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A B S T R A C T   

Climate change-driven extreme climatic events are expected to challenge ectotherms’ physiological tolerance. 
The hemato-physiological modulation potentials of fish during ambient extreme-cold events at various salinities 
are poorly studied. In this study, we evaluated the growth, hemato-physiological, antioxidants, and immuno
logical responses of European seabass, Dicentrarchus labrax acclimatized at 30, 12, 6, and 3 PSU followed by an 
extreme ambient cold (8 ◦C) exposure for 20 days. Juveniles acclimatized at 30 and 3 PSU showed significantly 
low growth performance (p < 0.05). Red blood cells (RBC) count, hematocrit, hemoglobin, and serum protein 
content were decreased in 3 and 30 PSU fish. In contrast, significantly higher white blood cells (WBC) count, skin 
mucus cortisol, different types of erythrocytic cellular abnormalities (ECA), and erythrocytic nuclear abnor
malities (ENA) were observed in 30 and 3 PSU fish. Also, higher activities of serum antioxidants [superoxide 
dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR)], and upregulation of 
tumor necrosis factor α (TNF-α) in the spleen were observed in 3 and 30 PSU fish. In addition, on day 20, 
phagocytic respiratory burst (RB) and serum lysozyme activities (LSZ) were significantly higher in 3 and 30 PSU 
fish during extreme cold exposure. None of the repeatedly evaluated parameters indicated acclimation capacity 
to cope with tested salinities during cold exposure. However, taken together, our results indicate that Dicen
trarchus labrax acclimatized at intermediary salinities (6 and 12 PSU) can perform comparatively better during 
ambient extreme-cold exposure (8 ◦C).   

1. Introduction 

Global climate change is a grievous and growing threat to natural 
systems and their species. Specifically, aquatic environments are harshly 
affected by the alterations in temperature and precipitation patterns, 
which affect water quality parameters including temperature and 
salinity (Cline et al., 2020; O’Gorman et al., 2016; Poff, 2002; Sharma 
et al., 2015; van Vliet et al., 2013). In recent decades, temperature and 
precipitation patterns have changed noticeably at global and regional 
scales (Jensen et al., 2015; Tsuzuki et al., 2007) and are predicted to 
occur more intensely and frequently than ever before (Fischer et al., 
2013; García-Herrera et al., 2010; Pfahl et al., 2017). These predicted 
trends are consistent with observed extreme climate events (Donat et al., 
2016; Fischer et al., 2013; Fischer and Knutti, 2014; Galappaththi et al., 

2020; Webster, 2020). Southern Europe and the Mediterranean region 
have witnessed extreme temperatures and precipitation events (Diodato 
et al., 2019; López-Moreno et al., 2017; Philandras et al., 2011; Seager 
et al., 2019). The Mediterranean region, located in the transition zone 
between the dry subtropical and wet European mid-latitude climate, is 
very sensitive to deviations from the global mean climate state (Barci
kowska et al., 2018; Gao et al., 2006). Over the Mediterranean Basin, 
decreased frequency of low-medium-intensity precipitation is projected 
to intensify extreme precipitation (Polade et al., 2017). Despite a 
decrease in mean precipitation during winter, drastic heavy rainfall is 
predicted to further increase across the Mediterranean (Barcikowska 
et al., 2018; Sen et al., 2019). In addition, extreme winter precipitation 
events are predicted to intensify (Coppens et al., 2020; Kotsias et al., 
2020) with more intense cold events (abrupt temperature drops, 
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snowfall, rain and sleet events) (Bech et al., 2013; Collados-Lara et al., 
2018; Diodato et al., 2019; Fayad et al., 2017; Pérez-Palazón et al., 
2018). 

Climate change is expected to challenge ectotherms’ ability to 
function optimally outside of their scope of tolerance (Kyprianou et al., 
2010; Pörtner and Peck, 2010) by modifying water quality and hydro
logical dynamics (Klein et al., 2017; Ruaro et al., 2019; Zafalon-Silva 
et al., 2017). Climate change-induced temperature and salinity fluctu
ations are anticipated to affect teleost’s physiological functions in tro
pics and temperate regions (Carney Almroth et al., 2019; Rosa et al., 
2014; Watson et al., 2018; Webster, 2020). This is specifically true for 
coastal environments including aquaculture systems (Carney Almroth 
et al., 2019; Rosa and Marques, 2012; Vargas-Chacoff et al., 2020). 
Changes in water temperature impair growth, physiological fitness 
(Besson et al., 2016; Carney Almroth et al., 2019; Donaldson et al., 2008; 
Islam et al., 2020a; Yilmaz et al., 2020), and metabolism (Mateus et al., 
2017; Nadermann et al., 2019; Richard et al., 2016). Thermal stress also 
impairs hydromineral balance (Christensen et al., 2017; Downie et al., 
2018; Islam et al., 2020c; Vargas-Chacoff et al., 2020), hormonal regu
lation, stress, and immune responses (Bly and Clem, 1992; Burgerhout 
et al., 2019; Phuc et al., 2017), and antioxidant responses (Feidantsis 
et al., 2020; Madeira et al., 2016; Martínez-Álvarez et al., 2005) in fish. 
Salinity changes also cause impairment in fish osmoregulation, endo
crine responses, physiological fitness (Islam et al., 2020b; Ma et al., 
2020; Saillant et al., 2003; Vargas-Chacoff et al., 2019), development, 
growth (Bœuf and Payan, 2001; Han et al., 1995; Servili et al., 2020; 
Yilmaz et al., 2020), antioxidants (Birnie-Gauvin et al., 2017; Chowd
hury and Saikia, 2020; Islam et al., 2020b; Lushchak, 2011) and immune 
responses (Bowden, 2008; Fries, 1986; Makrinos and Bowden, 2016). 
Combined stress from temperature and salinity impairs growth, physi
ological, metabolic, hormonal, and immune responses (Bento et al., 
2016; Masroor et al., 2019, 2018; Qiang et al., 2013) and beyond the 
(species-specific) preferred window are likely to result in excessive fish 
suffering (Gamperl et al., 2020; Islam et al., 2020b, 2020c; Musa et al., 
2017; Phuc et al., 2017). Fish are less likely to obtain relief from tem
perature and osmotic stress (Antonopoulou et al., 2020; Campos et al., 
2019; Evans and Kültz, 2020; Portner and Farrell, 2008), or combina
tions thereof (Evans and Kültz, 2020; Islam et al., 2020b; Masroor et al., 
2019; Phuc et al., 2017) through physiological and behavioral adapta
tions (Feidantsis et al., 2020, 2018; Portner and Farrell, 2008). 

Hematological parameters, antioxidant, immune responses, and cy
tokines genes are considered significant stress biomarkers for organisms 
exposed to thermal and osmotic stress, pollutants, and genotoxic agents 
(Gomes et al., 2015; Islam et al., 2019, 2020b; Roche and Bogé, 1996; 
Val et al., 2015; Witeska, 2013). Blood cells count, erythrocytic cellular- 
nuclear abnormalities, hematocrit, and hemoglobin, among others, are 
considered significant (Ashaf-Ud-Doulah et al., 2019; Islam et al., 2020c; 
Jahan et al., 2019; Sulikowski et al., 2003). Serum glucose, lactate, and 
antioxidants [glutathione peroxidase (GPx), superoxide dismutase 
(SOD), glutathione reductase (GR), catalase (CAT)] are also reported as 
important thermal and osmotic stress indicators in fish (Cossins, 1977; 
Islam et al., 2020c; Madeira et al., 2016). Different blood cell types such 
as ECA (echinocytic shape, elongated, teardrop, fusion, and twin); and 
ENA (micronucleus, binuclei, blebbed, notched, bud, and bridge) have 
been reported as thermal and osmotic stress biomarkers for fish (Avrova, 
1999; Cossins, 1977; Gracey et al., 2004; Islam et al., 2020c; Jahan et al., 
2019). Tumor necrosis factor (TNF-α) an important pro-inflammatory 
cytokine (He et al., 2017; Shen et al., 2018; Yada and Tort, 2016) acts 
as an important indicator of inflammation, immune responses (He et al., 
2017; Rymuszka and Adaszek, 2012; Shen et al., 2018; Yada and Tort, 
2016) and blood cell peripheral abnormalities for fish during osmotic 
and thermal stress (Islam et al., 2020b; Pettersen et al., 2005; Uribe 
et al., 2011). Cellular-metabolic viability and turnover, enzymatic an
tioxidants, and cytokine biomarkers can reveal the impacts of climate 
change-induced cold events in fish (Islam et al., 2020c; Val et al., 2015). 

European seabass, Dicentrarchus labrax is a popular marine 

aquaculture fish that spend their first year in shallow coastal water 
(Crespel et al., 2017; Claridge and Potter, 1983). In nature, European 
seabass hatch in the open sea (30 to 38 PSU) during winter, and young- 
of-the-year seabass are found close to the coast (Varsamos et al., 2001). 
Despite euryhaline nature and having well-developed osmoregulatory 
systems, for aquaculture practices, the ideal salinity of this fish at their 
juvenile stage ranges from 12 PSU to 25 PSU (Kokou et al., 2019; Saillant 
et al., 2003). Beyond this salinity range, the growth and physiological 
fitness of this teleost are impaired (Hwang et al., 2018; Islam et al., 
2020b; Masroor et al., 2019; Yilmaz et al., 2020). Although this fish can 
survive in a wide range of temperatures from 8 ◦C to 32 ◦C (Islam et al., 
2020b, 2020a; Islam et al.2020c;; Kousoulaki et al., 2015; Maulvault 
et al., 2017), but is sensitive to temperatures below 16 ◦C and over 25 ◦C 
(Islam et al., 2020a, 2020c; Claridge and Potter, 1983). The critical 
thermal minimum (CTmin) temperature of European seabass is 6.7 ◦C 
(Dülger et al., 2012). During extreme winter events, some parts of the 
Mediterranean coastal water temperature can decrease to 5.4–10 ◦C 
(Aranda et al., 2005; Besson et al., 2016; Dufour et al., 2009; Giorgi and 
Lionello, 2008; Llorente and Luna, 2013; Sen et al., 2019), which can 
result in lower growth, survival rate, and physiological impairment 
(Dülger et al., 2012; Islam et al., 2020a; Yilmaz et al., 2020). Alongside 
cold events increased winter heavy precipitation, predicted to intensify 
more in the future at the Mediterranean coast, could drop water salinity 
below 12 PSU (Bech et al., 2013; Coppens et al., 2020; Diodato et al., 
2019; Pérez-Palazón et al., 2018). 

To date, the literature contains research on European seabass related 
to temperature, salinity preferences (Dülger et al., 2012; Masroor et al., 
2019, 2018; Saillant et al., 2003), growth and nutritional management 
(reviewed in Oliva-Teles, 2000; Kousoulaki et al., 2015), physiological, 
immune responses (reviewed by Chistiakov et al., 2007). Metabolic, 
physiological, and molecular responses at altered salinities and tem
peratures have also been documented (Enes et al., 2006; Islam et al., 
2020c; Saillant et al., 2003). European seabass exposed to 8 ◦C and 32 
PSU salinity for 30 days adjusted its physiology to cold exposure within 
the first 20 days of exposure and remained almost the same afterward 
(Islam et al., 2020a, 2020c). Still, there is little information on the re
sponses when these fish are exposed to ambient extreme-cold events in 
winter months preceded by heavy precipitations-driven hyposaline 
water (Dülger et al., 2012; Rosa et al., 2012; Sarà et al., 2018). Infor
mation is lacking on fish response when temperatures and salinities fall 
below 10 ◦C and 15 PSU, respectively during intense precipitation and 
cold events in winter (Bento et al., 2016; Dülger et al., 2012; Person-Le 
Ruyet et al., 2004; Yilmaz et al., 2020). The combination of hemato- 
physiological, cellular, immunological, and molecular responses of 
this fish facing extreme ambient cold and hyposaline events have not yet 
been studied comprehensively. Thus, the current study intended to 
compare growth performance, selected fundamental hemato- 
physiological, immunological, and molecular biomarkers responses of 
European seabass before being exposed to a range of environmentally 
realistic hyposaline water regimes following an ambient extreme cold 
thermal (8 ◦C) stress exposure. This study hypothesized that European 
seabass is fully functional within the optimal salinities and thermal 
window, but could encounter varying physiological challenges outside 
of their preferred salinities during ambient extreme cold events. The 
current study experimentally tested this hypothesis by evaluating a 
range of hemato-physiological parameters. Growth performance was 
evaluated at different salinities to reveal individual fitness (Angilletta, 
2009; Jin et al., 2015; Li et al., 2015) while cellular, immunological, and 
molecular responses were observed to examine physiological fitness 
(Islam et al., 2020b; Madeira et al., 2013; Vinagre et al., 2012) during 
ambient extreme-ambient cold exposure. 
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2. Materials and methods 

2.1. Experimental animals and system design 

The experiment took place at Alfred Wegener Institute for Polar and 
Marine Research (AWI), Bremerhaven, Germany. The full experimental 
design has been depicted in the supplementary file-1 (Fig. S1). Juveniles 
European seabass (24.8 ± 1.69 g) were obtained from Les Poissons du 
Soleil marine hatchery, France. Before starting the experiment, fish were 
acclimatized to laboratory conditions for three weeks in a 2000 L tank at 
22 ◦C and 30 PSU. Then, a total of 192 fish of similar sizes were 
randomly distributed into 12 (4 treatments × 3 replicates) fiberglass 
tanks (100 L, 22 ◦C, and 30 PSU) with 16 individuals per tank. After 21 
days, fish were gradually exposed to four experimental salinities (30, 12, 
6, and 3 PSU) at 22 ◦C. The required water salinity was achieved by a 
reduction of 5 PSU every 3 days until the chosen salinity was reached 
(Islam et al., 2020c). All experimental salinity groups had been accli
matized to the experimentally preferred salinity for 45 days. Following 
this, fish of all salinities were exposed to 8 ◦C for 20 days. To mimic an 
extreme ambient cold event, the temperature was decreased at the rate 
of 4.5 ◦C day− 1 to reach 8 ◦C rapidly from 22 ◦C (acclimation temper
ature). Three consecutive days were required to reach the desired tem
perature. Intended temperature was reduced in the morning (9.00) of 
each day of the required three days. The 20 days of exposure to the 
extreme cold event was counted once the water temperature reached at 
8 ◦C. Throughout the experiment, the fish were reared to a 10:14 h 
light–dark photoperiod regime. The fish were fed twice a day (at 09.00 
and 16.00) with a commercial pellet (Alltech Coppens, Netherlands) 
containing 54% protein (please see Supplementary file-2, Table S 1 for 
nutritional composition). Each replicate tank was connected separately 
to a recirculatory water system fitted with a biofilter, UV light sterili
zation facilities, protein skimmers to ensure required water quality pa
rameters were maintained. The desired temperature was maintained 
with a temperature sensor (Inkbird, Germany) mounted with thermo
static cooling (Titan, Aqua Medic, Germany) and heating systems (Ti

tanium, Aqua Medic, Germany). Also, the whole experiment system was 
placed in a climate-controlled room to minimize errors. Any uneaten 
feed and fish feces were removed daily, and 50–60% water (with 
appropriate salinity and temperature) was exchanged to minimize 
ammonia nitrates and nitrites accumulation. This experiment was 
approved by the AWI laboratory animal ethics committee and based on 
EU Directive 2010/63/EU for animal experiments. 

2.2. Sampling 

During the ambient extreme-cold temperature stress period, on days 
1, 10, and 20, three fish were sampled randomly from each of the 
replicate tank (9 individuals from each saline water treatment; n = 9); 
hereafter mentioned as Day 1, Day 10 and Day 20 group, respectively 
(Supplementary file 1, Fig. S1). Prior to sampling, fish were starved for 

24 h. Immediately before the sampling fish were compassionately 
euthanized with MS 222 (50 mg L− 1) on collection from the rearing tank. 
After recording length and weight, blood samples were withdrawn 
through caudal puncture with sterile plastic syringes rinsed with EDTA 
anticoagulant (20 mM). Full blood sampling was completed within 4 
min of anesthesia in order to minimize and avoid stress impacts in the 
blood (Islam et al., 2020b). Approximately, 100 µL of fresh blood was 
stored in EDTA rinsed microfuge tubes for blood cell counting. Besides, 
additional blood was withdrawn from the replicate tank’s fish; pooled 
and centrifuged (15 min, 4000g at 4 ◦C) to get the adequate amount of 
serum and stored at − 80 ◦C until analyses. Skin mucus was collected for 
cortisol analysis following the method described by Guardiola et al. 
(2014). Briefly, skin mucus was collected by gently scraping the 
dorsolateral surface of fish. Collected mucus samples were homogenized 
in 500 µL sterile water and vigorously mixed. Then the supernatant was 
collected after centrifugation at 2000g, 10 min, 4 ◦C, and preserved at 
− 80 ◦C until use (Guardiola et al., 2016). Fish used to collect blood were 
dissected to collect liver, spleen, and viscera and weighed to calculate 
somatic performance. Spleen samples were stored at − 80 ◦C for analysis 
later. 

2.3. Evaluation of growth and somatic outcomes 

At the experimental beginning and onset of the ambient extreme- 
cold exposure, all fish were counted, measured, and weighed. The 
mean individual weight of each experimental unit (tank) was calculated 
by dividing the bulk weight by the total number of fish. The following 
equations were used to evaluate growth and somatic performance, and 
nutrient utilization efficiency.   

Feed intake (FI) (g fish− 1 days− 1) =
(dry feed applied)

number of individuals     

Protein efficiency ratio (PER,%) =
weight gain(g)

total protein intake(g)
× 100  

Conditionfactor(CF,%) =
weight gain (g)

(fish body length)3  

Survival (%) =
number of fish survived

the initial number of fish stocked
× 100  

Hepatosomatic index(HSI,%) =
weight of liver
weightoffish

× 100  

Weight gain(WG,%) =
mean final body weight − mean initial body weight

mean initial body weight
× 100   

Specific growth rate (SGR,%day− 1) =
{ln(mean final body weight) − ln(mean initial body weight) }

duration of the trial
× 100   
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Viscerasomatic index(VSI,%) =
fish viscera weight

weight of fish
× 100  

Intestine somatic index (ISI,%) =
weight of intestine

weight of fish
× 100  

Spleen somatic index (SSI,%) =
fish spleen weight

weight of fish
× 100  

2.4. Hemato-physiological parameters 

2.4.1. Hematological and skin mucus cortisol analysis 
RBC and WBC were counted with a flow cytometer (BD Accuri™ C6, 

UK) following the direct volumetric method. Before measuring experi
mental samples, instrument performance validation and fluidics cali
bration were performed. With the original samples, validation checks 
and optimization trials were conducted to choose the exact dilution. 
Finally, dilution of whole blood was carried out at a 1:4 ratio with PBS as 
the stock solution. For whole blood cell counts, 10 µL of diluted blood, 
and 990 µL of PBS was used during flow cytometry. Besides, RBC and 
WBC dilution media (Himedia, India) were used to dilute samples. 
Briefly, 5 µL of whole fresh blood was mixed in 990 µL of RBC diluent 
and 195 µL of WBC diluent to acquire 200x and 40x dilution respec
tively. The stained diluted sample was inverted six times before analysis 
to ensure homogeneity. Samples were run at a medium flow rate (<3000 
events s− 1) until 100 µL samples suctioned; with the SC-H threshold of 
50,000 to exclude debris and electronic noise (Supplementary file-1, 
Fig. S 2). Blood cell counting (106 mL− 1) was performed by the direct 
volumetric method. A traditional blood cell count was also performed 
using a Neubauer Hemocytometer to validate the results from flow 
cytometry. Blood hematocrit was estimated in triplicate through 
centrifugation of blood in microhematocrit capillaries at 7500 rpm for 5 
min. Hemoglobin content was measured (in triplicate) spectrophoto
metrically at 540 nm, with an extinction coefficient of 11.01 mmol− 1 

cm− 1 (Islam et al., 2020b; Steucke and Schoettger, 1967). Serum protein 
was assessed spectrophotometrically using a blood analyzer machine 
(Fuji Dri Chem NX500i, Japan). Mucus cortisol was measured with a 
cortisol analysis kit (IBL International, Germany) following the manu
facturer’s instructions used in previous studies (Islam et al., 2020c, 
2020d). 

2.4.2. Estimation of erythrocytic nuclear abnormalities (ENA) and 
erythrocytic cellular abnormalities (ECA) 

Immediately after collection, a blood drop was smeared on a glass 
slide and left for 10 min to dry. Afterward, slides were cleaned and fixed 
with 99% ethanol. After 20 min, ethanol cleaned slides were stained by 
dipping in Giemsa stain solution (5%) for 12 min, then washed through 
running distilled water and left overnight to dry. Slides were mounted 
with DPX medium and stored at ambient temperature until analysis. For 
each fish, three slides were prepared; 2000 cells for each slide were 
counted at ×40 magnification. Thus, for each tested salinity group, 
around 18,000 cells were examined to check ENA and ECA. The blind 
scoring method was applied to code slides randomly to avoid biases and 
technical variation (Islam et al., 2020b). ENA and ECA were classified 
and scored according to Carrasco et al. (1990). Briefly, ENA were clas
sified as follows: (i) binucleated: cell with two nuclei, (ii) micronuclei: 
small chromatin like object at the peripheral part of the cell, (iii) notch 
nuclei: looks like nucleus but do not have nuclear materials, (iv) nuclear 
bud: evagination of bud-like structure from the nucleus, and (v) blebbed 
nuclei: small euchromatin evagination of the nuclear membrane. 
Whereas, ECA were categorized as (i) echinocytic: cell surface consists of 
serrated boundaries despite uniform cell size and shape, (ii) elongated: 
noticeable longer than the surrounding cells, (iii) tear-drop: deformed 
erythrocyte and narrowed to nipple shape at one end, (iv) fusion: two 
(more) cells fused and, (v) twin: two cells surface-attached and fused 
(Ashaf-Ud-Doulah et al., 2019; Islam et al., 2020b). 

2.5. Antioxidant enzyme analyses 

2.5.1. Glutathione peroxidase (GPx) and glutathione reductase (GR) 
assays 

GPx and GR activities were measured following Flohé and Günzler 
(1984) and Carlberg and Mannervik (1975). Briefly, serum samples were 
10 times diluted with 100 mM PBS [2 mM Na2-EDTA: pH 7.5]. Finally, 
GPx reaction mixture was: 100 mM PBS with [2 mM Na2-EDTA (pH 
7.5)], 2.4 UL-1 GR, 1 mM GSH, 0.15 mM NADPH (Sigma Aldrich, Ger
many) in 0.1% NaHCO3 and 1.2 mM H2O2 (Sigma Aldrich, Germany). 
The GR test mixture finally contained: 100 mM PBS in 2 mM Na2-EDTA 
(pH 7.5), 0.1 mM NADPH and 1.0 mM GSSG (Islam et al., 2020b). 
Sample protein content was determined according to Bradford (1976). 
Bovine γ-globulin (1.0 mg mL1) commercial dye reagent (BioRad 
600–0006) was used during protein content determination. Standard 
glutathione reductase (Sigma Aldrich, Germany) was used to define unit 
activity. Activities were expressed as nmol. min− 1.mg− 1 of total protein. 

2.5.2. Catalase (CAT) 
The principle of the CAT assay method has been described in Clai

borne (1985), adapted to the microplate. CAT was measured by 
following the consumption of the substrate (H2O2) measured at 240 nm 
with a 1 min 30 s time interval after adding H2O2. Briefly, serum samples 
were 10 times diluted in 50 mM PBS (pH 7.0). The final assay concen
tration was: 50 mM PBS and 10 mM H2O2 (pH 7.0) (Sigma Aldrich, 
Germany). Finally, CAT activity was calculated using the molar extinc
tion coefficient of 40 M− 1cm− 1 (240 nm). Catalase standard (Sigma 
Aldrich, Germany) was used to measure unit activity. The activity has 
been expressed as nmol. min− 1.mg− 1 of total protein. 

2.5.3. Superoxide dismutase (SOD) 
The SOD activity assay was carried out after following the protocol 

described by McCord and Fridovich (1969). SOD standard (Sigma 
Aldrich, Germany) was used to calculate unit activity. Activities were 
expressed as %inhibition.mg− 1.of total protein. Briefly, serum samples 
were diluted (10 times) in PBS [0.05 M, pH: 7.4]. The final reaction 
concentrations for SOD assay were: 100 µL PBS [0.05 M, pH: 7.4], cy
tochrome C [0.06 M], xanthine [0.14 mM], and xanthine oxidase [0.01 
U mL− 1]. Finally, SOD activity was assessed at 550 nm for 10 min using a 
second-degree polynomial equation. 

[(Abs550 min− 1 negative control − Abs550 min− 1 sample)/Abs550 
min− 1 negative control] × 100 

2.6. Immunological analysis 

2.6.1. Respiratory burst (RB) 
Phagocytic respiratory burst (RB) was measured using bitrote

trazolium blue chloride (NBT) (Anderson and Siwicki, 1995; Hasan 
et al., 2019). Briefly, an equal volume of 0.2% NBT reagent (Sigma 
Aldrich, Germany) and a blood sample was mixed and incubated for 30 
min at room temperature. Then 50 μL of the mixture was added to 1 mL 
N-N-dimethylformamide and centrifuged at 2000 g for 5 min. Optical 
density (OD) of the collected supernatant (800 μL) was measured 
spectrophotometrically at 540 nm (Tecan, Switzerland), where N-N- 
dimethylformamide was used as a blank. 

2.6.2. Serum lysozyme activity (LSZ) 
Serum lysozyme (LSZ) activity was measured using a turbidometric 

assay (Hultmark et al., 1980) adopted for a 96 well plate. Briefly, 
lyophilized Micrococcus lysodeikticus was dissolved (0.2 mg mL− 1) in PBS 
(pH 5.52). Then 180 μL Micrococcus lysodeikticus solution and 20 μL 
serum (10 times diluted with PBS, pH = 5.52) were added to each well. 
The absorbance was then measured spectrophotometrically (450 nm) at 
0 and 30 min (Infinite M200, Tecan, Switzerland). A 0.001 min− 1 

reduction in absorbance was considered 1 unit of LSZ activity (Hasan 
et al., 2019). 
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2.7. Gene expression study 

Spleen RNA extraction was carried out following the manufacturer’s 
instructions (Monarch RNA Kit, USA). Briefly, spleen tissues were placed 
in a 0.5 mL RNA protection buffer. DNA-ase I was used to eliminating 
potential contamination of the gDNA. Total RNA extract was eluted in 
50 μL of nuclease-free water preserved at − 80 ◦C until analysis. RNA 
integrity was checked and confirmed on 1% TAE-agarose gels alongside 
a DNA Ladder. A 3 μg of total RNA extracted sample was reverse- 
transcribed into cDNA following the manufacturer’s instructions 
(Reverse Transcription Kits, ThermoFisher Scientific). The qRT-PCR was 
performed according to the reported protocol for Elongation factor 1α 
(El 1α) and Tumor Necrosis Factor (TNF-α) (Islam et al., 2020b). For 
each sample, RT-PCR reactions were performed in triplicate, where 
sterile DEPC treated water was used as a negative control, and a 
confirmed RNA sample was used as the positive control. RT-PCR 
quantification was performed in a 96-well plate with a 25 μL master 
mix for each well after following the manufacturer’s instruction 
(Roboklon, Germany). The real-time cycling protocol was as follows: 
initial denaturation at 95 ◦C; 3 min followed by 39 cycles of 15 s at 95 ◦C, 
15 s at 60 ◦C, and 20 s 72 ◦C (Table 1). Melting curves (65–95 ◦C, 0.5 ◦C 
s− 1) were checked carefully to ensure PCR reaction without primer- 
dimers and a single peak dissociation curve. The relative mRNA 
expression was calculated by using the 2–ΔΔCt normalized relative 
expression (NRE) method, NRE = 2(Ct Ref. gene− Ct Target gene) (Kokou et al., 

2019; Livak and Schmittgen, 2001; Yuan et al., 2006). 

2.8. Statistical analysis 

Data normality and homoscedasticity were confirmed by 
Kolmogorov-Smirnov and Levene’s tests, respectively. Data were log- 
transformed when normality and homoscedasticity assumptions were 
violated. For all but growth data, one-way repeated measure mixed- 
model ANOVA followed by Bonferroni’s post-hoc correction was 
applied to evaluate salinity impacts during ambient extreme-cold 
exposure. Growth performance was compared among treatments with 
a one-way ANOVA. Moreover, principal component analysis (PCA) and 
discriminant function analysis (DCA) were performed to obtain tested 
parameters’ overall responses during ambient extreme-cold exposure. 
The first two components, PCA and DCA scores, were plotted as biplots. 
Differences in treatment means were considered when the probability 
value (p) was < 0.05. 

3. Results 

3.1. Fish growth and performance parameters 

Significantly (p < 0.05) lower final body weight (FBW), feed intake 
(FI), weight gain (WG), specific growth rate (SGR), protein efficiency 
ratio (PER), condition factor (CF), and survival rate (SUR) was observed 
in fish maintained at 3 PSU and 30 PSU water when compared to 12 and 
6 PSU. Similarly, viscera somatic index (VSI), intestine somatic index 
(ISI), and hepatosomatic index (HSI) values were also significantly (p <
0.05) lower in 3 PSU and 30 PSU fish (Table 2). 

3.2. Hemato-physiological and biochemical markers 

3.2.1. Blood cells count 
RBC counts (×106 mm− 3) decreased overall during cold stress 

exposure, but significantly more so (p < 0.05) in 30 and 3 PSU compared 
to fish in 12 and 6 PSU on days 1, 10, and 20 (Fig. 1 A). In contrast, WBC 
number increased significantly (p < 0.05) in 30 PSU and 3 PSU fish on 
days 1, 10, and 20. With the progression of cold exposure, increasing 
trends have been observed for all four salinities (Fig. 1B). Mean values, 
standard deviation (SD), and repeated measure ANOVA results of RBC 
and WBC are presented in full in the Supplementary file-2 (Table S 2). 

3.2.2. Hematocrit, mucus cortisol, hemoglobin, and serum protein contents 
On day 1, mucus cortisol was significantly (p < 0.05) higher in 12 

PSU and 6 PSU fish. In contrast, on day 20, the values were significantly 
(p < 0.05) higher in 30 PSU and 3 PSU fish (Fig. 2 A). Hematocrit value 
was significantly (p < 0.05) reduced in 30 PSU and 3 PSU fish compared 
to 12 PSU and 6 PSU fish on days 1, 10, and 20 (Fig. 2B). Hemoglobin 
contents have been significantly (p < 0.05) lower in 30 PSU and 3 PSU 
fish during the ambient extreme-cold exposure (Fig. 2C). For serum 
protein content, the value was significantly (p < 0.05) lower in 30 PSU 
and 3 PSU fish than 12 PSU and 6 PSU fish on days 1 and 10, whereas on 
day 20, serum protein content was found almost similar in all four saline 
water groups (Fig. 2 D). Decreased trends have been found for hemat
ocrit, cortisol, hemoglobin, and protein content with the duration of 
ambient extreme-cold exposure (Fig. 2). Mean values, standard devia
tion (SD), and repeated measure ANOVA results of these measure 

Table 1 
qPCR primer sequences, length, melting temperature, and calculated efficiency.  

Gene Primer sequence (5′-3′) Base pair Melting temperature Efficiency Accession No. References 

TNF-α Forward: 
Reverse: 

GCCAAGCAAACAGCAGGAC 
ACAGCGGATATGGACGGTG 

106 60 ◦C  103% DQ 200,910 El Aamri et al. (2015) 

El-1α Forward: 
Reverse: 

AGATGACCACGAGTCTCTGC 
CTTGGGTGGGTCGTTCTTG 

127 57 ◦C  98.6% FM 019,753 Mitter et al. (2009)  

Table 2 
Growth performance of European seabass acclimated at four salinities for 45 
days followed by 20 days of cold temperature (8 ◦C) stress. *  

Parameter Salinities (PSU) P- 
value 

30 PSU 12 PSU 6 PSU 3 PSU 

Initial body weight 
[IBW] (g) 

24.53 ±
1.88a 

24.03 ±
1.96a 

24.28 ±
1.85a 

24.24 ±
1.06a  

0.68 

Final body weight 
[FBW] (g) 

40.93 ±
3.67b 

43.37 ±
1.38a 

49.64 ±
1.92a 

36.62 ±
0.90b  

<0.05 

Feed intake [FI] (g 
fish− 1 45 days− 1) 

21.42 ±
1.13b 

24.23 ±
0.38a 

24.24 ±
0.17a 

21.57 ±
1.69b  

<0.05 

Percent weight gain 
[WG) (%) 

72.22 ±
5.63b 

125.96 ±
5.34a 

120.95 ±
6.08a 

80.73 ±
5.22b  

<0.05 

Specific growth rate 
[SGR) (% day-1) 

1.71 ±
0.36b 

2.15 ±
0.26a 

2.36 ±
0.14a 

1.47 ±
0.11b  

<0.05 

Protein efficiency 
ratio [PER] (%) 

1.55 ±
0.38b 

1.63 ±
0.10b 

2.03 ±
0.17a 

1.13 ±
0.06b  

<0.05 

Condition factor [CF] 
(%) 

0.51 ±
0.05b 

0.60 ±
0.09a 

0.65 ±
0.02a 

0.53 ±
0.06b  

<0.05 

Survival rate [SUR] 
(%) 

97.22 ±
0.98b 

100.00 ±
0.00a 

100.00 +
0.00a 

97.93 ±
1.96ab  

<0.05 

Viscera somatic index 
[VSI]1 

11.93 ±
0.88b 

13.68 ±
1.57a 

13.19 ±
1.08a 

11.59 ±
0.85b  

<0.05 

Intestine somatic 
index [ISI]1 

2.89 ±
0.47b 

3.86 ±
0.63a 

3.44 ±
0.15a 

2.74 ±
0.76b  

<0.05 

Hepatosomatic index 
[HSI]1 

2.19 ±
0.44b 

3.03 ±
0.12a 

2.71 ±
0.11a 

2.51 ±
0.22b  

<0.05 

Spleen somatic index 
[SSI]1 

0.07 ±
0.01a 

0.09 ±
0.02a 

0.08 ±
0.01a 

0.08 ±
0.02a  

<0.05 

*Values are means of triplicate groups ± SD. Values followed by different su
perscripts in the same row are significantly different after Bonferroni’s post-hoc 
test (p < 0.05). 1Nine individuals were sampled for each salinity treatment and 
statistical analyses were performed based on the mean value of each replicate 
tank (n = 3 per treatment). 
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Fig. 1. Changes in A) red blood cell counts (RBC), and B) white blood cell counts (WBC) in juvenile European seabass on days 1, 10, and 20 of extreme ambient cold 
temperature (8 oC) prior to being acclimatized at four different salinities. On each sampling day, nine individuals were sampled for each salinity group. Values 
represent mean ± SD. 

Fig. 2. Changes in A) Mucus cortisol, B) Hematocrit, C) Hemoglobin and D) Plasma protein in juvenile European seabass on days 1, 10, and 20 of extreme ambient 
cold temperature (8 oC) prior being acclimatized at four different salinities. On each sampling day, nine individuals were sampled for each salinity group. Values 
represent mean ± SD. 
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parameters are reported in the Supplementary file-2 (Table S 2). 

3.2.3. Serum antioxidant activities 
During tested cold exposure, on days 1, 10, and 20, SOD activity in 

serum were significantly (p < 0.05) higher in fish acclimatized at 30 PSU 
and 3 PSU fish than 12 PSU and 6 PSU fish (Fig. 3 A). In the case of GR 
activity, significantly (p < 0.05) lower values were measured in fish 

acclimatized at 30 PSU and 3 PSU on days 1 and 20 (Fig. 3B). Whereas 
for GPx, significantly higher activity was observed in 30 PSU and 3 PSU 
fish on days 1, 10, and 20 of ambient extreme-cold exposure (Fig. 3C). 
For serum catalase, on days 1, 10, and 20 significantly (p < 0.05) higher 
activity was found in 30 PSU and 3 PSU fish (Fig. 3 D). During the 
extreme ambient cold exposure period, increased trends were observed 
for SOD, GR GPx, and catalase activities (Fig. 3 A, B, C, D). Mean values, 

Fig. 3. Changes in serum antioxidants A) Superoxide dismutase (SOD), B) Glutathione reductase (GR), C) Glutathione peroxidase (GPx), and D) Catalase activity in 
juvenile European seabass on days 1, 10, and 20 of extreme ambient cold temperature (8 oC) prior being acclimatized at four different salinities. On each sampling 
day, nine individuals were sampled for each salinity group. Values represent mean ± SD. 

Fig. 4. Changes in A) Respiratory burst (RB) and B) Lysozyme activity in juvenile European seabass on days 1, 10, and 20 of extreme ambient cold temperature (8 oC) 
prior to being acclimatized at four different salinities. On each sampling day, nine individuals were sampled for each salinity group. Values represent mean ± SD. 
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standard deviation (SD), and repeated measure ANOVA results of SOD, 
GR, GPx, and catalase activities are presented in the supplementary file- 
2 (Table S 3). 

3.2.4. Respiratory burst and serum lysozyme activities 
On days 1 and 10, phagocytic respiratory burst (RB) activity was 

found to increase significantly in 30 PSU and 3 PSU fish, while on day 
20, the activity was significantly higher (p < 0.05) in 30 PSU fish (Fig. 4 
A). In the case of lysozyme activity (LSZ), the values were low in 12 PSU 
and 6 PSU fish on day 1, whereas, on day 20, the RB was significantly 
higher in 3 PSU fish (Fig. 4B). For both RB and LSZ activities, decreasing 
trends were observed during ambient extreme-cold exposure (Fig. 4 A, 
B). Mean values, SD, and repeated measure ANOVA results of these 
immunological parameters are presented in the Supplementary file-2 
(Table S 3). 

3.2.5. Erythrocytic nuclear abnormalities (ENA) 
Several types of ENA, such as binuclei (Fig. 5B), blebbed (Fig. 5C), 

notched-nuclei (Fig. 5 D), micronucleus (Fig. 5 E), nuclear bud (Fig. 5F), 
nuclear bridge (Fig. 5 G) were observed in 30 PSU, 12 PSU, 6 PSU, and 3 
PSU acclimatized fish during ambient extreme-cold exposure (8 ◦C). 
ENA types significantly (p < 0.05) increased in 30 PSU and 3 PSU fish on 
days 1, 10, and 20 (Fig. 6 A–F). An increasing trend was found for the 
mentioned ENA types during cold exposure (Fig. 6). ENA frequencies 
were significantly (p < 0.05) higher on day 20 compared to days 1 and 
10. ENA types were significantly affected by salinity and extreme 
ambient cold exposure. Mean values, SD, and one-way mixed model 
repeated measure ANOVA results of observed ENA are reported in 
supplementary file-2 (Table S 4). 

3.2.6. Erythrocytic cellular abnormalities (ECA) 
ECA types found in the different saline water acclimatized fish during 

ambient extreme-cold acclimation were echinocytic (Fig. 7B), tear-drop 
shaped (Fig. 7C), fusion (Fig. 7D), elongated (Fig. 7E), and twin 
(Fig. 7F). Similar to ENA, statistically significant increases (p < 0.05) in 
ECAs were found in fish during ambient extreme-cold (8 ◦C) exposure 
(Fig. 8A-E). On day 20, ECA counts were significantly (p < 0.05) higher 
than on days 1 and 10. ECA frequencies tended to increase during the 
tested cold exposure (Fig. 8). Mean values, SD, and one-way mixed 
model repeated measure ANOVA results of observed ECAs are shown in 
the Supplementary file-2 (Table S 4). 

3.3. Expression of Tumor necrosis factor (TNF-α) gene in spleen tissues 

The TNF-α mRNA relative expression in the spleen was significantly 

(p < 0.05) highest in 3 PSU fish compared to 30 PSU, 12 PSU, and 6 PSU 
fish on days 1, 10, and 20 (Fig. 9). Whereas on day 1, significantly lower 
expression was observed in 12 PSU. Spleen TNF-α mRNA regulation was 
significantly impaired by both salinities and extreme cold exposure 
duration (Supplementary file-2, Table S 3). 

3.4. Principle component analysis (PCA) and discriminant function 
analysis (DCA) 

Both PCA and DCA biplots of measured parameters depicted a well- 
separated grouping based on salinities and sampling days (Fig. 10, 
Fig. 11). Component 1 and 2 (first two PCA components), together 
explaining 87.3% of data variability. Component 1 (70.3% of variance) 
assembled different ECA and ENA, RBC, WBC, serum protein, respira
tory burst, LSZ, whereas component 2 (17.0% of variance) assembled 
GPx, GR, SOD, and catalase (Fig. 10). The DCA biplot showed well- 
separated grouping with sampling days referring to varying stress re
sponses during ambient extreme-cold stress (Fig. 11). 

4. Discussion 

Extreme climatic events, such as temperature extremes and heavy 
precipitation, are predicted to increase in frequency and magnitude as a 
consequence of global warming. These events result in significant 
challenges to the water environment and create hydrological challenges 
(Donat et al., 2016; Islam et al., 2020b; Reverter et al., 2020; Wernberg 
et al., 2013). Nonetheless, their eco-hydrological impacts are poorly 
understood, particularly in relation to fish in the wild and in aquaculture 
systems. In the face of climate change, it is necessary to understand the 
impacts of such events on the physiological fitness, hematological, 
antioxidant, and immune responses of commercially significant fish to 
ensure future aquaculture productivity, as well as fish welfare. Our 
study findings indicate increased stress response trends in terms of 
growth performance, hemato-physiological, antioxidants, and immune 
parameters during ambient extreme-cold exposure. 

Differences in experimental design, parameters tested, and tech
niques used, make comparing our findings with others was challenging. 
Overall, the lowest growth and survival rates were observed in 30 PSU 
and 3 PSU fish. Salinity affects many aspects of physiology in ectotherms 
such as metabolic rate, food intake, and hormonal stimulation (Bœuf and 
Payan, 2001). Fish spend more energy to maintain physiological balance 
in both hypo- and hypersaline environments, impairing growth, devel
opment, and survival (Herrera et al., 2009; Hwang et al., 2018; 
Thompson, 2019). For marine teleosts, 20 to 50% of the energy budget is 
dedicated to osmoregulation, and better growth has been reported for 

Fig. 5. Erythrocyte nuclear abnormalities (ENA) observed with Giemsa stained blood smears in juvenile European seabass during extreme ambient cold temperature 
(8 oC) prior to being acclimatized at four different salinities. A) Regular cell, B) Binuclei (%), C) Notch nuclei (%), and D) Micronuclei (%), E) Blebbed (%), F) Nuclear 
bud (%), and G) Nuclear-bridge (%). 
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intermediate salinities (8–20 PSU) at their juvenile stages (Bœuf and 
Payan, 2001; Evans and Kültz, 2020). Growth and survival rate were 
maximal at 15 PSU than 37 PSU in 22 ◦C and European seabass showed a 
low salinity preference (Masroor et al., 2018; Saillant et al., 2003). Blood 
osmolarity of European seabass is near to 15 PSU (Hwang et al., 2018). 
Higher survival rate, growth, and low FCR have been found at 20–25 
PSU, 25 ◦C (Yilmaz et al., 2020), 6 PSU to 12 PSU, 24 ◦C (Islam et al., 
2020b), and 12–15 PSU, 20 ◦C (Goda et al., 2019; Saillant et al., 2003). 
These can be attributed to low energy used to maintain osmotic balance 
in medium to low saline water environments (Hwang et al., 2018; Islam 
et al., 2020b; Maulvault et al., 2017; Saillant et al., 2003). It is important 

to note that, for this study, mortality occurred only during extreme cold 
(8 ◦C) exposure and no mortality was observed during salinity accli
mation. For euryhaline fish, the physiological and osmotic modulations 
are dominated more by temperature than salinity (Vargas-Chacoff et al., 
2020). Temperatures below 16 ◦C led to inadequate ion regulation and 
lower acclimatization capability in the European seabass (Dülger et al., 
2012; Islam et al., 2020a), which conforms with our study. 

In our study, a significant reduction of RBC, hematocrit, hemoglobin, 
respiratory burst (RB), serum lysozyme activities (LSZ), and survival 
rate were observed in 30 PSU and 3 PSU fish during the ambient 
extreme-cold exposure. A significant increase in WBC, antioxidant 

Fig. 6. Erythrocytic nuclear abnormalities (ENA) observed in juvenile European seabass on days 1, 10 and 20 of extreme ambient cold temperature (8 oC) prior to 
being acclimatized at four different salinities. A) Binuclei (%), B) Notch nuclei (%), and C) Micronuclei (%), D) Blebbed (%), E) Nuclear bud (%), and F) Nuclear- 
bridge (%). Nine fish were sampled in each sampling day for each salinity group. Three slides were prepared from each fish, 2000 cells were scored from each slide. 
Values represent mean ± SD. 
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activities, and different ECA types, ENA was also found in 30 PSU and 3 
PSU fish during cold exposure. These may have resulted from the failure 
of the hematopoietic system, exacerbated by salinity (Elarabany, 2017; 
Masroor et al., 2019, 2018) and cold temperature (Islam et al., 2020c; 
Zarejabad et al., 2010b). Cold thermal stress beyond the optimum 
thermal range resulted in the decrease of RBC, hematocrit, hemoglobin 
values, and, at the same time, increased WBC, ENA, ECA, and mortality 
reported for European seabass (Islam et al., 2020c). The effects of 
salinity, temperature, and combinations thereof on the hematological 
and physio-immunological responses depend on the ranges of salinities 
and temperatures, stress duration, fish age, and associated biotic-abiotic 
factors (reviewed in Ahmed et al., 2020; Birrer et al., 2012; Elahee and 
Bhagwant, 2007). Low RBC counts and higher WBC, ECA, ENA have also 
been reported for pangas catfish, Pangasianodon hypophthalmus (Jahan 
et al., 2019), Indian carp, Labeo rohita (Ashaf-Ud-Doulah et al., 2019). 
Reduced hematocrit and hemoglobin values were observed in 30 PSU 
and 3 PSU fish during cold exposure. These conform with other studies, 
that report a significant reduction in RBC, hematocrit, hemoglobin, and 
increased WBC counts in sturgeon, Huso huso (Zarejabad et al., 2010a), 
tilapia, Oreochromis niloticus (Elarabany, 2017; Soegianto et al., 2017), 
Cyprinus carpio (Salati et al., 2010), mullet, Mugil cephalus (Fazio et al., 
2013), and Dicentrarchus labrax (Islam et al., 2020c; Pascoli et al., 2011) 
during cold stress exposure. Reduction of hematocrit and hemoglobin 
could be related to decreased RBC counts (Ashaf-Ud-Doulah et al., 2019; 
Islam et al., 2020b) and volume caused by osmotic changes and ion 
leakage from the serum (Ahmed et al., 2020; Pascoli et al., 2011; Soe
gianto et al., 2017). 

WBC counts in fish are a good indicator of physiological stress 
(Grzelak et al., 2017; Sopinka et al., 2016). This study shows increased 
leucocytes count in fish maintained at 30 PSU and 3 PSU water. Similar 
results were reported for rainbow trout, Oncorhynchus mykiss reared in 
high salinity compared to freshwater fish (Sahafi et al., 2013), and in 
Dicentrarchus labrax acclimatized to near freshwater (Islam et al., 
2020b). Increased WBC counts indicate leukocytosis, which is consid
ered essential for the adaptive measures during variable stress responses 
(Begg and Pankhurst, 2004; Christensen et al., 2017; Kang et al., 2015). 
This increase may result from the interaction of increased cortisol and 
antioxidants activities and decreased protein as non-specific immune 
responses (Blier, 2014; Chowdhury and Saikia, 2020; Hossain et al., 
2019), linked with augmented antioxidants production; essential to cope 
and recover from stressors (Evans and Kültz, 2020; Joshi and Ghose, 
2003; Martínez-Álvarez et al., 2005; Puerto et al., 2009). Decreased 

growth performance increases hepatic aminotransferase activity 
(Chowdhury et al., 2020) and cortisol release (Barton et al., 1985), 
which results in protein catabolism at the expense of physiological 
fitness and growth (Islam et al., 2020a; Jentoft et al., 2005; Van der 
Vyver et al., 2013). Increased cortisol, antioxidant activities, and 
decreased protein content in the current study are in good agreement 
with the results. The decreased trends of RB and LSZ during ambient 
extreme-cold exposure indicate immune dysfunction. On day 20, 
significantly higher RB and LSZ activities in 30 PSU and 3 PSU fish 
indicated a higher degree of stress than 12 PSU and 6 PSU fish. Signif
icant upregulation of TNF-α observed in 30 PSU and 3 PSU fish in the 
present study corroborates this. Thus, during the cold stress period, 
depleted serum protein and increased RB and LSZ in 30 PSU and 3 PSU 
fish could explain to some extent changes in stored energy mobilization 
and poor growth performance (Hossain et al., 2018; McEwen and 
Wingfield, 2003). 

In this study, significantly higher ECA and ENA were observed in 30 
PSU and 3 PSU fish blood smears during cold stress. These findings 
corroborate other studies, where fish experienced stressful temperatures 
and salinities (Islam et al., 2020c, 2020b; Jahan et al., 2019). These 
abnormal cellular and nuclear structures might have resulted from 
changes in lipid layer viscosity, protein-lipid phase distribution- 
interaction, and increased lipid peroxidation in erythrocytes (Avrova, 
1999; Bhanu and Divya, 2014; Islam et al., 2020b, 2020c; Kreps, 1981). 
Among others, extreme abiotic factors impair cell metabolism and 
damage cell membranes (Islam et al., 2019; Jahan et al., 2019). Tem
perature and salinity influence the erythrocytic cellular-nuclear mem
brane through homeo-viscous adaptation, change protein-lipid 
interaction phase, and fatty acids composition (Cossins, 1977; Cossins 
and Prosser, 1978; Gracey et al., 2004). Thus, ECA and ENA could result 
from increased lipid peroxidation in erythrocytes exposed to low tem
peratures (De et al., 2019; Ghaffar et al., 2015) and stressful salinities 
(Jahan et al., 2019; Klein et al., 2017; Martínez-Álvarez et al., 2005, 
2002; Roche and Bogé, 1996). Changes in water temperatures and sa
linities affect cell membrane’s biophysical properties, cellular enzymatic 
activities, and membrane transportation processes. To cope with this 
situation, fish accelerate fatty acids synthesis processes to maintain cell 
membrane lipid bilayer biophysical properties (Guderley and St-Pierre, 
2002; Hazel, 1984; O’Brien, 2011). In the current study, increased WBC 
counts, TNF-α expression, and serum antioxidants activities in fish 
reared in 30 PSU and 3 PSU saline water during extreme ambient cold 
exposure were observed. These results corroborate other reports with 

Fig. 7. Erythrocyte cellular abnormalities (ECA) observed with Giemsa stained blood smears in juvenile European seabass during extreme ambient cold temperature 
(8 oC) prior to being acclimatized at four different salinities. A) regular cell; B) echinocytic; C) tear-drop shaped; D) fusion; E) elongated; and F) twin. 
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pangas catfish, Pangasius hypophthalmus (Jahan et al., 2019), Oreochro
mis niloticus (Elarabany, 2017), Oncorhynchus mykiss (Sahafi et al., 
2013), and Dicentrarchus labrax (Islam et al., 2020b, 2020c) exposed to 
different stressful temperatures and salinities. 

Extreme temperatures result in noticeable changes in enzymatic 
antioxidant machinery and heat shock response, essential for cellular 
defense mechanisms against the formation of reactive oxygen species 
(ROS) (Madeira et al., 2016, 2013; Madeira et al.2012;; Vinagre et al., 
2012). In the current research, increased serum GPx, GR, SOD, and CAT 
activities were found in 30 PSU and 3 PSU fish compared to 12 PSU and 
6 PSU fish during cold exposure (8 ◦C). Results are in line with other 
studies, which report on oxidative stress in fish due to stressful tem
peratures and salinities (Bagnyukova et al., 2007; Chowdhury and 

Saikia, 2020; Madeira et al., 2016; Martínez-Álvarez et al., 2005). The 
combined impact of stressful salinities and temperatures on antioxidant 
activities has not been investigated before (Islam et al., 2020b). The 
SOD, GPx, GR, and CAT activities, thus antioxidants stress responses, 
significantly increased with the progression of cold stress exposure. 
Increased SOD activity has been reported for Pampus argenteus (Yin 
et al., 2011), Dicentrarchus labrax (Islam et al., 2020b), Anoplopoma 
fimbria (Kim et al., 2017), and Takifugu obscurus (Cheng et al., 2017) 
during low salinity exposure. Increased SOD activity results in more 
H2O2 production, which triggers the release of H2O2 scavenging en
zymes such as CAT, GPX, and GR. In our study, the increased SOD, GPx, 
GR, and CAT activities indicate incremental stress with the progression 
of ambient extreme-cold exposure. During cold exposure, the significant 

Fig. 8. Erythrocytic nuclear abnormalities (ENA) observed in juvenile European seabass on days 1, 10 and 20 of extreme ambient cold temperature (8 oC) prior to 
being acclimatized at four different salinities. A) Echinocytic, B) Elongated, C) Fusion, D) Tear-drop, and E) Twin. Nine fish were sampled at each sampling day for 
each salinity group. Three slides were prepared from each fish, 2000 cells were scored from each slide. Values represent mean ± SD. 
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increase of GPX, GR, SOD, and CAT activities in 30 PSU and 3 PSU fish 
indicated their poor compensation ability, compared to 12 PSU and 6 
PSU reared fish. RB is the rapid release of the reactive oxygen species 
(ROS), superoxide anion (O2

− ), and hydrogen peroxide (H2O2), from 
vertebrate phagocytic cells to minimize ROS species during stress re
sponses (Bonilla and Menell, 2016; Kumar et al., 2005). The dropping 
RB values, juxtaposed to SOD, GPx, GR, and CAT activities, justify the 
increased antioxidant activities in our study. Moreover, LSZ has been 
found to decrease with the duration of cold exposure, indicating 
decreased immune capabilities. Lysozyme is part of the innate immune 
system (Revenis and Kaliner, 1992). On day 20, significantly lower RB 
and LSZ were observed than on day 1. Moreover, on day 20, increased 
RB, LSZ has been observed in 30 PSU and 3 PSU fish; this is maybe due to 
increased WBC counts and leukocytosis. Earlier studies have reported 
decreased RB activities in tilapia, Oncorhynchus mykiss (Nikoskelainen 
et al., 2004), tilapia, Oreochromis mossambicus (Dominguez et al., 2005), 
and stickleback, Gasterosteus aculeatus (Dittmar et al., 2014) during cold 
exposure. Reduced LSZ activities have been reported for Oreochromis 
niloticus (Dominguez et al., 2005) and Oreochromis mossambicus (Domi
nguez et al., 2005; Ndong et al., 2007). 

TNF-α is a proinflammatory cytokine, considered an important 
innate immune-related gene. Fish accustomed at 3 PSU showed signifi
cantly higher inflammatory responses during cold exposure. The reason 
might be that 3 PSU fish could not keep immune function from the onset 
of cold stress; thus, salinity might have played a significant role in these 
immune disturbances (Bowden, 2008; Makrinos and Bowden, 2016). An 
increasing trend observed for 12 PSU fish indicated an incremental 
immune response with the time, and fish belonging to this salinity group 
enable to keep immune functions during the early cold stress period. 
Fish spleen plays a vital role in the hematopoiesis process, immune 
function, and hormonal production. Increased TNF-α mRNA expressions 
in the kidneys, blood erythrocytes, spleens, and livers have been re
ported for Dicentrarchus labrax during stress, infection, and disease 
(Islam et al., 2020b; Scapigliati et al., 2001). Higher expression of TNF-α 
during thermal stress has been stated for gilthead bream, Sparus aurata 
(López-Castejón et al., 2007), zebra fish, Danio rerio (Jia et al., 2017), 
and Atlantic cod, Gadus morhua (Seppola et al., 2008). Our study showed 
that significantly higher ECA, ENA, antioxidants, TNF-α, and decreased 
respiratory burst and lysozyme activities observed in 30 PSU and 3 PSU 
fish also support the TNF-α expression result. 

Despite being a well-adapted thermal and osmotically tolerant fish, 
European seabass prefers intermediary salinities (~15 PSU) close to its 
blood osmolality (Islam et al., 2020d; Masroor et al., 2018; Saillant et al., 
2003). This could be the reason that European seabass exhibited better 
osmoregulatory performance at low energy costs and thus increased 
growth (Hwang et al., 2018; Islam et al., 2020b; Vargas-Chacoff et al., 
2018). Among other factors, temperature changes affect hydromineral 
balances in fish maintained at low and high osmotic stress reported for 
Dicentrarchus labrax (Islam et al., 2020b; Masroor et al., 2018; Thibaut 
et al., 2019) and in other marine fish (Gaumet et al., 1995; Islam et al., 
2020c). The observed higher growth and survival rate in 12 PSU and 6 
PSU than 30 PSU and 3 PSU fish conform to these reported studies. Both 
PCA and DCA graphs indicated a clear, well-separated cluster for four 
tested salinities and three sampling days. This segregated pattern refers 
to differential stress intensity during the extreme cold event at different 
salinities. Overall, PCA findings indicate that ECA, ENA, hematocrit, 
hemoglobin, SOD, GPx, GR, blood cells count, and serum protein could 
be used as potential indicators of cold stress responses in European 
seabass. Low growth performance, higher oxidative, and erythrocytic 
damages at 30 PSU and 3 PSU may indicate higher physiological de
mand, intensified by osmotic stress resulting from high ion pumping 

Fig. 9. Spleen Tumor necrosis factor (TNF-α) gene expression profile of juve
nile European seabass acclimatized at 30 PSU, 12 PSU, 6 PSU and 3PSU on day 
1, 10, and 20 of extreme ambient cold exposure (8 ◦C). On each sampling day, 
nine individuals were sampled for each salinity group. Values represent mean 
± SD. 

Fig. 10. Principal Component Analysis (PCA) representing the contribution of 
blood cellular abnormalities, serum antioxidants and immunological bio
markers measured in fish acclimatized at 30 PSU, 12 PSU, 6 PSU and 3 PSU 
water. The variable coordination is presented by the complementary cases 
analysis showing distribution of four salinity groups. Legend: RB, Respiratory 
burst; GRx, glutathione reductase; GPx, glutathione peroxidase; SOD, super
oxide dismutase; CAT, catalase. 

Fig. 11. Canonical discriminant function analysis (DCA) biplots. DCA repre
senting the contribution of measured parameters during the extreme ambient 
cold exposure (8 oC). The variables coordination is presented by the comple
mentary cases analysis showing distribution on days 1, 10, and 20. 
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activities. The current study’s overall findings suggest that European 
seabass maintained between 6 PSU to 12 PSU could help cope better 
during ambient extreme-cold exposure (8 ◦C). 

5. Conclusions 

The current study examined the combined effect of different salin
ities and an extreme ambient cold temperature on European seabass, 
mimicking the environmental conditions potentially faced by this spe
cies in the future. Lower growth, survival rate, stress-linked immune- 
physiological responses, and a higher degree of oxidative stress, ECA, 
and ENA were found in fish acclimatized at 30 PSU and 3 PSU fish 
compared to 12 PSU and 6 PSU. Despite being euryhaline and eury
thermic in nature, during ambient extreme-cold exposure, this fish 
encountered a higher degree of stress in terms of growth, immunity, and 
hemato-physiological responses. Besides, most of the measured param
eters showed stressful trends during ambient extreme-cold exposure. 
These refer to continuous and incremental stress responses and no sign 
of adaptation during the 20 days of extreme ambient cold (8 ◦C) expo
sure. However, fish reared at 12 PSU, and 6 PSU water could fare better 
during the extreme cold spells, offering fish farmers a potential option to 
mitigate extreme-cold events. Based on our findings, further studies are 
recommended for this fish to understand the osmotic mechanisms and 
functions when exposing fish at environmentally realistic salinities and 
extreme cold temperatures. 
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Hannesdóttir, Elísabet.R., Jackson, M.C., Johansson, L.S., McLaughlin, Órla.B., 
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Pérez-Palazón, M., Pimentel, R., Polo, M., 2018. Climate Trends Impact on the Snowfall 
Regime in Mediterranean Mountain Areas: future scenario assessment in Sierra 
Nevada (Spain). Water 10 (6), 720. https://doi.org/10.3390/w10060720. 

Person-Le Ruyet, J., Mahe, K., Le Bayon, N., Le Delliou, H., Mahé, K., Le Bayon, N., Le 
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Silva, João.V.F., Adelino, José.R.P., dos Santos, J.A., Ganassin, M.J.M., 
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