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Mapping the in situ microspatial 
distribution of ice algal biomass 
through hyperspectral imaging 
of sea‑ice cores
Emiliano Cimoli1*, Vanessa Lucieer1, Klaus M. Meiners2,3, Arjun Chennu4,5, 
Katerina Castrisios1, Ken G. Ryan6, Lars Chresten Lund‑Hansen7,8, Andrew Martin1, 
Fraser Kennedy1 & Arko Lucieer9

Ice‑associated microalgae make a significant seasonal contribution to primary production and 
biogeochemical cycling in polar regions. However, the distribution of algal cells is driven by strong 
physicochemical gradients which lead to a degree of microspatial variability in the microbial biomass 
that is significant, but difficult to quantify. We address this methodological gap by employing a field‑
deployable hyperspectral scanning and photogrammetric approach to study sea‑ice cores. The optical 
set‑up facilitated unsupervised mapping of the vertical and horizontal distribution of phototrophic 
biomass in sea‑ice cores at mm‑scale resolution (using chlorophyll a [Chl a] as proxy), and enabled the 
development of novel spectral indices to be tested against extracted Chl a  (R2 ≤ 0.84). The modelled 
bio‑optical relationships were applied to hyperspectral imagery captured both in situ (using an 
under‑ice sliding platform) and ex situ (on the extracted cores) to quantitatively map Chl a in mg  m−2 
at high‑resolution (≤ 2.4 mm). The optical quantification of Chl a on a per‑pixel basis represents a step‑
change in characterising microspatial variation in the distribution of ice‑associated algae. This study 
highlights the need to increase the resolution at which we monitor under‑ice biophysical systems, and 
the emerging capability of hyperspectral imaging technologies to deliver on this research goal.

Sea ice is a porous multiphase medium whose interstitial environment is inhabited by diverse phototrophic and 
heterotrophic microbial  communities1. Phototrophic ice algae dominate ice-associated biomass and contribute 
significantly to the overall primary production of ice-covered waters and serve as critical food source for marine 
 herbivores2–5. The dynamic and multiphase nature of sea ice imposes strong horizontal and vertical gradients in 
temperature, salinity, porosity and light  transmittance6,7, all of which influence the in situ distribution of algal 
 cells2,8. Biological properties of ice algal communities such as abundance, species composition and photosynthetic 
rates are thus extremely variable over time and at spatial scales from millimeters to  kilometers8–10. While most 
of the algal biomass is concentrated at the ice-water interface, microbes are also present in the interior of the ice 
matrix, which adds to the biocomplexity of the  system2,8. Measurement capability to determine the mm-scale 
spatio-temporal distribution of algal biomass in sea ice is currently lacking, thereby limiting a mechanistic under-
standing of its environmental drivers which is needed to inform predictive modelling and strategic sampling.

In particular there is the lack of efficient methods capable of non-invasively tracking algal biomass across dif-
ferent scales, both vertically and horizontally, and concurrently with its physical  drivers11,12. There is now evidence 
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that variation in under-ice biophysical properties can range from the microscale (0.001  m2) to the mesoscale 
(10  m2)13–15, and this cannot be satisfactorily resolved using point-based sampling  methods16,17. Traditional 
and emerging sea-ice field sampling methods include ice  coring18, under-ice bio-optical sensing techniques via 
L-shaped deployment  arms19–21 or unmanned underwater vehicles (UUVs)9,10,22,23. The use of under-ice opti-
cal sensing from UUVs has extended the spatial coverage of algal surveys (e.g., covering meso- to floe-scale 
areas), but resolutions still remain coarse as a result of large footprints of underwater radiance (or irradiance) 
 sensors10,16,22. This shortcoming demonstrates a gap in field-sampling techniques that permit the quantification 
of horizontal and vertical distributions and temporal dynamics of ice algae biomass at relevant spatial scales.

Underwater Hyperspectral Imaging (HI) is one method that could deliver a methodological turning-point 
for quantitative mapping of fine-scale sea-ice biophysical conditions that is relevant to larger scale  analyses24,25. 
HI can be used to quantify biogeochemical properties of a target in each spectrally-resolved pixel within an 
 image26–28. In situ HI has revolutionized the scales of observation on both  terrestrial29–31 and  marine32–34 eco-
systems. HI of extracted samples (ex situ) can be used to better understand the target spectral behaviour and to 
create a baseline measurement with the data acquired in situ. This enables detailed understanding of a particular 
target’s interaction with light but also allows us to capture dimensions and dynamics that are not visible from 
the in situ surface perspective (e.g., vertical variability). Some recent examples of ex situ applications include 
scanning of glacial ice cores to detect chemical  impurities35, scanning of soil cores to map fine-scale organic 
carbon  hotspots36, and scanning of sediments to determine pigment concentrations in microbial  phototrophs37,38.

We have recently demonstrated how HI can qualitatively capture biomass variability at the sub-mm spatial 
resolution in both artificial laboratory  ice24 and in situ under Antarctic fast  ice25. In this study, we advance the 
use of HI technology to map the fine-scale vertical and horizontal distribution of sea-ice algae through opti-
cal quantification of the photosynthetic pigment chlorophyll a (Chl a). Traditional and novel spectral indices, 
established from transmittance measurements of ice-core sections, were developed and correlated with fluo-
rometrically derived Chl a values from the ice cores. The retrieved bio-optical regression models were then 
applied to hyperspectral imagery acquired both in situ, using an under-ice HI scanning platform, and ex situ 
to the extracted ice cores. The resulting maps provide the first spatially explicit quantitative estimates of Chl a 
concentration, illustrating that HI is a critical developmental step in our capacity to make scalable under-ice 
observations for sea-ice algae.

Materials and methods
Study area and ice coring. A field camp was established at Cape Evans, Antarctica (77.637° S, 166.401° 
E), from the 14th of November to the 5th of December 2018. The sea ice across the study area had a thickness 
of 180 ± 1 cm, except for occasional ridged or cracked areas. The distinct under-ice biophysical environment 
was visually explored using a Seabotix LBV-300 remotely operated vehicle (ROV) (Teledyne Marine, Seabotix, 
California, USA). Sea-ice surface conditions in the area were typically snow-free apart from patches of 0.5–1 cm 
hard old snow layers or 1 to 5 cm compacted snow reliefs throughout the 21-day study period.

Forty-two ice cores were extracted using a Kovacs Mark V ice corer (14 cm internal diameter) between the 
19th of November to the 2nd of December. Of these, 22 were taken from bare ice (snow free) areas, 12 from the 
area with 0.5–1 cm thin snow cover, 7 cores on the 1–5 cm snow drifts, and 1 core from an area with a 10 cm 
snow patch. After retrieval, the bottom (~ 60 cm) of each core was immediately cut off and placed into a black 
plastic bag to protect it from sunlight and promptly taken into a darkened field laboratory for image acquisition 
and biological processing.

The ice water interface micro-topography of our study site was revealed using structure from motion (SfM) 
digital photogrammetry on selected ice core bottoms (0.015  m2 area) (Fig. 1a). SfM provides highly resolved and 
scaled 3D models of objects or surfaces using a set-of overlapping pictures and photogrammetric  software39,40. 
Imagery of the bottom surfaces was collected with a Nikon D500 digital camera and Tamron SP 90 mm F/2.8 Di 
MACRO 1:1 VC USD macro lens from different angles and perspectives. We used Agisoft Metashape software 
for processing and followed standard workflows as outlined in the software manual41. Known core lengths were 
used to scale the models.

Hyperspectral image acquisition. Sea ice is a translucent medium that allows the retrieval of some of 
its bio-optical properties from measurements in transmittance  mode42,43. We devised an optical configuration 
to measure transmitted radiation along the vertical axis of the bottom 9 cm, and horizontally on 3 cm thick sec-
tions, of the ice cores at high spectral (1.7 nm) and spatial (≤ 0.07 cm) resolution (Fig. 1b,c). The system further 
utilized the horizontal section scans to develop bio-optical predictive models relating spectra to extracted ice 
algal biomass. Sensing of transmitted, rather than reflected radiance, emulates under-ice close-range bio-optical 
remote sensing approaches to retrieve estimates of Chl a in sea  ice9,20. Specifications and technical considerations 
of the scanning approach are found in the supplementary material. In situ hyperspectral images were captured 
beneath the sea ice area from which the ice cores were sampled. We used an underwater HI and photogrammet-
ric payload mounted on an under-ice sled fully described in a previous  study25.

Vertical ice‑core sections. Vertical scans were prepared for the bottom 9 cm of 6 of the 42 ice cores (Fig. 1b). 
Hyperspectral imaging frequency was set to 10 Hz with an integration time ranging from 90 to 99 ms with a slid-
ing rail speed of ∼0.4–0.5 cm s−1. We did not apply any in-camera spectral binning and this resulted in a native 
spectral sampling interval of 1.7 nm. Spatial binning was applied to reduce the image from 2048 to 1024 pixels 
across the scanning direction (Fig. 1) to boost signal to noise ratio (SNR). The entrance pupil of the camera was 
located approximately 55 cm from the centre line of the core (Fig. 1c). Across-track scan lines were ~ 40 cm with 
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a spatial resolution of 0.39 mm and vertical cores width covered 360 pixels over the across-track scan line. The 
samples were illuminated with a solar simulating spectrum LED light (Fig. 1e).

Horizontal ice‑core sections. Horizontal ice-core sections were prepared by cutting off the lower-most 3 cm 
section from the core (Fig. 1b). This sampling was done for all 42 cores; thus, all bottom 0–3 cm sections were 
imaged. Six selected cores were processed by sectioning the core at 3 cm intervals starting at the ice water inter-
face at 0–3 cm, 3–6 cm and 6–9 cm (Fig. 1b). This procedure provided us with an additional twelve horizontal 
core sections for scanning, yielding a total of 54 horizontal core samples and allowing us to explore the horizon-
tal variation of biomass deeper into the ice column, and increasing our samples size and biomass range.

The sections were placed with the ice-water interface facing towards the scanner (Fig. 1c). No in-camera 
spectral binning was applied, yielding a native spectral sampling interval of 1.7 nm, and spatial binning was 
applied as per vertical scans. Two different LEDs (Fig. 1d,e) were used for imaging, and image acquisition 

Figure 1.  An overview of sample processing and the hyperspectral imaging optical set-up. Specifications and 
technical details are found in the supplementary material. (a) 3D model reconstruction using structure from 
motion (SfM) digital photogrammetry on horizontal bottom cores sections to retrieve microtopography. (b) 
Vertical and horizontal core samples preparation for hyperspectral image acquisition. A total of 6 vertical 
scans (of 9 cm length) and 54 horizontal scans (3 cm thick) were acquired in this study. Samples are imaged 
within a dark box. (c) The ice core scanning set-up based on transmitted and artificial homogenously diffuse 
illumination. AK10 refers to the pushbroom camera model Aisa Kestrel 10 from Specim. (d) and (e) illustrate 
respectively the mean ± standard deviation of radiance (L) emitted by the white and solar LED lamps utilised for 
illuminating the samples. The LEDs were set to emit an  Ed, PAR of < 30 µmol photons  m−2 s−1 to avoid potentially 
photo-damaging the algal communities, which are typically low-light adapted.
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parameters were adjusted as per different light intensities (see supplementary material for further information). 
Eighteen sections were scanned using the white LED. Imaging frequency was set to 15–20 Hz with 60–75 ms 
integration time and a sliding rail speed of ∼0.8–1.1 cm s−1. Thirty-six section scans were taken using the solar 
LED. Imaging frequency was set to 10 Hz with integration times ranging from 90 to 99 ms and a sliding rail 
speed of ∼0.4–0.5 cm s−1. The distance between the camera lens and the core surface was ∼62 cm achieving an 
across-track scan line of ∼ 45.6 cm and a spatial resolution of 0.44 mm which resulted in around 80,500 pixels 
per horizontal core surface area of 0.015  m2.

Under‑ice in situ imaging. We used a tethered under-ice hyperspectral and RGB imaging system to capture 
10–30 m transects with the same HI camera as the ice-core scanning set-up25. Spatial resolution and spectral 
dimensions were binned at-sensor yielding a native spatial resolution of 0.624 mm, and a spectral sampling 
interval of 3.5 nm. For this study, we selected a small 85 × 70 cm image region, namely block B, from one of the 
sampling transects to exemplify the methodology potential. The selected image region exhibited interesting 
visual features such as the cavities, algal clump patterns, and reliefs in the under-ice topography.

Image pre‑processing and unsupervised exploration. The image pre-processing and exploration 
workflow is illustrated in Fig. 2. All of the acquired raw imagery was converted from digital numbers (DN) to 
radiometric values of transmitted radiance Lt (λ, mW  m−2  sr−1 nm−1) following standard radiometric correction 
 procedures25,26. All horizontal and vertical imagery of cores were manually masked to ensure that only pixels 
within the ice-core surface were analysed. Spectral sub-setting was applied to keep only photosynthetically active 
radiation (PAR) (between 400 and 700 nm), which resulted in 179 spectral bands for the core sections imagery 
and 89 bands for the in situ imagery. This allowed us to focus on Chl a absorption features, which improved 
processing time and reduced noise interference outside of this range.

Principal component analysis (PCA) has been used in HI studies of sea ice to capture per-pixel fine-scale 
spatial variability of the first two principal components (PCs) scores embodying light intensity variability and 
biomass proxies in both laboratory artificial sea  ice24 and in situ25. Mean-centred PCA was here employed on 
the pre-processed imagery of both vertical and horizontal ice-core sections (Fig. 2). Each pixel in the image is 
represented as a sample in the PCA transformation. For PC scores to be comparable among different images of 
different cores, all vertical cores were pooled into a common PCA pixel sample pool to derive PC loading factors 
for the global set of pixels. Analogously, all horizontal core sections were pooled together into a separate pixel 
sample pool. No PCA was applied to the in-situ imagery of block B as this was explored  previously25.

Transmitted radiance, Lt(�), of each pixel of the horizontal core sections, was normalized to transmittance 
by the corresponding averaged LEDs radiance LLED(�) as shown in Fig. 1d and e using the following formula:

This provides directional transmittance spectra, T(λ), in each pixel of the core surface area (Fig. 2a).
For the image of the in situ block B area, the downwelling radiance spectrum Ld,t(�) was normalized by the 

average spectrum of specific regions of relatively algae-free cavities Ld,cavity(�) to derive a directional pseudo-
transmittance image:

These algal-free cavity areas were present within the same scene and provide a proxy of light transmittance 
over roughly the last 1–10 cm of ice bottom (seen in the Fig. 2 in situ image as bright white spots). We aimed 
to select a cavity that was ≤ 3 cm deep with the minimum possible amount of algae to compare as similarly as 
possible to the ice-core scanning set-up. To reduce processing times and increase SNR, the block B image was 
binned spatially in a 4 × 4 array resulting in a resolution of 2.4 mm pixels. Per-pixel smoothing of all the core 
spectra was carried out using a Savitzky–Golay low-pass  filter44,45 with a polynomial order of 1–3 (depending 
if it was a vertical or horizontal section), and window length of 9 bands (Fig. 2). The aim was to reduce noise in 
the transmitted signals without impacting spectral shapes associated with Chl a absorption maximum. The same 
filtering operation was applied per-pixel to the block B in situ image.

Pigment quantification and ice algae community assessment. After hyperspectral scanning of the 
ice-core sections, the samples were left to melt in the dark at 4 °C. After complete melting, the final melt volume 
was gently homogenized, and 50  mL sub-samples were filtered onto Whatman GF/F filters. The filters were 
then placed in ethanol for 24 h extraction of Chl a. The extracted Chl a was measured using a Turner Designs 
10AU fluorometer according to standard  protocols18,46. Volumetric fluorometric Chl a estimates (ug  L−1) were 
converted to areal concentrations (mg  m−2) utilizing surface area of the 14 cm diameter core (0.015  m2). Sea-ice 
algae species composition was determined by standard light microscopy (400 × magnification) of melted ice-
core samples.

Spectral estimation of biomass. Spectral indices were computed for each horizontal core section 
encompassing proxies for phototrophic sea-ice biomass, and the indices were regressed against fluorometrically 
determined Chl a values. The aim was to retrieve regression models that could be applied on a per pixel basis on 
the pre-processed pseudo-transmittance imagery. In order to retrieve an index value for each core section, two 

(1)T(�) =
Lt(�)

LLED(�)

(2)Td(�) =
Ld,t(�)

Ld,cavity(�)
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approaches were available: calculate the spectral index (1) from the mean transmittance spectrum of all pixels 
of the scanned core or (2) from each pixel spectrum in the pre-processed imagery of the core and then calculate 
the mean (Fig. 2). We selected method (2) for the rest of the analyses as computing indexes based on individual 
“noisier” pixels from an ice core section will be more representative of the data being acquired in situ. Perfor-
mances of regression models using method (1) and further information can be found in the supplementary 
material. The mean directional transmittance spectrum ± standard deviation (sd) of an example horizontal core 
section (core 37) is shown in Fig. 2a. For comparison, the mean spectrum ± sd of all pre-processed pixels within 
block B is shown in Fig. 2b.

Figure 2.  A flowchart of the data pre-processing workflow to yield pseudo-transmittance images and per-
pixel biomass estimates from hyperspectral imagery of core sections and in situ. (a) and (b) display the 
mean ± standard deviation of directional transmittance at 668 nm through an example ice core (ice core 37) 
and the under-ice imagery, respectively. The under-ice HI procedure was detailed in a previous  study25.  Lt(λ) 
refers to transmitted spectral radiance and T(λ) and  Td(λ) to spectral transmittance and downwelling spectral 
transmittance, respectively. DN refers to Digital Number of raw imagery data. Savitzky–Golay filter numbers in 
parentheses refer to polynomial order and window length in bands, respectively. Two approaches are available 
to calculate a spectral index for each Sect. (1) from the mean transmittance spectrum of all pixels of the scanned 
core or (2) from each of the pixels spectrums in the pre-processed pixel of the core and then calculate the mean. 
Here method (2) was selected. Further information on method (1) can be found in supplementary material.
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Sea-ice bio-optical studies have mostly relied on Normalized Difference Indices (NDIs) to relate under-ice 
transmitted spectra to Chl a21,22. Here we calculate an NDI for each horizontal ice core section using the fol-
lowing equation:

where  Tu (λ1–2) is transmittance at two selected wavelengths λ1 and λ2. Optimal NDI wavelength were selected 
by calculating NDIs for all possible wavelength combinations, correlating them with Chl a values and plotting 
them onto a Pearson correlation  surface20. The two best NDI wavelength combinations were selected based on 
the following criteria: a good Pearson correlation coefficient (p > 0.7 or p <  − 0.7), a minimal separation of wave-
lengths to avoid autocorrelation (> 12 nm ), and different spectral regions that include at least a band from the 
Chl a absorption maxima (e.g., 430–460 nm or 650–700 nm).

Three additional spectral indices targeted at our study area and sensor set-up were designed and tested. Area 
under the curve (AUC 650–700)47,48, the area under the curve normalised to constant band depth  (ANCB650–700) 
and area under the curve normalised to maximum band depth  (ANMB650–700) which were all calculated from 
the continuum-removed transmittance spectrum between 650 and 700  nm47,49. Continuum removal transfor-
mation on the spectrum was used to enhance and standardize the specific absorption features of biochemical 
 constituents50. The range 650–700 nm was chosen to include the most sensitive area to the secondary in vivo 
Chl a absorption maximum as seen from the transmittance plots (Fig. 2a,b).

Following continuum removal, we calculated the AUC 650–700 as:

where ρj and ρj+1 are values of the continuum-removed transmittance at the j and j + 1 bands, �j and �j+1 are wave-
lengths of the j and j + 1 bands, and n is the number of the used spectral bands. We calculated the  ANCB650-700 
and  ANMB650-700 index as:

where  CBD677 is a constant band depth of the continuum-removed transmittance, generally at one of the spec-
trally stable wavelengths of strong chlorophyll absorption, with 677 nm selected in this case. And MBD, is the 
maximal band depth of the continuum-removed transmittance localized individually for each spectrum.

We also considered the incorporation of a log-transformed index into our index selection as a way to account 
for exponential attenuation of light intensity being transmitted through a scattering and absorbing medium such 
as sea  ice33,51. Thus, we constructed a novel index based on the logarithm of the continuum-removed AUC 650-700, 
named LAUC, taking the following form:

Regression models for Chl a. Linear regression analysis was employed to derive bio-optical relationships 
between integrated Chl a measured from spectral indices and extracted Chl a data from the horizontal core sec-
tions. Natural logarithm transformation was applied to Chl a (log(Chl a [mg  m−2])) to deal with the high range 
of values measured and with the high variance at high Chl a values (heteroscedasticity). This transformation is a 
common approach in sea-ice bio-optical model development and allows for direct comparison across different 
studies developing indices for under-ice biomass  mapping21,22,48. The log-linear regression model takes then the 
following form:

The log-linear regressions were performed for each of the spectral indices and the regressions evaluated 
through root mean square error (RMSE) and the coefficient of determination  (R2) for each model. To account 
for underestimation of the prediction power of the model by the calibration (or training) error, we include 
adjusted criteria such as the adjusted  R2 and the Akaike Information Criterion (AIC)52,53. For unbiased and reli-
able model estimation, we performed a tenfold cross-validation (CV)22,52, for which the data were subset into 10 
different random folds. The fitting of the model and the error calculations were then repeated 10 times, one for 
each subset. Each time, nine folds (or subsets) of the data were combined to produce a regression model, and 
then tested to the 10th holdout data fold.

Quantitative mapping of ice algal biomass and spatial analyses. Based on the results of the sta-
tistical analyses, we selected the best performing model and applied it on a per pixel basis to a set of selected 
transmittance images of horizontal core sections (Fig. 2). The regression models were not applied to the vertical 
core sections as we considered the optical-geometrical configuration to be too different to the horizontal core 
sections. However, the best spectral index model was applied to the in situ pseudo-transmittance images from 

(3)NDI(�1, �2) =
Tu(�1)− Tu(�2)

Tu(�1)+ Tu(�2)

(4)AUC650−700 =
1

2

n−1
∑

j=1

(

�j+1 − �j

)(

ρj+1 + ρj
)

(5)ANCB650−700 =
AUC650−700

CBD677

(6)ANMB650−700 =
AUC650−700

MBD

(7)LAUC650−700 = log (AUC650−700)

(8)log (Chla) = α + β(INDEX)
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block B to derive a large scale and detailed quantitative Chl a abundance map (as per workflow in Fig. 2). We 
then analysed the in situ biomass map for spatial autocorrelation and complexity to evaluate the captured micro-
spatial variability in a natural ice-algal  setting54. An empirical variogram was computed to describe the distri-
bution of the Chl a abundance with spatial lags of 1.2 cm (5 pixels) and by randomly drawing 10,000 (out of ∼ 
76,000) points (pixels) from the block B map. Microscale variability was highlighted by computing the gradient 
magnitude for every pixel in the image through a Prewitt filter operator. This edge detection filter calculates the 
maximum rate of change for each pixel in the image in relation to its surrounding pixels.

Results and discussion
Chl a biomass and structure of the under‑ice habitat at Cape Evans. The broad-scale icescape of 
Cape Evans portrays the sea ice sub-surface as relatively flat and absent of platelet ice, contrary to what has been 
experienced in recent studies in nearby  locations16,21,55. Overall, for the 42 horizontal bottom core Sects. (0– to 
3 cm), we observed a mean Chl a of 18.74 ± 18.04 mg m-2 (range 1.1–117.5 mg m−2), in accordance with maxi-
mum algal biomass ranges reported for bottom ice in McMurdo  Sound2. The six horizontal mid-core Sects. (3– 
to 6 cm) yielded a mean Chl a of 0.61 ± 0.4 mg m−2 (range 0.13–1.2 mg m−2). Finally, for the six horizontal top 
core sections (6–9 cm), the mean Chl a was 0.64 ± 0.48 mg m−2 (range 0.14–1.35 mg m−2) (see supplementary 
Fig. 1 for histograms).

The under-ice habitat was characterized by a random pattern of large cavities and brine channel openings 
ranging 3–15 cm in diameter (Fig. 3a). From standard ROV surveys, this pattern was observed up to 200 m from 
the deployment ice hole in all directions, although we observed sea-ice patches that portrayed little to none of 
these features (Fig. 3a). Figure 3b illustrates the location of the block B image within the transect of the sliding 
under-ice HI  system25. Photogrammetric analyses applied to the bottom of the ice-core surfaces successfully 
produced scaled 3D models of the under-ice microtopography and revealed unprecedented detail on ice cores 
microstructure and associated biomass patchiness (Fig. 3d–f). Observed features included the sea-ice skeletal 
layer (characteristic of growing fast-ice), together with sub-cm sized brine channels (Fig. 3d,e). Figure 3e illus-
trates a large-scale brine channel of 2.5 cm in diameter together with complex microscale features associated 
with algal clumps, and other relief features likely associated with localized refreezing events. Figure 3f captures 
one of the large cavities, which varies from 8 to 10.7 cm in diameter and had a depth of 9 cm. The processes 
responsible for the formation of these large cavities remain unknown at this stage, as per lack of complementary 
physical data. However, in addition to these distinct topographical features, the site harboured two different 
types of algal assemblages making the study site very suitable to showcase the potential of the methodology for 
capturing fine-scale biomass gradients. The ice algae community was dominated by two diatom species, Nitzschia 
stellata, an interstitial species, and Berkeleya adeliensis a strand forming species. Nitzschia stellata dominates the 
interstitial lamellar structure of the ice (Fig. 3d,e) while Berkeleya adeliensis forms short strands and aggregates 
held together by extracellular polymeric  substances56. Such strands are often visible stretching across the large 
cavities in web-like formations (Fig. 3c). Strand communities were interspersed among the more diffusely dis-
tributed interstitial communities and are associated with dark spots or clumps visible across the oblique images 
of the ice-core 3D models (Fig. 3d–f).

PCA for mapping microscale biomass variability in sea‑ice cores. The PC analysis applied to both 
vertical and horizontal sections of selected ice cores is shown in Fig. 4.

The spectral shapes of the PC loadings derived separately from the vertical and horizontal ice core scans 
matched almost exactly with differences in loadings of < 0.001% and were averaged for display (Fig. 4b). PC1 
accounted for > 99.8% of variability and loadings represented the shape of the solar LED spectrum used for 
image acquisition (spectrum shown in Fig. 1e). Per-pixel scores of PC1 consequently mapped variability in light 
intensity transmitted through the core and could therefore be used as a proxy of ice transparency (Fig. 4a,c). PC2 
loadings explained < 0.05% of variability (Fig. 4b) and the loading factor closely resembled the Chl a absorption 
spectrum with absorption peaks in the 440 and 670 nm  bands21,57,58. Due to PCs orthogonality, the influence 
of variability in light intensity results dampened in PC2 score plot. Thus, PC2 score plots portray a good proxy 
of Chl a concentration over the vertical and horizontal sections of the ice cores, bypassing the need of image 
normalization (Fig. 4a,c). The impact of the core’s cylindrical geometry, which induces inhomogeneity in light 
intensity being transmitted across the core width, is also reduced through orthogonality following the first PC 
rotation. Additional PCs did not display any discernible spectral or spatial patterns of relevance.

PC decomposition is commonly employed in hyperspectral image processing to detect features of interest or 
for reducing the dimensionality of the data. Here, PCA provided an unsupervised and straight-forward semi-
quantitative approach to retrieve and assess proxies of Chl a distribution in vertical and horizontal ice core 
sections without the need of any complementary pigment data (Fig. 4). PCA results from the vertical core scans 
showed that PC1 proxy of ice-core transparency (Fig. 4b), likely associated with its textural classification and 
brine volume (e.g., fluid content) but also in part with the amount of biomass. For example, as we approach the 
very bottom of the core (at the ice water interface) the skeletal layer separates into individual ice lamellae and the 
ice becomes more porous and coarse. The high permeability of the skeletal layer causes considerable brine loss 
during the retrieval of the ice core. As the brine leaves the permeable layer, air enters the brine channel system 
and an increase in scattering occurs, resulting in less light being transmitted. The horizontal PC1 perspective in 
Fig. 4c,e shows how light transmission seems to decrease (from yellow to blue) as we move down to the bottom 
of the core (from 9 to 0 cm) or across the core surface, consistent with an increase in lamellar ice texture in the 
skeletal layer.

The PC2 score maps of the vertical sections showed the fine-scale vertical distribution of ice algal biomass 
(Fig. 4). As expected, highest densities of Chl a were observed in a very thin biofilm at the bottom (ice-water 
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Figure 3.  Illustration of a range of biophysical characteristics of the Cape Evans Antarctic fast-ice study site and 
under-ice hyperspectral image acquisition. (a) The distinct under-ice habitat encountered during Spring 2018 
was characterized by scattered large cavity features varying widely in diameter and depth. (b) Block B under-ice 
image location and acquisition using the under-ice HI sliding  system38. (c) one of the large cavity features from 
block B comprising a view of an algal-web like feature stretched on top of large ice cavity. These features on top 
of the cavity channels were a fairly common feature in the study area. (d), (e) and (f) display an oblique view of 
the bottom cores surface 3D models (top) and the complex microspatial variability of the under-ice structural 
features (below). Skeletal layer characteristic of land-fast sea ice is visible along with scale of observable brine 
channels and cavities.



9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21848  | https://doi.org/10.1038/s41598-020-79084-6

www.nature.com/scientificreports/

Figure 4.  Results of unsupervised exploration using Principal Component Analysis on selected ice core 
sections. PC analysis was performed independently on pooled vertical and horizontal sections separately. (a) 
three selected vertical scans of cores 22 and 42 are shown alongside core 30, which contained a large cavity 
that was further explored with horizontal scans of bottom, middle and top sections. (b) PCs loadings intensity 
(unitless). PC1 accounts for > 99.8% of variation and loadings exhibit the spectral signature of the light source 
thus provides a proxy of transmitted light intensity. PC2 accounts for < 0.05% of variation and loadings are 
strongly associated with the Chl a absorption spectrum. Scores of PC2 map are a proxy of Chl a within the cores 
vertical and horizontal dimensions. (c) Horizontal scans and analysis of core 30 characterized by a large cavity 
feature (see Fig. 3f). The horizontal sections were sliced following the vertical scan. Panels (d), (e) and (g) are 
zoomed views of selected features of interest such as apparent brine pockets and channels inhabited by algae. (e) 
zoomed view of apparent ice textural properties. RGB composites of the ice core sections were produced using 
bands at wavelengths 647 nm, 554 nm and 462 nm respectively.
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interface) of the skeletal layer (Fig. 4a). Additionally, different microscale patterns can be observed further 
up into the vertical sections; particularly within the first 0–3 cm of more permeable ice in the skeletal layer. 
PC2 maps of core 30 (Fig. 4a) displayed a higher biomass within the large cavity relative to the rest of the core. 
Analysis of the horizontal sections of this core shows a decreasing biomass trend as the cavity narrows (Fig. 4c). 
This pattern is likely attributed to the surplus habitable ice surface that is exposed to the nutrient rich seawater. 
Nonetheless, the sampled biomass of core 30 was on the lower end of the biomass scale, compared to the rest 
of bottom cores samples, which may be a result of localized brine flushing. PC2 loadings of both vertical and 
horizontal ice core scans further illustrated the widespread occurrence and effects of brine pockets, channel 
openings and other brine-channel related structures (Fig. 4d,f,g) on ice algal biomass micro-scale distribution. 
Ice algae thrive within these complex permeable  networks1,2 and their presence is highly correlated with sea-ice 
porosity and habitable pore  space59,60. Although no complementary physical data (temperature, salinity) are 
available at this scale for validation, PC2 was able to illustrate a limited range of physical features through the ice 
algal biomass associated with them. We acknowledge that the sea ice analysed in this study was characterized by 
a relatively simple composition of organic material, mostly microbial derived, and relatively simple translucent 
and columnar texture common for land-fast ice. Therefore, PC analysis was able to separate the variability in 
the transmitted light field from the variability due to Chl a absorption. Sea-ice textural and structural properties 
can however vary considerably depending on the growth  regime6. Consequently, separation through PCA might 
not be as straightforward in ice cores with diverse sea ice textural mixtures (e.g., granular versus columnar), or 
with highly variable sea-ice biogeochemical compositions (e.g., high detritus, sediments and coloured dissolved 
organic matter concentrations).

Unsupervised exploration with PCA opens the potential for investigating complex vertical biophysical pat-
terns and dynamics. For example, understanding how algae migrate through the ice whilst it is being formed 
and  grows8,61 and how established bottom ice algae respond to bottom ice growth and ablation. Combining these 
images with high resolution spatio-temporal temperature and salinity data, will permit for habitable space to 
be examined alongside nutrient fluxes. This will allow us to better understand how they impact on the vertical 
variability of algae distribution throughout the sea-ice  season43,60,62. The methodology could also be applied to 
explore how ice algae directly respond to changes in their environment through vertical migration following 
either self-shading or unfavourable light  conditions63. Capturing such fine-scale patterns using this HI method 
is a more efficient and quantitatively accurate than cutting ice cores using conventional methods, e.g. sawing. It 
also permits the extension of the imaging area to larger and more customizable ice sections compared to pulse-
amplitude-modulation (PAM) fluorescence imaging  techniques15,64.

Evaluation of spectral indices for ice‑algal biomass. Previous HI studies in sea ice have focused on 
assessing HI suitability for ice algal habitat mapping but lacked the availability of quantitative relationships appli-
cable to our particular sensor configuration and study  environment24,25. The ice core scanning method presented 
here permits the investigation of bio-optical relationships between traditional and alternative spectral indices 
(NDIs and continuum removed AUC 650–700,  ANCB650–700,  ANMB650–700 and LAUC 650–700) against extracted Chl 
a values.

The selected optimal NDI wavelength combinations based on NDI Pearson’s correlation surface and selections 
criteria were NDI (587:621) and NDI (517:449) (Fig. 5a) and resembled correlation surfaces shown in previous 
 studies20. The relationships between tested spectral indices and log(Chl a [mg  m−2]) are shown in Fig. 5b–g 
together with corresponding regression lines and 95% confidence intervals.

While all indices resulted in significant correlations  (R2 > 0.5),  ANCB650–700,  ANMB650–700 and LAUC 650–700 
indices performed considerably better than both NDIs and AUC 650–700 for our study case (Fig. 5). Table 1 sum-
marizes the regression and cross-validation details for the tested spectral indices and the derived biomass retrieval 
parameters. Considering both regression and CV parameters, LAUC 650–700 outperformed the rest of the indices in 
retrieving Chl a abundance (84% variance explained) from ice-algal assemblages. Despite being able to produce 
good correlations, both NDIs and AUC 650–700 seemed to suffer considerably from index saturation at the medium 
to high biomass values relating mainly to the bottom core sections that dominated the dataset (> 1 log[Chl a mg 
 m−2]). The  ANMB650–700 and  ANCB650–700 indices performed relatively better (Fig. 5e,f and Table 1). We found 
that the use of spectrally different artificial light sources did not affect the retrieval of coherent correlations fol-
lowing normalization to transmittance (Fig. 5).

For our sampled sea-ice cores, the high Chl a absorption associated with biomass was more pronounced 
around the 650–700 nm part of the spectrum, compared to 440–450 nm, where noise was dominant (Fig. 2b). 
This is attributed to the highly concentrated bottom algal layer that along with a 1.8 m thick ice cover, reduced 
light levels considerably to Ed,400−700 nm = 0.35 ± 0.20 W m-2, particularly in the 400–500 nm visible range of the 
spectrum (Fig. 2b). We speculate that the performance of the  ANCB650–700 and  ANMB650–700 benefitted from the 
lack of snow cover. Snow is a strong absorber above 600  nm51,65 and its presence is expected to have a negative 
influence on the retrieval of relationships for the 650–700 range of the spectrum. A potential limitation of the 
ANCB and ANMB indices could be the inability to retrieve low chlorophyll abundance values as the spectral 
influence of background features  predominates49. Log-transformation of the integrative index AUC 650–700 into 
LAUC 650–700 provided the best retrieval for Chl a abundance, because it inherently accounts for the exponential 
decrease in light passing through an absorbing medium. This consideration, as also seen for sedimentary algal 
 habitats33, along with the log-transformation of the extracted Chl a concentrations produces the most evenly 
distributed linear spread of spectral index and Chl a values (Fig. 5g).

In recent years, bio-optical algorithms capable of mapping biomass under-ice have been derived from cosine 
corrected irradiance sensors deployed via L-arms followed by the extraction of overlapping core samples to 
produce series of regression  points10,48. However, existing relationships retrieved from sensors which integrate 
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radiance over large solid angles and greatly differ in SNR, are arguably not compatible with the per-pixel radiance 
signals from fine scale HI  pixels16. In addition, NDIs have not always been able to produce robust correlations, 
or derived relationships are limited in their transferability between study sites and between  seasons16,21,22,48 . This 
is because differences in sea-ice and snow physical properties and ice algae photophysiological conditions (e.g., 
pigments composition and packing), can change the optical pathway of light  considerably9. This has an impact 
on the retrieved model coefficients thus affecting the robustness of model to be applied onto new  datasets22,48. 
For nearby sites, recent studies have struggled to formulate reliable bio-optical regression  models16,21. This was 
attributed mostly to the presence of platelet ice, which results in considerable biomass losses during sampling 
and consequently narrow biomass variability range. Another reason could be attributed to the particularly high 

Figure 5.  Linear regressions between log-transformed fluorometric chl-a values and derived spectral 
indices using index computation method (2). Panel (a) shows the Pearson correlation surface between all 
NDIs waveband combinations and Chl a values displaying the selected optimal wavelengths. (b) and (c) 
illustrate NDI(587:621) and NDI(517:449) tested against sampled Chl a. (d), (e), (f) and (g) display regression 
performance of newly developed integrative spectral indices when tested against sampled Chl a. The vertical 
location of the sample (e.g., bottom, middle, top of 9 cm core) and the utilized light source (white or solar 
LED) is also highlighted in the regression plots to assess any influences on the derived bio-optical regression 
equations. Regressions lines include 95% confidence interval of the coefficients (shadowed grey areas).
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biomass concentrations found in the fast-ice of McMurdo  Sound2, because high biomass concentrations can 
negatively affect linear relationships through the saturation of various vegetation spectral  indices49,66,67.

Through the development of an ice-core HI approach and alternative spectral indices, we were able to com-
pensate for some of the caveats relating to sample collection and model development. This core scanning method 
also allowed the elaboration of relationships that are more suitable to be applied to imagery from high-resolution 
HI sensors. Results cannot be compared with previous studies in the same area using L-arms, as sea-ice condi-
tions were drastically  different16,21 and the light-sample collection procedures were also noticeably different. 
HI on extracted ice cores poses a distinct advantage in that the spectral data specific for Chl a is extracted in 
full. The differences between the in situ spectral measurements and the standard biological processing that are 
caused through to the process of coring, brine drainage or platelet slough-off result therefore minimized. Another 
advantage of the spatial resolution of the system is that we can precisely contour relevant per-pixel radiance and 
operate within the exact surface area that is being sampled for Chl a extraction.

To improve ice algal biomass estimation models, it will remain critical to be able to sample Chl a at scales 
closer to the optical resolution of HI scanning systems so that small features can be referenced in the HI products. 
In our case, the variance in Chl a samples was reduced as we averaged over the entire ice core surface of 14 cm-
diameter which portrayed high biomass gradients within single ice core surfaces (Fig. 3). We could partially 
account for the range reduction by including the horizontal core sections sectioned beyond the lower-most 3 cm 
section (e.g., 3–6, and 6–9 cm sections). This permitted the quantification of ice algal biomass over a wider range 
of concentrations also found in situ (e.g., areas surrounding large cavities and bare ice spots) (Fig. 3). However, 
bottom Chl a concentrations can range widely in sea ice, with integrated values reported for Antarctic fast-ice 
ranging between < 0.1 up to 219 mg m−24, thus further efforts are needed to enhance baselining techniques.

As ice science continues to create ever-growing datasets, integrating samples from multiple seasons and areas 
will help to increase the robustness of the algorithms through statistical learning models taking advantage of the 
potential of the resolution of hyperspectral systems.

Quantitative mapping of Chl a microspatial variability ex situ and in situ. The optimal predictive 
linear model built on LAUC 650–700 was applied on a per-pixel basis to both ex situ imagery from the retrieved 
horizontal ice cores sections (Fig. 6), and to in situ imagery of block B retrieved with our under-ice scanning 
system (Fig. 7). The resulting quantitative maps of Chl a (mg  m−2) characterize the remarkable patchiness of sea-
ice algal biomass at the micro and macro scale (Figs. 6a–f and 7c). Previous surveys of biomass variability have 
been quite discrete in sampling resolution (e.g., 0.5–2 m eters distance at the finest)18,22. Apart from ice coring 
surveys, broader footprints derived from different cosine corrected sensor types necessarily integrate in signal 
variance and therefore in biomass variability.

For example, under-ice trawl-based approaches allow to capture kilometre scale transects at the cost of 
resolution, with footprints averaging tenths of meters in  length68. Currently no means have been developed to 
apply HI at the mesoscale. However, the HI niche is its capability to capture and parametrize variability in sea-ice 
biophysical properties at unprecedently fine scales, which will help to understand microspatial scale processes 
characteristic of sympagic microalgal community  dynamics15,62.

Spatial variability within single ice-core surfaces showed highly heterogeneous patterns (Fig. 6a–f), even when 
compared to the < 1  m2 image of block B (Fig. 7c). At the same time, Chl a variability measured across cores 
taken less than 10 m apart varied by one order of magnitude as seen in Fig. 6b and d between the large cavity 
core 30 (3.37 mg m−2) and core 24 (23.12 mg m−2). Variogram analyses revealed a Chl a autocorrelation length 
scale of about 12 cm (see range in Fig. 7e). This was related to habitat features of this size such as the network 
of algal clusters and the cavities (observed in Fig. 7b,c). However, the variogram also underlines a relatively 
high nugget to sill effect, suggesting the influence of yet smaller scale variations in Chl a estimates. These were 
attributed to a combination of measurement error (pixel noise) and stark gradients occurring at the mm scale. 
The gradient intensity map shown in Fig. 7d highlighted drastic Chl a abundance gradients, with a mean of 
3.3 ± 2.3 mg m−2 mm−1 and reaching up to a maximum of 18 mg m−2 mm−1 (see histogram in Fig. 7g).

Regarding validation, the average pixel-based biomass estimate for each of the six core samples was consist-
ent with its respective sampled value, with a variability of about 25–35%. The predicted Chl a concentration on 

Table 1.  Results of analyses using linear regressions models for estimating Chl a in sea ice based on index 
computation method (2) (seen in Fig. 2). α and β refer to the regression model intercept and slope found in 
Eq. 8.  R2 refers to the coefficient of determination, RMSE stands for Root Mean Square Error, AIC to Akaike 
Information Criterion.

Spectral index α β

Calibration
Cross-validation 
(CV)

R2 RMSE R2
adj AIC MSEcv RMSEcv

NDI(587:621) 0.269 119.186 0.629 1.005 0.622 155.771 1.173 1.083

NDI(517:449)  − 0.056 24.927 0.617 1.021 0.610 157.484 1.128 1.062

AUC 650–700 0.353 1.352 0.530 1.131 0.521 168.465 1.370 1.170

ANCB650–700  − 17.718 0.772 0.710 0.889 0.704 142.454 0.871 0.933

ANMB650–700  − 12.211 0.571 0.782 0.771 0.777 127.122 0.607 0.779

LAUC 650–700 0.791 0.986 0.840 0.660 0.837 110.327 0.441 0.664
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block B shows estimates consistent with the range of sampled values for our study site (Fig. 7f and Supplementary 
Fig. 1). However, it remains challenging to validate high-resolution under-ice HI products (2.4 mm size pixels) 
as comparative methodologies to collect physical samples at the scales are lacking. Common ice coring devices 

Figure 6.  Application of best performing bio-optical regression model to the ex situ imagery of selected 
horizontal sea-ice core sections (below) along with their respective RGB composite (top). Best performing 
linear model was derived using the LAUC index (or log(AUC 650–700)) (see Table 1). Fluorometrically derived 
concentrations of extracted Chl a value of each core section are provided to compare extracted Chl a with the 
optically quantified Chl a values. High variability in biomass abundance can be observed within the 0.015  m2 
(ø 14 cm) core surfaces and across different cores in a spatially explicit manner. RGB composites of the ice core 
sections were produced using bands at wavelengths 647 nm, 554 nm and 462 nm respectively.
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can only sample up to a certain diameter size and biomass losses associated with coring (particularly of loose 
strand-forming diatoms) will have to be accounted for when validating estimates. PAM fluorescence imaging 
could offer some ground truthing although it can only provide biomass proxies for considerably smaller frames 
sizes (from 30 × 23 mm up to 120 × 70 mm) and currently exclusively on extracted cores  only64. Therefore, tra-
ditional sampling of Chl a over smaller surface areas that are referenceable within the HI products should be 
pursued to support the validation aspect of the method.

We note that the applied relationships are derived by scanning the 3 cm thick layers only, and the remain-
ing ~ 177 cm of the ice core were omitted from our analyses. This is considered a suitable approach for our study 
area as > 98% of the biomass was concentrated within the bottom 3 cm of the ice ; a common feature for the fast 
ice off Cape  Evans4,69,70. In situ imagery was converted to pseudo-transmittance images through normalization 
by the radiance coming from the cavity and bare ice features within the scene (Figs. 2 and 7b). There are however 

Figure 7.  Application of best performing bio-optical regression model (LAUC) to the in situ under-ice 
imagery and associated microspatial analyses. (a) Framing of the block B hyperspectral image subsample within 
the entire 20 × 0.6 m transect provides an indication of the spatial scale. (b) A high-resolution HI data cube 
representation over block B which is 0.85 × 0.7 m in extent. (c) A quantitative mapping of Chl a by applying 
the LAUC index regression model on a per pixel basis to the pseudo-transmittance image of block B. Spatial 
resolution following a × 4 binning is 2.4 mm per pixel. (d) Magnitude of gradient of Chl a concentration derived 
from block B using a Prewitt kernel. (e) Empirical variogram of ice algal biomass computed by randomly 
sampling 10,000 pixels within the image and starting with a lag distance of 1.2 cm (5 pixels). Variances are 
shown in arbitrary units starting at zero. (f) Histogram of per-pixel Chl a estimates over entire block B shown 
in panel c). (g) Histogram of per pixel gradient distributions relative to gradient map shown in panel d). RGB 
composites of the under-ice hyperspectral imagery was produced using bands at wavelengths 647 nm, 554 nm 
and 462 nm respectively.
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different sea-ice types with more pronounced variations in vertical biomass  variability2,8 and also sea ice that 
does not exhibit cavity features that can be used for estimating in situ transmittance. The workflow presented 
here could therefore require modification for different ice environments such as the integration of scans from 
core sections higher into the ice core, artificially coring cavity-like features, or normalizing irradiances using 
simple radiative transfer  models16,71,72.

Although still under development, we underline that HI approaches present major opportunities for micro-
spatial mapping of ice algal biomass in situ, and ex situ across different vertical and horizontal ice core sections. 
We further advocate the potential for the methodology, coupled with RGB imaging, to be mounted onto UUVs 
or stationary monitoring stations to drastically increase the spatial and temporal mapping capability of under-ice 
biophysical dynamics  quantitatively28,34,73. The selected study site in particular showcased the need for adequate 
resolutions whereby biophysical properties of the under-ice habitat (e.g., changes in species composition and 
under-ice topography) were shown to lead the spatial biocomplexity portraying stark small-scale biomass gra-
dients (Fig. 7d). For example, the observed cavities can provide additional surface area or shelter for the algae to 
colonize, however encompass radiance levels that are orders of magnitude higher than the average conditions, 
with unknown effects on surrounding microorganisms. When combined with photogrammetric 3D models, fine 
scale biomass mapping can support an improved understanding of the effect of under-ice topography, lamellar ice 
crystal orientation and roughness on sea ice algal biomass  patchiness15,25,59,74. At the boundary layer, the effects of 
shear stress from underlying currents and nutrient exchange processes on microscale biomass variability remain 
understudied and could be addressed with HI. Fine scale sea-ice biophysical dynamics can further complicate 
the causation effects if we consider that ice algal growth can potentially create a feedback to changes in sea-
ice physical properties through heat absorption and  melting75 or through extracellular polymeric substances 
(EPS) production affecting the sea-ice  microstructure76. Grazing from pelagic herbivores can also influence 
patchiness and distribution although little is known about their quantitative influence at any scale. Time-lapse 
approaches coupling under-ice HI and RGB  systems25, integrated with ice core scanning, could further help 
assessing grazer-biomass interactions at relevant spatial scales. In addition, through concomitant monitoring 
of both sea-ice microstructural properties, biomass dynamics and their environmental drivers over time, the 
method could further support and add to the parameterization of sea-ice biogeochemical and ecological models 
aimed at regional scale analyses.
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