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Diurnal self-aggregation
Jan O. Haerter1,2,3✉, Bettina Meyer 1 and Silas Boye Nissen 1

Convective self-aggregation is a modelling paradigm for convective rain cell organisation over a constant-temperature tropical sea
surface. This set-up can give rise to cloud clusters developing over timescales of weeks. In reality, sea-surface temperatures do
oscillate diurnally, affecting the atmospheric state and influencing rain rates significantly. Over land, surface temperatures vary
more strongly. Here, we carry out a suite of cloud-resolving numerical experiments, and find that qualitatively different dynamics
emerge from modest surface temperature oscillations: while the spatial distribution of rainfall is homogeneous during the first day,
already on the second day, the rain field is firmly structured. In later days, this clustering becomes stronger and alternates from day
to day. We show that these features are robust to changes in resolution, domain size and mean surface temperature, but can be
removed by a reduction of the amplitude of diurnal surface temperature oscillation, suggesting a transition from a random to a
clustered state. Maximal clustering occurs at a scale of lmax � 180 km, which we relate to the emergence of mesoscale convective
systems. At lmax, rainfall is strongly enhanced and far exceeds the rainfall expected at random. Simple conceptual modelling helps
interpret the transition to clustering, which is driven by the formation of mesoscale convective systems, and brings about day-to-
day moisture oscillations. Our results may help clarify how continental extremes build up, and how cloud clustering over the
tropical ocean could emerge as an instance of spontaneous symmetry breaking at timescales much faster than in conventional
radiative–convective equilibrium self-aggregation.
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INTRODUCTION
Due to their relatively low resolution, current general circulation
models cannot simulate mesoscale convective organisation
explicitly1. Yet, the recent observed positive trend in regional
tropical rainfall was stated to predominantly stem from changes in
the frequency of organised deep convection2. Similarly, in mid-
latitudes, the majority of flood-producing rain was attributed to
mesoscale convective systems (MCSs)3,4. In line with Moeng and
LeMone5, we here take MCSs to be long-lived complexes of rain
cells spanning ~100 km in diameter. Over continental regions, the
clustering of convection in an MCS poses a risk to humans as
severe storms can lead to intense downdraughts and flash
flooding3,4,6,7. Pronounced long-lived clustering can be simulated
in a process known as convective self-aggregation forming over
the timescale of weeks8–10. There, the radiative–convective
equilibrium (RCE) experimental set-up11,12 is usually employed,
assuming spatially and temporally constant surface temperature
(~300 K). In RCE self-aggregation, radiation feedbacks have
emerged as the “smoking gun” for sustaining and increasing
clustering8. Still, factors such as sea-surface temperature feed-
backs13, domain size, geometry and resolution10, as well as
periodically varying insolation14,15 or cold-pool effects16,17 were
also stated to influence RCE self-aggregation.
Prescribing constant boundary conditions is an elegant model

simplification, but it is not always realistic. Diurnal sea-surface
temperature amplitudes can be as large as two18,19 to five20

Kelvin, especially under weak surface wind conditions and strong
insolation. Diurnal surface temperature amplitudes of this
magnitude change the properties of the atmosphere20, resulting
in diurnally varying precipitation intensity and affecting large-
scale phenomena, such as the Madden–Julian Oscillation (MJO) or
the El Niño phenomenon. Satellite observations show a diurnal
cycle in cloud height for the MJO21,22. Diurnally varying

precipitation intensity also emerges from numerical simulations
that account for differences in insolation23. Further, in contrast to
RCE self-aggregation simulations, observed tropical cloud clusters
typically are more transient, as they often persist for less than two
days24.
Mechanistically, cold pools (CPs), that is, denser air formed by

rain evaporation under convective clouds, were long implicated in
the organisation of convection25,26, both by thermodynamic and
mechanical effects27–31, and were suggested to lead to cluster-
ing32,33. In the following, when referring to MCS, we take this to
encompass both the cluster of deep convective cells and the
associated CPs, which are often long-lived. The continental diurnal
cycle of deep convection is characterised by an afternoon or
evening peak in rainfall31,34–38. Over the ocean, this daily period
can further be modulated by bi–diurnal oscillations, a dynamics
observed by Chen and Houze for local cloudiness in MCSs and
referred to as “diurnal dancing”39.
Previous studies of convective self-organisation under diurnally

varying surface temperature either did not address the emergence
of MCSs or simulated a relatively small domain37. Current state-of-
the-art regional climate models are now capable of simulating
much larger areas (beyond 1000 km horizontally at kilometre
resolution)40–43. Encompassing features, such as terrain variation
and inhomogeneous external forcing, adds unique regional
insight but makes mechanistic analysis of self-organised clustering
more cumbersome.
Through an idealised set-up, we analyse the multi-day

organisation in the convective rain field over land and sea. In
our set-up, surface heating is spatially homogeneous but oscillates
diurnally. Our focus is on the spontaneous emergence of
clustering. We show that a transition from a homogeneous to a
strongly clustered state occurs spontaneously when the amplitude
of the diurnal surface temperature oscillation is sufficiently large.
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We refer to the emergent convective clusters as MCSs because of
their typical scale of ~100 km44 and term the clustering process
diurnal self-aggregation due to the lack of imposed spatial scales.
This clustering oscillates bi-diurnally and continues to strengthen
from day to day, features we back by a conceptual model. Finally,
we discuss the relevance for the emergence of extreme
continental rainfall and the implications for organised convection
over the tropical ocean.

RESULTS
We carry out a suite of numerical experiments on square
mesoscale model domains (L × L) of up to L= 960 km horizontal
length and horizontal grid resolutions of 1 km and finer. Diurnally
oscillating, spatially homogeneous surface temperature, Ts(t), is
prescribed as

TsðtÞ ¼ Ts � Ta cosð2π t=t0Þ; (1)

where Ts ¼ 298 K, t0≡ 24 h is the duration of the simulated model
day, and Ts and Ta represent the temporal average and amplitude
of Ts(t), respectively. The diurnal insolation cycle is chosen to be
typical for the equator and peaks at noon (just like the surface
temperature Ts). We provide sensitivity experiments exploring
resolution, domain size, rain evaporation, surface conditions and
insolation (see details in “Methods”). We contrast simulations with
different diurnal surface temperature amplitudes, Ta, but equal
average surface temperature, and refer to experiments with Ta=
2 K, 3.5 K and 5 K as A2, A3.5 and A5, respectively. Modifiers, such
as A5b or A5sea (see Table 1), label sensitivity studies. Unless
explicitly stated, our key results regarding clustering occurring
under varying values of Ta, are qualitatively robust under the
sensitivity experiments. Each numerical simulation is run for
several days, allowing for a spin-up and quasi-steady-state period
(Table 1; Supplementary Fig. 1).

Domain-mean time series
Unsurprisingly, the differences in diurnal surface temperature
amplitudes are reflected in larger diurnal amplitudes of atmo-
spheric near-surface temperatures (Fig. 1a; Supplementary Fig. 1a,
b). Changes in the time series of domain-mean rain rate are more
profound (Fig. 1b): whereas A5 yields a relatively sharp mid-
afternoon single-peak structure, the curve transitions to a broader
and double-peaked structure for A2, where it approximates the
diurnal cycle typical of oceanic convection45. For Ta= 0, only a
weak nocturnal maximum remains (Supplementary Fig. 2f,
compare: Janowiak et al.)46. Again, the differences in the temporal
mean (horizontal lines) are minimal, reflecting radiation con-
straints on rainfall47. Real surface temperatures normally peak at a
delay relative to local solar noon. Such delays accordingly shift the
onset of organisation; hence, radiative effects are not key in this
timing (Supplementary Fig. 2e). Curves that vary in a similar
manner to the rain rate are found for rain area fraction, which, by
contrast, differs from those of rain rate immediately before the
central peak (Fig. 1c). These differences are made more
transparent when inspecting rain rates conditional on a threshold
(Fig. 1d). Both mean and heavy precipitation show a pronounced
evening peak for A5 and an early-morning or nocturnal peak for
A2. In summary, whereas time averages of rain rate are nearly
identical for numerical experiments with varying diurnal surface
temperature amplitudes, the time series differ markedly.

Quantifying clustering
Do the differences in domain-mean time series hint at differences
in spatial organisation? Consider the horizontal patterns formed
by surface rainfall, visualised by temporally averaging the rainfall
pattern during each model day (Fig. 1e, f). During the spin-up from
the initial condition (day 1), both A2 and A5 show modest and

relatively homogeneous convective activity throughout the
domain. During the subsequent model days, convection intensi-
fies for both simulations because near-surface temperatures
gradually increase. In A2, the spatial pattern of events remains
rather homogeneous (Fig. 1e). In contrast, for A5, an inhomoge-
neous pattern self-organises, with several subregions receiving
pronounced average rainfall, whereas others are all but dry (Fig. 1f,
days 4 and 5). Furthermore, for A5, temporal alternations in
surface rainfall rate are apparent when comparing one day to the
next (compare: Fig. 1f, day 4 vs 5): a cluster on 1 day leaves an
almost rain-free area the next day.
To quantify such spatiotemporal inhomogeneities, we deter-

mine all surface rain event tracks and compute their centre-of-
mass positions. Tracks are thereby defined as spatially and
temporally contiguous rainy grid boxes (see “Methods”). We then
break the horizontal domain area down into square boxes of side
length l, yielding n(l)≡ (L/l)2 such boxes, and determine the
number of tracks located in each of the boxes. The probability pl of
a track occurring within one of the boxes at random would be
pl= n(l)−1 and the binomial

PlðmÞ � N!
ðN �mÞ! m!

pml 1� plð ÞN�m (2)

hence describes the probability ofm of N randomly distributed tracks
lying in one of these boxes during the model day. The variance of

Table 1. Summary of numerical experiments.

Experiment
Name

Diurnal surface
temperature
Amplitude,
Ta [K]

Horizontal
resolution
dx [km]

Domain size
L [km]

Days with
3D output

A5a 5 1 960 1–6

A2a 2 1 960 1, 4–6, 8

A5b 5 1 480 1–8

A2b 2 1 480 1–4, 8*, 9*

A5c 5 0.5 240 1–3

A5d 5 0.2 240 1–3

A3.5 3.5 1 480 3–5

A5sea 5 1 480 1–4

A2sea 2 1 480 1, 8

A5vent05 5 1 480 4

A5vent001 5 1 480 4

A5p2K 5 1 480 4, 8

A5ph3.6h 5 1.5 384 3–5

A5ph6h 5 1.5 384 3–5

A0 0 1 256 1–3

A5constrad 5 1.5 384 3–5

A0constrad 0 1.5 384 3–5

The main four experiments are listed in the first four rows (A5a, A2a, A5b
and A2b). The experiments labelled by a star (*) are equivalent to A2b but
constitute an additional, longer-duration run (A2long). All the above
experiments were carried out at Ts= 298 K, except A5p2K, which was
carried out at Ts= 300 K. A5sea and A2sea were carried out, by assuming a
water surface at the lower boundary. In all other experiments, surface
evaporation was set to 70% of the value computed for a water surface.
A5vent05 and A5vent001 denote experiments, where the ventilation
coefficients52 were reduced to 0.5 and 0.01 of their default values.
A5ph3.6h and A5ph6h constitute experiments, where the diurnal cycle of
surface temperature was phase-shifted by 3.6 and 6 h. A5constrad and
A0constrad are simulations, where the incoming solar radiation was set to
a constant equalling its average value.
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Fig. 1 Transition to a clustered rainfall state. a–d Diurnal cycles of domain-averaged quantities. Each quantity was horizontally averaged for
the lowest model level (z= 50m). Time series represent a compound diurnal cycle, where equal times of day were averaged over all available
model days. a Temperature for simulations with different imposed diurnal surface temperature amplitudes Ta, as labelled in the legend.
Horizontal lines of corresponding colours represent the time average of each simulation. b Analogous to a, but for rain intensity. c Analogous
to a, but for rain area fraction. dMean, 90th and 99th percentiles of event rain intensity (conditional on I > I0= 0.5 mm h−1) for A5a and A2a, as
labelled (see Table 2 for experiment label details and “Methods” for the definition of rain events). e Surface rainfall average during day 1 (spin-
up), day 4 and day 5 for A2a. f Similar to e, but for A5a. Boxes of side length 200 km and scale bars of length 200 km highlight the spatial and
temporal variation (see Supplementary Fig. 3).
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counts m, given a side length l, denoted as Varran(l; N), is
48

Varranðl;NÞ ¼ N plð1� plÞ; (3)

which we compare with the variance of the empirical data

Varempðl;NÞ ¼
XnðlÞ
i¼1

ðmi � hmiÞ2; (4)

where 〈m〉≡N/n(l) is the average number of tracks per box, and the
sum runs over all boxes i. The comparison of the two quantities in
Eqs. (3) and (4) hence measures how much variation is obtained
empirically when contrasted against completely uncorrelated data.
This comparison can be expressed in a clustering coefficient, which
we define as CðlÞ � Varempðl;NÞ=Varranðl;NÞ. CðlÞ is below unity
when tracks are regularly spaced and above unity when tracks are
clustered. The results show that, for small diurnal surface temperature
amplitudes (experiment A2a, Fig. 2a) CðlÞ< 1 for all box sizes l; hence,
the spacing of tracks is generally more regular than expected at
random. For larger diurnal surface temperature amplitudes (A3.5 and
A5, Fig. 2b, c) regular spacing with CðlÞ< 1 is found only for relatively
small box sizes of l ≈ 20 km, whereas spacing at larger box sizes is
strongly clustered, that is, CðlÞ � 1. Moreover, this clustering
increases from day to day (Fig. 2d).
We also define a box size lmax, at which CðlÞ is maximal. Despite

some variation, lmax ≈ 180 km can be identified from A5 (Fig. 2c, e).
In addition, we measure the autocorrelation c(τ) between day d
and day d+ τ by computing the Pearson correlation coefficient of

daily mean precipitation rates from all grid boxes (Fig. 2f). We find
rainfall to be anticorrelated from one day to the next for all box
sizes (c(1) < 0), suggesting a local inhibitory effect of rain and
positively correlated two days into the future (c(2) > 0). The
magnitudes of c(1) and c(2) both increase with box size l, but
appear to level off near l = 200 km (Fig. 2f).

Clustering as a result of cell-density difference
We now explore the mechanistic origin of the clustering.
Differences in the areal number density, that is, the count of rain
cells per unit area, between A2 and A5, are evident from the
rainfall diurnal cycle (Fig. 1b, c). The peak in rain intensity and
fractional area covered by rain cells is nearly twice as high for A5
compared with A2. Given that the area, intensity and duration of
each individual rain cell are all similar for A2 and A5 (Supplemen-
tary Table 1), roughly twice the number of rain events will coincide
during the peak of rainfall for A5 compared with the peak of A2. As
mentioned, CPs are known to mediate interactions between
convective rain cells32,49. We expect interactions to become more
relevant at increased rain cell density because CPs will more often
collide as they spread along the surface. To quantify density
effects on the clustering dynamics in A2 versus A5, we first
perform a simple CP tracking. The method identifies spatially and
temporally contiguous patches of low buoyancy, measured by a
1 K temperature depression (for detail, see “Methods”). In A2, CP
areas typically do not exceed 500 km2, have modest temperature

Fig. 2 Quantifying the transition to clustering. a Clustering coefficient CðlÞ at different box sizes l for A2a. Curves range from day one (red) to
seven (green). The pattern of rain events is regular, as CðlÞ< 1 throughout. Note the double-logarithmic axis scaling. b Analogous to a, but for
A3.5. c Analogous to a, but for A5a. In b and c, at small scales (l ~10 km) or early times (t < 2 d), rain events are regularly distributed (CðlÞ< 1),
whereas at larger scales (l ~ 180 km) and later times (t ≥ 3d) events are clustered (CðlÞ> 1). d Maximum of CðlÞ versus time for different
simulations (see: legend and Table 1). Note the general increase for large Ta (A3.5, A5: upward-pointing triangles) but flat behaviour for small Ta
(A2: downward-pointing triangles). e Scales of clustering, i.e., the position l at which the maxima in CðlÞ occur in A3.5 and A5. The grey shaded
area marks the standard error of lmax, averaged over all times t ≥ 3d. f Autocorrelation c(τ) for τ= 1 and τ= 2 shows increasing c(τ) with scale l
for both A2 and A5. Several points for A2 are not shown due to lack of statistical significance at the 1% confidence level. Each data point
represents an average over all possible correlations for the experiment at hand: that is, for c(2), the pairs (1, 3), (2, 4), etc. were used.
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depressions and lifetimes of generally less than 2 h (Fig. 3a–c). In
A5, where CPs only occur during parts of the day, CP areas often
exceed 103 km2, and such large CPs have much stronger
temperature depressions and substantially longer lifetimes
(Fig. 3d–f). The formation of very large and strongly negatively
buoyant CPs suggests that CPs from distinct rain cells often bunch
together before each CP has fully expanded. We employ the CP
tracking to detect merging events, that is, instances where two
previously separate CP areas combine. For A5b, CP merging is
indeed ubiquitous, whereas it is all but absent in A2b (Supple-
mentary Fig. 4c).
In addition, we compute the CP height, measured by detecting

temperature anomalies in the vertical dimension. In A5b, when
CPs first appear, they show heights comparable to those of A2b
(Supplementary Figs. 4a, b and 5). Subsequently, a double peak
forms, where groups of merged CPs obtain much larger heights,
reaching close to the level of free convection (≈1100 m). Larger CP
heights h and deeper temperature depressions T 0 are consistent
with larger mean surface wind speed vcp � ðhT 0Þ�1=2 under CPs50

(compare: panels in Supplementary Fig. 5) and surface fluxes
(Supplementary Fig. 1e–h), resonating with markedly enhanced
near-surface moisture and convective available potential energy
(CAPE) along CP boundaries in A5 (compare: Supplementary Fig.
6e, j).
We aim to formulate a simplified model that incorporates the

observed number-density differences. To this end, consider first a
detailed comparison of CPs formed in A2 and A5: in A2, CPs are
spatially isolated from one another, and the area covered by each
CP remains small (Fig. 4a). In A5, many CPs occur so close to each
other, that their temperature anomalies inevitably merge (Fig. 4a;
Supplementary Fig. 4c), forming a large patch of dense air. This
combined CP, which we associate with the emergent MCS,
reaches a greater height and develops a relatively cold and dry

region in its interiour where convection is suppressed. This
inhibitory effect in the MCS interiour can be ascribed to the
divergence of the level of free convection (LFC) (Fig. 4b) and a
depletion of CAPE (Supplementary Fig. 6e, j).
In contrast, as the combined CP spreads outward from the

dense region of rain cells, new cells are often triggered at its front
—further feeding the MCS. At this combined CP’s gust front,
hence at the periphery of the emergent MCS, the greater CP
height allows boundary-layer environmental air to be forced
higher up and set off new rain cells. In addition, the CP’s
surroundings benefit from the moisture transported by the
combined CP’s front and the additional latent heat flux and
increased CAPE along the combined CP’s edges (compare
Supplementary Fig. 6e, j). Indeed, many subsequent rain cells do
form near the perimeter of the combined CP, whereas this is rare
for A2 (thin black contours in Fig. 4a). To quantify this moisture
redistribution from within the MCS to its surroundings, we
contrast domain subregions of A5, which receive intense versus
weak precipitation during a given model day (Supplementary Fig.
6f–h). Regions of intense rainfall are characterised by enhanced
moisture near the cloud base (z ~1 km) before precipitation onset,
but marked depletion after rain has occurred. Conversely, areas of
weak rainfall show nearly a “mirror image”, with depressed
moisture before but enhanced values after precipitation. The
bi–diurnal dynamics for A5 can hence be characterised as an
alternation of cloud-base moisture, driven by the lateral expansion
of MCSs, which leaves behind an inhibitory dry patch in their
interior that is marked by low CAPE (Supplementary Fig. 6i, j). On
the subsequent day, this drying in locations of previous MCSs
leads to relatively enhanced near-surface and cloud-base moisture
in those regions not affected by these previous MCSs—in turn
providing favourable conditions for convective activity there (for
detail, see Supplementary Information Text and Supplementary

Fig. 3 Cold pool merging and deepening. a CP occurrence time, maximum area and average temperature depression (colours from red to
blue, see legend) on days 1, 2 and 4 of the experiment A2b. The black curve indicates the total CP area at each time, whereas the thick
coloured curve (compare legend for colours) highlights the time series of the largest CP during the particular day. b Areas covered by CPs
during day 4 of A2b, the colours (see colour bar) indicate the duration during which CPs were present (compare: Supplementary Fig. 5). The
scale bar is 100 km long. c CP area versus the corresponding maximum of areal mean temperature depression (day 4). Symbol sizes indicate
CP lifetime and colours indicate occurrence time within the model day (see legends). Black and red rectangles along the axes indicate the
median and 90th percentile of the corresponding quantity. Note the logarithmic vertical axis scale in a and c. d–f Analogous to a–c, but
for A5b.
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Fig. 6). We further find a positive correlation between cloud-base
moisture and precipitation, which could help promote the
transition from shallow to deep convection29,51 and potentially
reinforce the updraughts. In A2, day-to-day moisture alternations
are lacking (see Supplementary Fig. 6g, h for A5b to Supplemen-
tary Fig. 6b, c for A2b), a finding that falls in line with the absence
of organised convection. As with rainfall, the spatial pattern of
cloud-base moisture again reflects a coarsening of scales for A5
relative to A2 (Supplementary Fig. 6d, i).
In total, the analysis suggests that an MCS emerges, when

several CPs combine, become deeper and excite new rain cells
along their common gust front. The emergence of an MCS on one
day causes a suppressed region the subsequent day. As a further
check, we weaken CPs by decreasing the ventilation coefficients
(av and bv in Eq. (24) of ref. 52) to a fraction of their default values.
These coefficients control rain evaporation, hence temperature
depression T 0 and CP propagation (� T

01=2) (for details, see
“Methods”). Indeed, decreasing these coefficients systematically
reduces the spatial extent of the rain-free regions (Supplementary
Fig. 3).

Clustering from a two-level atmosphere model
A key characteristic of A5 is that parts of the day see no rainfall at
all. In contrast, immediately after the onset of rain (near mid-day,
Fig. 1b), the area covered by precipitation is relatively large—
corresponding to a high number density of rain events and CPs.
Our simplified model describes the system domain as a square
lattice of sites, where each site can reside in two different states.
For simplicity, we consider each pair of a rain cell and its CP as one

entity. We let this entity occupy one lattice site, termed an “active
site”, and say that it fills the area of a rain cell a0 ≈25 km2

(Supplementary Table 1). Lattice sites not active are considered
“vacant”. In practice, our model mimics the qualitative clustering
dynamics by allowing MCSs to emerge, whenever a sufficient
number of active sites occur close to each other.
Assume that, at a given time, the fraction of active sites is p0,

and sites are independently populated. That is, each site of a
square lattice contains a rain event at probability p0. To exemplify,
in Fig. 4c, i, p0 is relatively small, and few sites are active. In Fig. 4c,
ii, p0 is larger, more sites are therefore active and many of them
are now neighbours. To incorporate the effect of an MCS, we
simply let the remaining vacant sites be more likely to become
active when they are immediate neighbours to a sufficiently large
area A > Acrit of spatially contiguous active sites (compare: Fig. 4a).
This is accomplished by assigning increased probabilities to the
neighbourhood sites (Fig. 4c, ii, orange sites). When p0 is small
(p0≪ 1), the system will, however, be unlikely to contain
contiguous rain areas exceeding Acrit (compare: shaded box in
Fig. 4a). To be explicit: the probability of finding two active sites
on two neighbouring sites is proportional to p20, and this
probability will decay exponentially with the number of sites
contained in the contiguous area53.
But how does p0 emerge from the diurnal cycle dynamics, and

how can bi–diurnal temporal correlations be captured (Fig. 2)? To
self-consistently incorporate these features, we describe the
population of rain cells within a two-layer atmosphere model
consisting of a prescribed boundary- layer temperature Tbl, varying
sinusoidally with a small diurnal surface temperature amplitude

Fig. 4 A simplified model for convective clustering. a Examples of typical CPs on day 4 of A2b (15:35) and A5b (14:00) showing virtual
potential temperature anomaly at z= 50m (compare: boxes in Fig. 3b, e for context). Thin yellow lines show accumulated surface rainfall (1-,
5- and 10-mm contours) within the subsequent hour. A scale bar and an area Acrit are marked (compare: panel c). CP areas (bold black contours
of −1 K anomalies) exceeding Acrit are rare in A2b, but frequent in A5b. The combined CPs in A5b can excite subsequent rainfall and feed the
emergent MCS. b Respective x–z cross-sections along the white horizontal lines in a including the lifting condensation level (LCL) and level of
free convection (LFC), and corresponding domain means (dashed). Marked regions correspond to lowered triggering probability (compare:
panel c). c Schematic for the simplified model dynamics. (i) Low-density subdomain with vacant (white) and active sites (blue). (ii) Similar to (i)
but for high density, showing also boundary sites (orange) with higher probability. d C(l) for ta= 0.5 K, analogous to Fig. 2a–c but now for the
simplified model (days as marked). Note the double-logarithmic axis scaling. e, Analogous to d, but for smaller ta. Inset: diurnal cycle for rain
area for the simplified model for two values of ta (compare: Fig. 1b–d). f Simple checkerboard model, explaining the increase in variance over
time for large ta (red symbols) and small ta (blue symbols). The grids below show the patterns at days 1–4, 10 for large and small ta,
respectively. Box colours white → faint red → red → dark red indicate increasing density.
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ta (see Fig. 1a), and an interactive free-tropospheric temperature
Tft. We compute the probability for a rain cell to become active by
coupling it to the temperature difference between the boundary
layer and the free troposphere ΔT= Tbl − Tft, as an approximation
for atmospheric stability. When Tbl increases during the model
day, rain events will eventually be set off. Two key processes
impact on the free-tropospheric temperature: thermal radiation to
space reduces Tft, whereas latent heat transfer by rain events
increases it. The boundary-layer temperature (Tbl) is not directly
affected by rain cells. However, buoyancy depressions, arising
mainly from sustained drying after rain events, are implemented
by an inhibitory potential. In practice, once an active site
transitions back to vacant, it needs to “wait” until it can become
active again (for details, see “Methods”).
We implement reasonable coefficients for these processes and

find the simulations to reach a repetitive diurnal cycle (Fig. 4e,
inset). Indeed, for small ta, modest rainfall is present during the
entire day, whereas for larger ta, rainfall is either intense or absent.
Time-averaged rain areas for large and small ta match (compare:
Fig. 1b), a result of the radiative constraint and in agreement with
the numerical experiments. The earlier phase in Fig. 4e, inset
versus Fig. 1b, can be attributed to the fact that we directly
prescribed atmospheric boundary-layer temperature Tbl, rather
than surface temperature itself, causing an immediate precipita-
tion response.
Considering the variance of the spatial pattern for large ta, the

simplified model indeed produces increased clustering over time
and larger spatial scales (Fig. 4d, colours from red to green, and
Supplementary Fig. 7). Conversely, clustering is absent for small ta
(Fig. 4e). This can be explained intuitively: when the thermal
forcing caused by the boundary-layer temperature Tbl increases
rapidly during the day, many rain events will be set off during a
short time—leading to large p0 during those times. The negative
feedback on the free-tropospheric temperature Tft will then
rapidly cause the “budget” of rainfall to be used up. MCS will
form as long as the increased probability at the edges of the
contiguous CP patches counteracts the ongoing increase of Tft.
Hence, MCSs will be able to spread, as long as this is the case, thus
setting the time (≈6 h) and space (≈100 km) scale for MCS, which
is significantly larger than the scale of a single rain event (≈1 h and
≈5 km).

Conceptualising further
The two scales of individual rain cells (~5 km) and MCS (~100 km)
allow for a further simplified conceptual view, which builds on
domain total moisture being conserved from day-to-day. In this
view, the occurrence of rain cells is directly proportional to the
available moisture and rain cells act to redistribute moisture, once
they form an MCS. Take the model domain to be broken down
into a square lattice consisting of blocks. Each “block” consists of
20 × 20 sites for single rain cells of area a0, together yielding a
block size of 100 km × 100 km, which provides space for an entire
MCS. In each block, an MCS is only set off if a sufficient number of
rain cells are present. We find that a simple set of rules can model
the MCS dynamics: (1) first, initialise each block in this square
lattice, by assigning an integer, encoding the number of rain cells,
drawn from a binomial distribution; (2) update the system once
per day, by letting all blocks above a particular threshold (an MCS
forms) hand over their content (the moisture transported by the
MCS) at equal parts to their four neighbouring blocks; after this
distribution step, all sites collect the spilt content, hence
conserving total moisture.
When the mean of the binomial distribution is low compared

with the threshold, which is the case for small ta, no MCS will form
and no redistribution will take place (Fig. 4f, blue points, and lower
row of squares). In contrast, when ta is sufficiently large, a long
sequence of reallocations will occur, leading to a checkerboard-

like clustering, which strengthens in time (red curve and upper
row of squares). This example is sufficient to capture the increase
of normalised variance for A5 and the lack of it for A2 (Fig. 4f).

DISCUSSION
Our study analyses the spontaneous emergence of convective
clustering, when the amplitude of the diurnal cycle surface
temperature is varied. This “diurnal self-aggregation” occurs
without imposing spatial scales by external forcing, as with
radiative–convective equilibrium (RCE) self-aggregation8–10.
Clearly, the two cases differ regarding the surface boundary
conditions. However, also the spatial and temporal scales of the
clustering, and in particular the physical processes causing it,
differ. In RCE self-aggregation, clusters are temporally coherent
over multiple days, whereas in diurnal self-aggregation, the spatial
patterns of convection are almost opposite from one day to the
next. The findings here suggest that, when the diurnal surface
temperature variation is sufficiently large, the clustering, and
thereby the potential for flash floods, increases from day-to-day.
Increasing model horizontal resolution to 0.5 or 0.2 km (A5c and
A5d in Supplementary Fig. 3) leads to even stronger clustering
effects, in agreement with recent findings for continental surface
conditions42. It should be tested if higher resolution leads to
stronger cold-pool interaction, hence more activation in areas with
dense rain cell occurrence. The current findings suggest that
observational studies on extremes54–56 should additionally focus
on diurnal surface temperature amplitude, not just the mean.
In RCE self-aggregation, the standard explanation for clustering

invokes arguments based on differential cooling and circulation
changes induced by this cooling. Remarkably, the memory
enabling clustering in diurnal self-aggregation is purely thermo-
dynamically driven: we do not detect any sustained changes of
circulation that harbour a memory from one day to the next
(Supplementary Fig. 1i, j). The findings hence suggest two possible
“shortcuts” to observed mesoscale clustering over the ocean: (i) at
times, sea-surface temperature oscillations may be sufficient to
kick-start clustering; (ii) clustering may emerge over land surfaces,
where a strong diurnal cycle prevails, and may then be advected
over the sea, where it could grow further under more RCE-like
conditions. Practically, it could be checked through simulations,
whether a state of persistent, spatially and temporally coherent
self-aggregation is reached more quickly when sea-surface
temperatures transiently oscillate—thereby exciting initial cluster-
ing on the scale of lmax. Both “shortcuts” require that clustering
can persist or grow once formed—a requirement consistent with
hysteresis effects57. In our conceptual model, hysteresis is, in fact,
easy to achieve. Once an imbalance between neighbouring grid
cells is established, sustained re-distributions will be possible, even
when the overall event number density is then lowered. It should
further be explored, if the day-to-day variation we find can be
amplified by an interactive surface, such as by “cloud shading”8,13.
The specific feature of the MCS, formed by higher cell and thus

cold-pool density at larger diurnal surface temperature amplitude,
is to trigger new convective cells at its periphery. These new cells
form cold pools, feeding the emergent MCS and further forcing
updraughts near its boundary. Notably, new convective cells are
also formed within the interior of the MCS (Fig. 4a), a finding in
line with collision effects of multiple cold-pool gust fronts17,32.
These interior cells could further act to deepen and cool the
combined cold pool driving the MCS expansion. Together, MCSs
hence act to excite new convection both within and around the
combined cold-pool area. In conventional self-aggregation
studies, strong cold pools were found to inhibit clustering16.
However, under the diurnal cycle conditions studied here, they
combine to promote the formation of MCSs due to the high
numbers of cold pools occurring in spatially confined subregions
within a relatively short time.
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Altogether, the present work interpolates between the estab-
lished RCE set-up for oceanic convection and typical boundary
conditions for continental convection. Over the ocean, the origin
of initial clustering could be found in modest sea-surface
temperature fluctuations—in line with those observed18–20. Over
continents, fluctuating surface temperatures are well-known to
imprint pronounced diurnal rainfall variations31,34–38, and
observed MCS rainfall was reported to increase2,58, elevating the
risk of flash floods. In summary, the present results suggest that
explanations for tropical and summertime mid-latitude flash
floods might also be found in temperature variations.

METHODS
Large-eddy model, boundary and initial conditions
We simulate the convective atmosphere using the University of California,
Los Angeles (UCLA) Large Eddy Simulator (LES) with sub-grid-scale
turbulence parameterised after Smagorinsky59. This is combined with a
delta four-stream radiation scheme60 and a two-moment cloud micro-
physics scheme61. Radiation interacts with the atmosphere including
clouds, but it does not impact the surface temperature and hence surface
fluxes. The diurnal insolation cycle is chosen typical for the equator
(Supplementary Fig. 2d). Rain evaporation is implemented after Seifert and
Beheng52. Diurnally oscillating, spatially homogeneous, surface tempera-
ture, Ts(t), is prescribed, as

TsðtÞ ¼ Ts � Ta cosð2π t=t0Þ; (5)

where Ts ¼ 298 K, t0= 24 h is the duration of the simulated model day, Ts
represents the temporal average and Ta the amplitude of Ts(t). Surface heat
fluxes are computed interactively and depend on the vertical temperature
and humidity gradients as well as horizontal wind speed. Horizontal wind
speed is approximated using the Monin–Obukhov similarity theory, which
applies scaling arguments to assume logarithmically increasing horizontal
wind speed with height62. Temperature and humidity were initialised using
observed profiles that potentially represent convective conditions31.
However, due to the repeated diurnal cycle forcing, the system eventually
establishes a self-consistent vertical temperature and moisture profile.

Model grid, dynamics and output
The model integrates the anelastic equations of motion on a regular
horizontal domain with varying horizontal grid spacing dx and periodic
boundary conditions (Table 1). The vertical model resolution is 100m
below 1 km, stretches to 200m near 6 km and reaches 400m in the upper
layers, with the model top located at 16.5 km. A sponge layer is employed
between 12.3 km and the model top. Horizontal resolution dx and domain
size vary (Table 1). The Coriolis force and the mean wind were set to zero
with weak random initial perturbations added as noise to break complete
spatial symmetry. For all two- and three-dimensional model variables, the
output timestep varies between experiments between Δtout= 5min and
15min. At each output timestep, instantaneous surface precipitation
intensity, as well as the three-dimensional moisture and velocity fields, is
recorded for the entire model domain. In addition, at 30-s and 5-min
intervals, respectively, spatially as well as horizontally averaged time series
were extracted from the numerical experiments.

Sensitivity experiments
The principal focus of this study is the response to different values of
diurnal surface temperature amplitude, Ta. The main experiments (A5a,
A2a, A5b and A2b) were carried out at Ts= 298 K, contrasted Ta= 2 K and
Ta= 5 K (Table 1) and used dx= 1 km horizontal model resolution. One
intermediate value of Ta= 3.5 K was tested to constrain the transition to
clustering further. The control case of Ta= 0 K was also tested as a
benchmark. These simulations assumed that surface latent heat fluxes
occurred at 70% of their potential value. This mimics a land surface, which
is reasonable given the mean surface latent and sensible heat fluxes of LHF
≈ 57W/m2 and SHF ≈18W/m2, respectively, yielding a Bowen ratio of B ≈
0.30, realistic for forested land. These main experiments already explore
domain-size effects, as the clustering observed could be influenced by the
finite system size. We find that the results vary little between these domain
sizes. We conducted additional experiments to test the sensitivity to a
range of modifications: horizontal model resolution (A5c, A5d, Supple-
mentary Fig. 3), where dx= 0.5 km and dx= 0.2 km were used; cold-pool

strength (A5vent05, A5vent001, Supplementary Fig. 3), where the
ventilation coefficients av and bv in Eq. (24) of Seifert and Beheng52

were respectively reduced to 0.5 and 0.01 of their default values; surface
conditions, where the surface evaporation was that of a sea surface
(Supplementary Fig. 2a–c, as well as A5sea and A2sea in Supplementary
Fig. 3, here B ≈ 0.15); the phase of the surface temperature diurnal cycle,
described by a term τ, when generalising Eq. (5) to

TsðtÞ ¼ Ts � Ta cosð2π ðt � τÞ=t0Þ (6)

relative to that of the diurnal insolation cycle. τ= 3.6 h and τ= 6 h
(A5ph3.6h and A5ph6h, respectively) were applied, accounting for a
possible lag of the surface temperature peak towards the mid or late
afternoon, as well as a constant solar radiative forcing (A0constrad and
A5constrad). The dominant effect of nonzero τ is to shift the diurnal
precipitation cycle accordingly (Supplementary Fig. 2e), whereas clustering
still occurs (Supplementary Fig. 3). In contrast, setting insolation to the
temporal average (dashed line in Supplementary Fig. 2d) has the effect of
shifting the diurnal cycle of precipitation to earlier times (Supplementary
Fig. 2e, dotted vs solid red line). However, also for constant insolation,
clustering is still observed for A5 (Supplementary Fig. 3) (for further details,
see Table 1 and Supplementary Table 1).

Rain cell and cold-pool tracking
In all experiments, we track rain cells using the Iterative Rain Cell Tracking
Method (IRT63). In the two-dimensional surface precipitation field
corresponding to any output timestep, the IRT first detects all spatially
contiguous patches (using connectivity 4) of rain intensities exceeding a
threshold I0= 0.5 mmh−1, termed rain objects. Tracks are then identified,
by determining any rain objects that overlap from one output timestep to
the next. In the case of merging of tracks, the track of a larger area is
continued under the same track ID (the threshold value θ was set to unity).
In our variance analysis, we use the set of coordinates formed by the initial
positions of each track, which is defined here as the precipitation-weighted
centre of mass of the first rain object belonging to each track. The
locations of all subsequent rain objects of the same track are discarded in
our variance analysis, to avoid artefacts from double counting of the
positions of the nearly collocated objects.
To account for possible changes in the CP extent between the different

simulations, CPs were tracked by a simple temperature-depression
method. In this method, the IRT was modified, such that at any timestep,
any grid box within the lowest model level with a temperature depression,
measured relative to the spatial mean at the same time, exceeding a
threshold of one Kelvin, was recorded. As for rainfall, spatially contiguous
patches of temperature depression were collected into objects and
assigned a unique track identifier. To increase the signal, only objects
exceeding an area threshold of 10 km2 were considered. Going forward in
time, overlapping objects were identified and considered to be the same
CP track. Again, the track of the larger CP area is continued under the same
track identifier63.
For CP height, a criterion based on a fixed temperature deviation was

found inappropriate, as temperature differences are smaller aloft. There-
fore, we measure CP height by evaluating the average temperature of the
domain and the standard deviation at each output timestep and vertical
model level k and comparing the local temperature T0 at each grid cell (i, j,
k) with this value. If T0 is two standard deviations below the domain mean
at the same height level k, this grid box is considered part of a CP. Within
each column (i, j), the CP height is determined as the highest level that
fulfils this criterion.

A simplified mesoscale convective system (MCS) model
A square lattice of s × s sites is initialised, where the area of each site is
taken as the average area a0 occupied by a single convective rain cell, a0 ≈
5 km × 5 km (compare: Supplementary Table 1). The total domain area A
hence is A≡ a0s

2. Each site can be in one of two convective states, namely
active or inactive. Our model assumes boundary-layer processes to be
local. In contrast, the free troposphere acts as a reservoir of large heat
capacity, where heat is quickly redistributed in the entire free troposphere
by gravity waves64; thus, spatial homogeneity is assumed there. The model
incorporates three fundamental processes affecting event formation: (1)
spontaneous activation due to the moderate drive of the diurnal cycle
temperature forcing, (2) refractory dynamics due to CPs and (3) strong
activation due to combined CPs ahead of MCS fronts. Below, we discuss
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the estimation of model parameters for these processes (summarised in
Table 2).
Spontaneous activation. To define a vertical temperature gradient, we

consider quantities Tbl and Tft, which represent the deviation of the
boundary layer and free-tropospheric temperature from their assumed
steady-state values. Tbl(t) is prescribed and oscillates harmonically as

TblðtÞ ¼ �ta cosð2π t=t0Þ; (7)

where t0= 24 h. The free-troposphere temperature anomaly Tft is initialised
to zero. We also define the temperature difference ΔT≡ Tbl − Tft, and its
normalised version ΔT 0 � ΔT=ΔT0, where the reference scale ΔT0 ≈ 0.3 K is
taken as two standard deviations of LES-simulated near-surface tempera-
ture. ΔT 0 serves as a proxy for both convective available potential energy
(CAPE) and convective inhibition (CIN). The basic dynamics proceeds in
discrete model timesteps of 0.5 h, reflecting the typical timescale of
convective cloud formation. At each timestep, the default probability p0 for
a vacant site to become active is taken as

p0 ¼
0 if ΔT0 < 0

ΔT 0 if 0<ΔT0 < 1

1 if ΔT0 > 1:

8><
>: (8)

Equation (8) makes the qualitative assumption that there is no activity at all
for stratified conditions (ΔT 0 < 0), and events occur with certainty when the
temperature gradient is much larger than typical fluctuations. Both of
these limits could be softened, as could the assumption of linearity at
intermediate ΔT 0 . One could equally argue for a smooth function of ΔT 0 ,
such as an error function. Nonetheless, Eq. (8) captures the observed fact
that more initial activity occurs when surface temperature changes quickly.
Without any further perturbations, the probability pij to initiate convection
in a site (i, j) will be equal for all sites (pij= p0).
Spatial structure. Notably, Eq. (8) does not depend on the position within

the lattice. Local modifications cause spatial structure (compare: Fig. 4a).
Cold pools have two effects: reduction of local temperature and reduction
of local humidity. However, the recovery timescale for the former is fast
(τcp ≈ 3 h), whereas that of the latter can be slower (τinh ≈ 24 h, compare:
Supplementary Fig. 6)27. To consider the former, we take active sites to
persist for τcp, during which no further rain cell initiation is possible at the
same site. Simultaneously, the local probability pij is reduced as
pij ¼ p0 � pinh expð�δt=τinhÞ, where δt is the time after the occurrence of
the rain event and pinh > 0. pinh controls the fidelity of the anticorrelation
from day-to-day, and the results are qualitatively not affected by it.
An MCS is defined to occur when a 4-connected contiguous patch of

active sites exceeds the threshold area Acrit ≡ n0a0, with n0 = 20 (Fig. 4).
While this is the case, and ΔT 0 > 0, the probability p at each of the
surrounding sites (i, j) becomes pij → pij + pact, which acts to lower the
barrier presented by CIN. The increased CIN above CPs is reflected in
the strongly elevated LFC above the CP or MCS (Fig. 4a, b). When pij is
no longer a surrounding site, the term pact is no longer applied for this
site. The initiation probability pij is then defined analogously to the one
in Eq. (8).
Radiative constraint. Generally, Tbl rises during the day as the surface is

heated by insolation. pij will then eventually become positive at some sites,
and rain cells can be produced there. When this occurs, latent heat is
transferred to the free troposphere, increasing Tft, thus subsequently
lowering ΔT and thereby pij. Simultaneously, the site (i, j) is shut down by

the adverse buoyancy effects through CP formation. Tft will relax by heat
loss (Pout ≈ 200Wm−2) through outgoing thermal radiation. According to
the Stefan–Boltzmann law, Pout ¼ σT4eff , with σ ≈ 5.7 × 10−8 Wm−2 K−4, the
Stefan–Boltzmann constant—translating to an effective emission tempera-
ture Teff ≈ 250 K. Through Pout, the free troposphere would hence cool by
~2 K d−1. As a crude estimate of the change in Tft through latent heat
transfer, we estimate the free-tropospheric heat capacity Cft=Mftcpd,
assuming dry air. cpd ≈ 1 kJ kg−1 and the mass of the free troposphere

Mft ¼
Z ztop

z¼zLCL

dz ρðzÞ � 8 ´ 103 kg; (9)

using zLCL ≈ 1 km and ztop ≈ 16 km for the lifting condensation level (LCL)
and top of the troposphere, respectively. Hence, Cft ≈ 8 × 106 Jm−2 K−1.
From rain cell tracking of our LES simulations, we obtain the average rain
cell lifetime to be ≈1 h (Supplementary Table 1), the mean cell area a0 ≈
20 km2 and the average cell rain rate of ≈4mm h−1 (Supplementary Table
1); hence, each rain cell can be assumed to yield Mevent= 4 kgm−2 of
liquid water. Assuming that the corresponding latent heat was previously
deposited in the free troposphere upon ascent, each rain event heats the
free troposphere by Qevent= Lv Mevent. We take this heat to increase Teff
accordingly by δ Teff ¼ QeventC�1

ft s�2, where s−2 results from the ratio a0/A,
yielding δTeffs

2 ≈ 1 K: if one rain event occurred instantaneously at each
site, the free-tropospheric temperature would rise by 1 K.
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