the model to spatial-temporal data. It could be argued, that
the hurdle scenarios with the generally inferior fit implied a different
conclusion. Here the static baseline scenario had the best fit. But this
was only the case when concentrating on the metrics evaluating the
temporal fit. The spatial metric Schoener's D index revealed that the
static baseline scenario had the worst fit among all hurdle scenarios.
This implies, that even though this scenario is good in reproducing
temporal trends, it does so on the cost of spatial redistribution and thus

becoming more unrealistic compared to the other scenarios.
For catch, the multi-years scenario and the seasonal scenario dis-

played the best results. Most fishing habitats were created based on
known fishing areas, wide enough to redistribute the effort in case of
shifts in habitat preferences. Therefore, adapting to more rapid changes
over time might not be as crucial as for biomass. This is in line with
findings by Romagnoni et al. (2015) who also found that changes in
different parameters for their Ecospace of the entire North Sea (IV a, b
and c) affected biomass and catch differently. This can be justified by
the way effort is distributed in Ecospace. Each fleet's effort is pro-
portionally distributed over the cells by a “gravity model”, dependent
on the sum over the FGs biomass caught by the fleet times the off-vessel
prices and the catchability for each FG (Walters et al., 1999). If the
fishing area covers enough ground to react to shifts in distribution, it
follows the redistribution.

Considering all results, it reveals that in terms of periodicity the
multi-years scenario performs best. Yet, the periodicity should support
the time period one would like to study (e.g. short period: seasonal
might work better, long period: seasonal may not be necessary, annual
or even multi-years can suffice) and the research questions the model
was built for (e.g. long-term changes in the ecosystem vs. effects of
rapid increase of fishing mortality in the distribution of species).
Furthermore, changes within the ecosystem during the run were only
represented by the changes in foraging capacity. Including monthly,
seasonal or annual changes of the chlorophyll-a maps or accounting for
changes in water temperature might be necessary to adequately re-
present the changes over time and to reach a better model fit.

Fig. 8. Mean catch [t/km2] over all cells per year for selected commercially important FGs. Left: PA scenarios, right: Hurdle scenarios. Different colors represent the
different scenarios, while the black line represents the observations.

Table 5
Summary of the best fitting scenarios under the different dimensions (temporal,
spatial, spatial-temporal). Displayed for biomass and for catch.

Dimension Biomass Catch

temporal PA multi-years PA seasonal
Spatial hurdle annual –
spatial-temporal PA seasonal, annual, multi-years –
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4.3. Best practice suggestions for applying a spatial-temporal framework to
foraging capacity and shortcomings identified

There are several key best practice suggestions arising from this
study for forcing the foraging capacity via the new Ecospace spatial-
temporal capabilities. First, when applying scaled habitat preferences
predicted with SDMs as foraging capacity, the best performing SDM
may not be the best to use in an ecosystem model context. Although the
exponential profile of the hurdle model has a better representation of
the CPUE data, Ecospace performed worse when fed with its output.
This is likely because the sigmoidal profile of the presence/absence
maps is more informative as overall habitat capacity measure and ad-
ditionally more flexible towards further mechanistic structures within
the ecosystem model and therefore improving our knowledge on ha-
bitat preferences. Implementing time dynamic maps is the preferred
option over a constant base map. Time dynamic maps are an important
improvement in Ecospace especially in times of climate change; where
in future work the temporal shift in temperature can be accounted for
within the foraging capacity maps.

The study also identifies a few caveats. First, there is still no auto-
mated routine to evaluate the fit of Ecospace. We chose to test the fits
using a set of skill assessment metrics and it has proven a good way to
find the settings with the best fit. It is important to apply a wide set of
different metrics to assess the fit of an ecosystem model, to account for
the temporal and spatial fit (Olsen et al., 2016). Model efficiency with
the value for the base year 1991, as well as the Pearson correlation (for
catch) and root mean squared error served as metrics that informed
about the mean temporal fit over the years. Nevertheless, these metrics
did not account for spatial dynamics in habitat preference maps over
time when compared to the empirical time series. This could be ac-
complished with the Schoener's D index, which measures the niche
overlap, and therefore allows the spatial comparison between the
Ecospace output maps and the abundance reference. The combination
of the spatial and temporal fit could be achieved with the Taylor

diagram, comparing Ecospace and abundance reference standardized
maps for all years per grid cell.

One major issue within Ecospace is the current inability to react to
situations like partial spatial mismatch between predator and prey by
changing vulnerabilities based on occurrences in space. Vulnerabilities
are only fitted to Ecosim time series, not taking the amount of spatial
overlap into account. As done with this model for brown shrimp,
changing single vulnerabilities within Ecosim is possible and justifiable
(too much pressure of the adult stanza on the juvenile, while they are
both common within a narrow area at the coast). Nevertheless, there is
no other way than visibly checking the fit and using skill metrics as
done here, to validate the changes. An automated routine, like the
automated fitting routine for vulnerabilities and primary production
splines applicable to Ecosim (Mackinson et al., 2009; Scott et al., 2016)
would be a necessary improvement to account for species overlap in
narrow areas. Additionally, as seen in Fig. 5, most sharp changes of
biomass compared to the observation are hard to meet in this complex
ecosystem model. Especially steep downward trends within the time
series (as seen for cod, sole and plaice) have proven to be a challenge.
There is a need for additional spatial processes, for example by im-
plementing mediation functions or account for biomass accumulation
based on spatial conditions, to match these trends and to force a steeper
biomass trend in Ecospace.

When fitting Ecospace, multi-stanza groups have to be fitted with
caution, as seen in this study for plaice. Distributions of juveniles and
adults of the same species are linked through the implementation of
multi-stanza group settings (Walters et al., 2010), so it may improve the
fit if forcing of stanzas distributions separately were possible. There-
fore, the distribution of plaice was driven by forcing the foraging ca-
pacity of only the juvenile life history stage over time to avoid over-
fitting the model. In agreement with the Schoener's D index, the results
showed a good niche overlap for the spatial distribution of plaice ju-
venile and adults, confirming that forcing the foraging capacity of only
one of the two multi-stanza was sufficient to drive spatial distributions

Fig. 9. GAM based distribution maps (left) and how they are incorporated in Ecospace (right). The top row represents presence/absence maps with the sigmoidal
profile, while the lower row represents hurdle maps with the exponential profile. Here on the example of plaice (juvenile). The size of the circles in the hurdle map
display the different CPUE values.
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of both stages. For highly cannibalistic groups however, it might be
necessary to force one part of the multi-stanza, e.g. by migration to
spawning grounds, to account for changes that only apply to one species
life stage. This would be particular relevant when using multi-stanza for
species that have very different ecological and trophic ontogenetic
changes across their life stages (e.g. eggs, larvae, juveniles and adults).

Even though the Schoener's D index of most FGs surpassed the
threshold, there is a difference in variability (Fig. 3). The highest
variabilities are displayed in pelagic FGs and FGs where the survey
coverage might not have been extensive enough. This has two im-
plications. First, it is important to carefully select FGs and the corre-
sponding data when applying SDMs to Ecospace. The smaller the data
coverage for the SDM the more variability in the spatial fit. Second,
Ecospace seems to perform better when reproducing spatial distribu-
tions of more spatially bound FGs than for the fast moving pelagic FGs.

5. Conclusion

In our study, the new capabilities of Ecospace have proven to be a
beneficial asset when reconstructing species’ spatial distributions and
their shifts over time. It also showed that in an ecosystem model like the
one for the southern North Sea, implementing temporally changing
habitat preferences maps based on PA on a sigmoidal profile generate
better results than an exponential profile based on CPUE. Furthermore,
combining SDMs with this trophic model has the potential to further
inform about habitat preferences that include biotic interactions in-
troduced by Ecospace. Nevertheless, our knowledge about the best
practice in the new spatial-temporal external foraging capacity im-
plementation could benefit from testing further strategies of fitting. In
the future, the new capabilities inside Ecospace can be applied to assess
changes in ecological indicators over time as well as to test different
management strategies within the framework of marine spatial plan-
ning. In the light of climate change, it is possible to test how ecosystems
react to temperature driven foraging capacities. Finally, there is not one
best practice how to construct an ecosystem model. As with all models,
the best model is always the one that best answers your research
question in your part of the world's oceans and the best periodicity
might differ between models and research questions. However, our
study adds insights on the impact of habitat capacity maps on Ecospace
results and helps to identify the issues that need to be taken into ac-
count when using SDMs as input for ecosystem models like Ecospace.
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