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Abstract
Understanding the role of dispersal and adaptation in the evolutionary history of 
marine species is essential for predicting their response to changing conditions. We 
analyzed patterns of genetic differentiation in the key tropical calcifying species of 
large benthic foraminifera Amphistegina lobifera to reveal the evolutionary processes 
responsible for its biogeographic distribution. We collected specimens from 16 sites 
encompassing the entire range of the species and analyzed hypervariable fragments 
of the 18S SSU rDNA marker. We identified six hierarchically organized genotypes 
with mutually exclusive distribution organized along a longitudinal gradient. The dis-
tribution is consistent with diversification occurring in the Indo-West Pacific (IWP) 
followed by dispersal toward the periphery. This pattern can be explained by: (a) high 
dispersal capacity of the species, (b) habitat heterogeneity driving more recent dif-
ferentiation in the IWP, and (c) ecological-scale processes such as niche incumbency 
reinforcing patterns of genotype mutual exclusion. The dispersal potential of this 
species drives the ongoing range expansion into the Mediterranean Sea, indicating 
that A. lobifera is able to expand its distribution by tracking increases in temperature. 
The genetic structure reveals recent diversification and high rate of extinction in the 
evolutionary history of the clade suggesting a high turnover rate of the diversity at 
the cryptic level. This diversification dynamic combined with high dispersal potential, 
allowed the species to maintain a widespread distribution over periods of geological 
and climatic upheaval. These characteristics are likely to allow the species to modify 
its geographic range in response to ongoing global warming without requiring genetic 
differentiation.
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1  | INTRODUC TION

Understanding the mechanisms that regulate the spatial distribution 
of species is fundamental to predict how individual taxa and eco-
systems will respond to environmental changes (Evans, McKenna, 
Simpson, Tournois, & Genner, 2016). The current biogeography of 
species is the result of their evolutionary history, shaped by a com-
bination of ecological niche preferences, biological interactions, and 
dispersal potential (Hellberg, 2009). These processes operate within 
the context of major tectonic changes occurring over geological time 
scales (Cowman & Bellwood, 2013; Keith, Baird, Hughes, Madin, & 
Connolly, 2013; Renema et al., 2008) making the modern-day dis-
tribution of a species an integrated product of processes operating 
at different temporal and spatial scales. Ultimately, these processes 
regulate how and where species arise and how they respond to en-
vironment changes.

In species with limited dispersal, genetic differentiation may pro-
ceed by fragmentation of their habitat and local adaptation (Sanford 
& Kelly, 2011). Where dispersal is not limiting, genetic variation 
is a fundamental element of speciation (Pauls, Nowak, Balint, & 
Pfenninger, 2013). Genetic differentiation can arise due to adapta-
tion to the local environment and encourage the emergence of eco-
logically enforced barriers to gene flow such as niche incumbency 
(Glor & Warren, 2011). Therefore, the assessment of intraspecific 
genetic diversity across broad spatial scales can provide valuable in-
sights into the ecological and geological processes that create and 
maintain the genetic structure of populations.

Large benthic foraminifera (LBF) are crucial components of shal-
low marine ecosystems in tropical and subtropical environments 
worldwide (Langer & Hottinger, 2000). These prolific calcifiers are 
responsible for the production of a substantial portion of biogenic 
carbonate (up to 5%) on shallow marine shelves where accumula-
tions of their sand-grain-sized shells contribute substantially to 
reef accretion and substrate stability (Langer, 2008). LBF harbor 
algal endosymbionts (reviewed in Prazeres & Renema, 2019) and 
show a strong species diversity maximum in shallow tropical warm 
environments (Förderer, Rodder, & Langer, 2018), and many spe-
cies have wide geographic ranges, indicating high dispersal poten-
tial (Guastella et al., 2019; Langer & Hottinger, 2000). LBF utilize a 
wide range of dispersal mechanisms such as the passive transport of 
free-swimming gametes into the water column during reproduction 
and of adult specimens, but also the formation of propagules (Alve & 
Goldstein, 2003). The formation of propagules provides an efficient 
mechanism for dispersal and might explain the wide distribution 
range in many benthic species (Alve & Goldstein, 2010).

The geographic range of LBF has been highly dynamic over geo-
logical time scales. Most notably, LBF fauna expanded their geo-
graphic ranges during past warm periods in the geologic past such 
as during the greenhouse warmth of the Eocene (50–33.9 Ma) as 
they tracked the movement of subtropical belts into higher latitudes 
(Adams, Lee, & Rosen, 1990; Hallock, 2000). These expansion epi-
sodes coincided with periods of radiation and diversification within 
LBF genera (Renema, 2015), including the acquisition of different 

algal symbionts (Prazeres & Renema, 2019), suggesting that chang-
ing environmental conditions together with the availability of new 
habitat could trigger diversification in this group (Hallock, Silva, 
& Boersma, 1991; Richardson, 2001). Observations (Caruso & 
Cosentino, 2014; Guastella et al., 2019) and model-based projec-
tions of poleward range shifts suggest that many LBF species will 
benefit from current ocean warming (Weinmann, Rodder, Lotters, & 
Langer, 2013a, 2013b) as subtropical and temperate marine ecosys-
tems become “tropicalised” (Verges et al., 2014). However, how pole-
ward migration of LBF will affect local community assemblages and 
biogenic carbonate production is not known, as species are shifting 
their ranges beyond the normal glacial–interglacial oscillation range.

In this context, it is crucial to understand the processes that 
generate genetic diversity in LBF and constrain the evolutionary 
legacy of their species. The information on spatial distribution of 
genetic diversity and the phylogenetic tree topology holds the key 
to understand the speciation process that shapes the distribution 
of these ubiquitous warm-water protists. To investigate the current 
genetic structure of LBF, we selected the globally distributed symbi-
ont-bearing LBF species Amphistegina lobifera. This species is one of 
the most widespread extant LBF species, making it an ideal model to 
study the origin of genetic diversity in symbiont-bearing calcifying 
organisms. Amphistegina lobifera is abundant throughout the central 
and western Pacific Ocean, Indian Ocean, and Red Sea (Förderer 
et al., 2018), and continues to successfully expand throughout the 
Mediterranean following the opening of the Suez Canal in 1869 
(Guastella et al., 2019; Langer, Weinmann, Lotters, & Rodder, 2012). 
In this study, we assessed the genetic diversity of A. lobifera through 
the analysis of the 18S SSU rDNA, which is an established marker in 
foraminifera (Pawlowski & Holzmann, 2014; Weiner et al., 2016). We 
gathered samples within the known distribution range of A. lobifera 
(Figure 1), allowing us to study the pattern of genotype distribution 
across distinct environments and large geographic distances.

2  | MATERIAL S AND METHODS

2.1 | Sample collection and preservation

In order to assess the genetic diversity and structure within A. lobif-
era, we collected living specimens in 13 reef localities distributed 
across the entire geographic range of the species (Figure 1). At each 
locality, pieces of reef rubble containing specimens of A. lobifera 
were collected from shallow habitats (0.2–6 m water depth) either 
through SCUBA diving or snorkeling using standard collection meth-
ods (Prazeres, Uthicke, & Pandolfi, 2016). Briefly, reef rubble pieces 
were placed in plastic bags, brought to the surface, and scrubbed 
using a brush. Resulting sediment was transferred to Petri dishes, 
where A. lobifera specimens could be identified. Specimens with 
uniform brown coloration and reticulopodial activity were selected 
and isolated in a micropaleontological slide or 1.5-ml tube before 
being air- or oven-dried overnight. Dried specimens were individu-
ally placed into empty 1.5-ml tubes or micropaleontological slides, 
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and taken to the laboratory at Naturalis Biodiversity Center, in the 
Netherlands. A minimum of eight specimens per site were selected 
for DNA extraction and amplification. The selected specimens 
were cleaned with 96% molecular grade ethanol under a stereomi-
croscope, and individual photographs were taken utilizing a Zeiss 
SteREO Discovery V12 stacking microscope. Individuals were sub-
sequently placed in individual tubes containing 96% molecular grade 
ethanol for additional washing and removal of any contamination on 
the shell. To provide an out-group to constrain the phylogeny within 
A. lobifera, specimens of the related species A. lessonii d’Orbigny 
were collected from the north shore of Mo'orea, French Polynesia 
(17°28.55′ S, 149°49.33′ W) with the same protocol as described 
above, and specimens where identified following Renema (2018).

2.2 | DNA extraction, amplification, 
cloning, and sequencing

Total DNA of each individual foraminifera was extracted with the 
QIAamp® DNA Micro Kit (Qiagen, Germany). Following the clean-
ing process, individual specimens were placed in 1.5-ml tubes 
containing 200 µl of lysis buffer with added Proteinase K. DNA 
extractions of each specimen were then conducted according to 
manufacturer's instructions, and DNA concentration was quantified 
using the DropSense96 (Trinean, Belgium). After DNA extraction, 
between three and eight individual specimens per site generated 
enough DNA for downstream analysis. Total DNA concentration 

was standardized to 1 ng/µl of DNA across all samples. For am-
plification, we used a polymerase chain reaction (PCR) using the 
PHUSION® Hot-start II polymerase (Thermo Fisher Scientific, 
USA). We selected specific primers that targeted hypervariable 
regions in the 18S SSU rDNA. In all cases, DNA templates were 
amplified utilizing a seminested PCR approach, as the extracted 
DNA is likely to be dominated by genetic material from the sym-
bionts, and the rDNA template within a single foraminiferal cell is 
low (Weiner et al., 2016). For amplification of the SSU rDNA, we 
used the primer sets: S14f3 (5′-ACGCAMGTGTGAAACTTG-3′) - 
1528R (5′-TGATCCTTCTGCAGGTTCACCTAC-3′) (Amaral-Zettler, 
McCliment, Ducklow, & Huse, 2009; Pawlowski et al., 2002) and 
S14f1(5′-AAGGGCACCACAAGAACGC-3′) - 1528R (de Vargas, 
Zaninetti, Hilbrecht, & Pawlowski, 1997), which amplifies a ~ 700 bp 
long region at the end of the SSU in A. lobifera (Schmidt, Morard, 
Prazeres, Barak, & Kucera, 2016). This fragment is traditionally used 
for barcoding benthic foraminifera (Pawlowski & Holzmann, 2014). 
For amplification, we used a mix containing 2 µl of DNA extract with 
0.5 µM of each primer, 3% DMSO, 1x Phusion Green buffer, 0.5 µM 
dNTP, 1.25 µM MgCl2, and 0.2 units of polymerase in a final volume 
of 20 µl. The PCR profile for amplification using the [S14f3-1528R] 
and [S14f1-1528R] pair was as follows: initial denaturation at 98°C for 
3 min, 30 cycles of 30 s of denaturation at 98°C, annealing for 30 s 
at 62°C for the [S14f3-1528R] primer set, and 67°C for the [S14f1-
1528R] primer couple, and extension for 15 s at 72°C, followed by a 
final extension of 5 min at 72°C. PCR products were checked visu-
ally on 1% agarose gels under UV light and subsequently purified 

F I G U R E  1   Global distribution of Amphistegina lobifera. The gray black dots indicate where assemblages of benthic foraminifera have 
been documented in the Indo-Pacific region, Red Sea, and Mediterranean Sea (data from Förderer et al., 2018), and the open dots indicate 
where A. lobifera have been found (including the unaccepted species A. madagascariensis, which we consider here to be a subjective junior 
synonym of A. lobifera). Stars indicate the 16 collection sites where we obtained sequences of A. lobifera and colors show the occurrence of 
the genotypes of A. lobifera defined in Figure 2. Name of the sampling location is indicated next to the stars
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using the PureLink™ PCR Purification Kit (Invitrogen, USA) following 
manufacturer's instructions.

The purified PCR product was cloned using the TOPO® TA 
Cloning Kit (Invitrogen, USA). Amplicons were ligated to a pCR 2.1-
TOPO® vector, transformed into One Shot™ TOP10 chemically com-
petent Escherichia coli cells, and grown overnight on LB-agar plates 
containing ampicillin (50 mg/ml). Eight to 16 clones per specimen 
were selected and placed in 0.5-ml tubes containing 18.2 Ω MilliQ 
water. Bacterial cells were lysed through one freezing–thawing 
cycle, and a final PCR was performed using the primer set [S14f1-
1528R]. Positive PCR products were sequenced in both directions 
using an ABI 3730xl DNA Analyzer (Thermo Fisher Scientific, USA) 
at BaseClear (Leiden, Netherlands). The obtained chromatograms 
were manually checked, complementary fragments of the same se-
quence were de novo assembled, primer sequences removed from 
both ends, and consensus sequences were deposited on NCBI under 
the accession number TBA.

To complete our dataset, we retrieved 25 sequences of A. lobi-
fera from NCBI GenBank (Schmidt et al., 2016) together with their 
metadata. These sequences were generated from nine specimens 
collected at three additional locations: two in the Mediterranean 
Sea (Crete, Greece and Nahsholim, Israel) and one in the Red sea 
(Eilat, Israel), in addition to samples previously collected from east-
ern Australia (Lizard Island, on the Great Barrier Reef). As a result, 

our dataset included sequenced specimens from 16 collection sites. 
Sequences metadata included in the study and accession numbers 
are provided as Appendix S1.

2.3 | Genetic variability and phylogeny of A. 
lobifera genotypes

To evaluate the extent of genetic variability within A. lobifera, we 
applied the molecular taxonomic system described by Morard 
et al. (2016). Briefly, the system is organized in three hierarchical lev-
els below the morphospecies classification: basegroups, genotypes, 
and lineages. Basegroups represent the lowest level of classifica-
tion, followed by genotypes, and lineage, which is the highest lev-
els of molecular taxonomy. Basegroups consist of basetypes, which 
are unique sequences within each single specimen. Where multiple 
genes are available for single individuals, each sequence pattern for 
each locus is a basetype (Morard et al., 2016). We have selected ba-
setypes that occur at least twice in our dataset. Basetype sequences 
were automatically aligned with MAFFT v7 (Katoh & Standley, 2013). 
Genotypes and lineages were delineated using a combination of 
two automated delimitation methods, the Automated Barcode Gap 
Discovery method (ABGD) (Puillandre, Lambert, Brouillet, & Achaz, 
2012) and the Poisson Tree Process (PTP) (Zhang, Kapli, Pavlidis, 

F I G U R E  2   Molecular taxonomy of A. lobifera. Each branch represents a unique basetype, and the symbol next to the branch represents 
the individual basegroup. The four inner-most set of rings represent the delineation proposed by the Automated Barcode Gap Discovery 
(ABGD) and the Poisson Tree Process (PTP) methods, the lighter colors representing when the delineation was invalidated because of over 
splitting of basegroups (see results). The three outer-most rings represent the final nomenclature retained with the three hierarchal levels 
represented successively. Bootstrap support values are only indicated for the lineages, and the topology within the lineages is largely 
unsupported
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& Stamatakis, 2013). Genotypes represent the level of biological 
species, while lineages represent a major disruption in the genetic 
variability within a given morphospecies organized in monophyletic 

clusters consisting of one or several genotypes (Morard et al., 2016). 
We calculated two phylogenetic inferences from two alignments 
utilizing basetypes, with and without sequences of A. lessonii that 

F I G U R E  3   (a) Ultrametrized tree showing diversification of A. lobifera against relative time. Colored lines represent the lineage through 
time (LTT) plot for the entire clade, lineage I, and lineage II, combined with the indicated rate of diversification for each clade. (b) LTT plots of 
randomly generated trees under a pure-birth model for all A. lobifera, lineage I, and lineage II. Colored solid lines show observed LTT and the 
deviation from the pure-birth model. (c) Letter-value (L-V) plot displaying the Pybus γ calculated on random trees generated using the same 
properties as lineages I and II. The stars above the horizontal line on top of the L-V plot represent the level of significance of the Wilcoxon 
test that compared the means of both distributions
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served as an out-group. Each phylogenetic inference was carried 
out with 1,000 nonparametric bootstrapping pseudoreplicates 
based on a BioNJ starting tree using PhyML (Guindon, Dufayard, 
Lefort, Anisimova, Hordijk, & Gascuel, 2010), and the best substitu-
tion models were selected using the Smart Model Selection (Lefort, 
Longueville, & Gascuel, 2017) under Akaike information criterion. 
The model GTR + G + I was retained for both inferences. Resulting 
trees were submitted on the PTP server (http://speci es.h-its.org/). 
Default options were selected for both trees, and in one of them, 
A. lessonii was indicated as an out-group. We retained the delimita-
tion returned by the maximum-likelihood solution. The resulting tree 
was visualized with iTOL v4 (Letunic & Bork, 2019). The resulting 
molecular nomenclature was validated by calculating patristic dis-
tances on the unrooted tree using SeaView v4.7 (Gouy, Guindon, & 
Gascuel, 2010) and comparing the distance gaps that are expected to 
occur between the successive hierarchal levels (Lefebure, Douady, 
Gouy, & Gibert, 2006). Patristic distances were compared using the 
Kolmogorov–Smirnov and Mann–Whitney tests implemented in 
PAST v3.21c (Hammer, Harper, & Ryan, 2001), and the results are re-
ported in Appendix S2. Where the partition returned by ABGD and/
or PTP was invalidated by the patristic distance, the partition was 
merged into the closest neighboring unit following the patristic dis-
tance. Detailed description of molecular taxonomy and construction 
of phylogeny tree can be found in the Appendix S1. The phylogenetic 
tree and associated molecular taxonomy are shown in Figure 1b.

2.4 | Rate of diversification

We investigated the rate of diversification of basetypes in order 
to constrain the patterns of diversification of A. lobifera. We trans-
formed the unrooted maximum-likelihood tree into an ultrametric 
tree using a relaxed clock model to show the relative time of branch-
ing of the basetypes using the packages ape (Paradis, Claude, & 
Strimmer, 2004), phytools (Revell, 2012), and ggtree (Yu, Smith, Zhu, 
Guan, & Lam, 2017) in R (R Core Team, 2018). We plotted the line-
ages through time (LTT) plot of the entire tree and the lineages I 
and II separately together with the rate of diversification Pybus γ 
calculated for each clade (Figure 3a; (Pybus & Harvey, 2000) using 
the nLTT package (Janzen, Höhna, & Etienne, 2015). It was not possi-
ble to assess the rate of diversification in lineages III and IV because 
these lineages had only one and two basetypes, respectively. We 
then calculated 100 random trees under a pure-birth model using 
the parameters of the entire A. lobifera clade and the lineages I and 
II separately. The pure-birth model assumed only production of line-
ages through time and no extinction (Pybus, Rambaut, Holmes, & 
Harvey, 2002). The Pybus γ statistic assumes that under a pure-birth 
process the distribution of γ follows a standard normal distribution. 
Therefore, deviations from a log-linear increase can be used to reject 
a constant, pure-birth model of diversification, and might be used 
to infer the rate of historical variation (Fordyce, 2010). We plotted 
the LTT of the entire A. lobifera clade and the lineages I and II sepa-
rately to compare them with those generated under the pure-birth 

model (Figure 3b). Finally, we calculated 1,000 random trees using 
the same properties that the lineages I and II calculate the Pybus γ of 
the simulated trees of both clades that were subsequently compared 
with a nonparametric Wilcoxon test (Figure 3c). The letter-value 
(L-V) plot displaying the Pybus γ (Figure 3c) was generated using the 
L-V plot package (Hofmann, Wickham, & Kafadar, 2017).

2.5 | Relationship between patristic and 
geographic distances

Median patristic distances within and between genotypes were calcu-
lated and compared by applying a pairwise t test using the Bonferroni 
p-value adjustment method using the package stats, which is imple-
mented within the software R (R Core Team, 2018), except for the 
lineage III that consists of a single basetype. The low variability in pa-
tristic distance within lineage I, and high patristic distance between 
lineages II and III, which are geographically close, led us to test the 
influence of speciation by distances (Mayr, 1942). We calculated the 
geographic distances between all pairs of localities (n = 78) using the 
Haversine formula in MATLAB v. R2017b. However, we calculated 
distances between O’ahu and Sicily, and O’ahu and Crete manually 
using the tracking tool in Google Earth going through the Equator. The 
Haversine formula calculates the shortest distance over the Earth's 
surface between two geographic points, and so it calculated these 
distances over the poles, which is not a relevant ecological represen-
tation of the distances between the sites in the Mediterranean and the 
Pacific Ocean. We estimated the relationship between the patristic 
genetic distance and geographic distance between all pairs of geno-
types averaged per locality using a linear regression model (Appendix 
S3). Pairs where genetic distance was significantly distinct from the 
linear regression value were identified by applying a confidence in-
terval to the regression, consisting of the mean range of patristic 
distances calculated within each pair recorded. Values within the 
confidence interval were then considered to be within the expected 
range for a speciation by distance model. Pairs where genetic distance 
was lower than expected considering the geographic distance are re-
ferred to here as genetically underdispersed. Conversely, pairs where 
genetic distance was higher than expected from geographic distance 
are referred to as genetically overdispersed. The correlation matrix 
between patristic and geographic distances was plotted in R (R Core 
Team, 2018) using the package ggplot2 (Wickham, 2009).

3  | RESULTS

3.1 | Genetic diversity

In total, we analyzed 453 SSU sequences, belonging to 77 specimens 
(Appendix S1). Of the 453 sequences, 210 could be used to define a 
total of 109 basetypes, constituting 29 basegroups. In the phylogeny 
rooted on the sister species A. lessoni, all sequences of A. lobifera 
clustered together with maximum branch support (Figure S1). Both 

http://species.h-its.org/
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unrooted and rooted phylogeny returned a basic topology with the 
A. lobifera sequences organized in four clusters. Although they ob-
tained only moderate bootstrap support between 50% and 98.5% in 
the unrooted and rooted phylogenies, respectively, these four clades 
were identified as putative species by the initial partitioning of ABGD 
and the PTP analyses performed on the rooted tree. The four clus-
ters were statistically validated using patristic distances (Appendix 
S2) and were therefore considered as lineages (I, II, III, and IV) in our 
nomenclature. However, the recursive partitions of ABGD and the 
PTP analysis carried out on the unrooted tree returned 36 and 21 in-
consistent partitioning that oversplit basegroups. The partition that 
split sequences belonging to the same basegroups was aggregated, 
resulting in seven partitions returned by ABGD and five partitions 
by the PTP analysis. A single genotype was identified within each of 
the lineages I, III, and IV, but up to four putative genotypes (IIa, IIb, 
IIc, and IId) were identified within lineage II. Three of the four parti-
tions were statistically validated (IIa, IIb, and IIc), while the putative 
genotype IId, constituted by a single sequence, was not supported 
(Appendix S2) and was subsequently merged with the genotype IIc 

and considered as the basegroup IIc6. No differences were identified 
between the intra- and interbasegroup levels within each genotype, 
attesting to the genetic homogeneity of each genotype despite the 
high intragenotype variability (Figure 4). Finally, we assigned the re-
maining 243 sequences to the previously defined genotypes in order 
to maximize our coverage for the ecological inference and plotted 
the resulting biogeography in Figure 1.

3.2 | Spatial distribution of genotypes

No co-occurrences of genotypes were observed in the dataset, sug-
gesting that the genotypes are mutually exclusive (Figure 1). Lineage I 
consists of a single genotype spanning a geographic range of 7,500 km, 
across the western Indian Ocean, Red Sea, and the Mediterranean 
Sea. Lineage II comprises of three genotypes and ranges from the 
Maldives to the Pacific Island of Pohnpei, in the Federated States of 
Micronesia (Figure 2). A longitudinal gradient is apparent within line-
age II. Genotype IIa occupies the eastern part of the biogeographic 

F I G U R E  4   Median patristic distance within and between lineages/genotype. Boxes represent quartiles, whiskers represent smallest 
and largest values within 1.5 times interquartile range, and dots are outliers. Note that patristic distance within genotype IIIa cannot be 
calculated as it consists of a single basetype
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range and was observed at four sites (Pohnpei, Palau, Lizard Island, 
and Kimbe Bay). Genotype IIb was only observed in the Maldives, 
while genotype IIc occupied the central part of the lineage range and 
was found in Ningaloo reef, Indonesia, and Okinawa in Japan. Finally, 
lineages III and IV are restricted to the isolated islands of O’ahu in 
Hawai'i, and Lord Howe, respectively (Figure 1).

3.3 | Rates of diversification

Based on the LTT plot, lineage I displays shallower diversification 
than lineage II (Figure 3a). Pybus γ values calculated either on the 

entire tree, or for lineages I and II separately, are all above 0 meaning 
that the internal nodes of the clades are closer to the tips than from 
the deepest nodes of the tree, which is indicative of a strong diver-
gence from the pure-birth model (Pybus & Harvey, 2000). Lineage II 
showed a higher divergence from the pure-birth model than lineage I, 
even though it consists of three genotypes. This is indicative of a high 
death rate (linage disappearance), which prevents retention of deep 
branching, and thus of ancient clades in the phylogeny. This impres-
sion is reinforced when comparing the LTT plots of each lineage with 
the pure-birth model (Figure 3b). We observed an overall divergence 
of A. lobifera phylogeny from the pure-birth model toward fewer line-
ages occurring between 0.3 and 0.6 of the relative age of the clade. A 

F I G U R E  5   Linear correlation between patristic distance as a function of geographic distance within and between genotypes of A. lobifera 
(R-squared: .48; p < .01). Points represent mean patristic distance between each of the 78 different site combinations. Bars indicate minimum 
and maximum values within each site pair. Diagonal line represents a linear regression, and the gray polygon reflects the confidence 
interval. (a) Site pairs are colored-coded by genotypes represented within the pair. Circles, stars, and squares represent intragenotype, 
intralineage, and intergenotype comparison, respectively. (b) Blue and red circles represent site pairs that are statistically underdispersed 
and overdispersed, respectively. Pairs where the mean patristic distance lies within the confidence interval are represented by black dots
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deviation from the pure-birth model is also observed when the two 
lineages are analyzed separately, but the deviation from the pure-
birth model is weaker in lineage I. The Pybus γ values calculated on 
random trees generated with similar properties than lineages I and 
II show that both lineages underwent different diversification pro-
cesses (Figure 3c, Wilcoxon test of Pybus γ; p = 3.40E-95).

3.4 | Speciation by distance

Genotypes IIb, IIIa, and IVa, which are restricted to oceanic islands, pos-
sess low genetic variability (Figures 2 and 4). In contrast, genotypes Ia, IIa, 
and IIc are widespread and displayed higher genetic variability (Figure 4). 
This observation led us to test for the hypothesis of speciation by distance 
(Figure 5). This analysis revealed an overall positive relationship between 
geographic and patristic distances (R2 = .48, p-value < .01; Figure 5), but 
many of the pairwise comparisons deviated significantly from the over-
all regression model. For example, patristic distance between Sicily and 
Mauritius indicates statistical underdispersion indicative of an efficient 
genetic mixing, while distances between Lord Howe and Lizard Islands 
are statistically overdispersed (Figure 5) indicative of the absence of gene 
flow and thus divergence between these two lineages even with geo-
graphic proximity. Overall, pairs that were statistically overdispersed con-
sistently featured genotypes IIIa and IVa, which are found in the isolated 
islands of O'ahu and Lord Howe. Conversely, statistically underdispersed 
pairs all feature genotype Ia, while genotypes in lineage II largely follow 
the expected trend of the regression model (Figure 5).

4  | DISCUSSION

The existence of multiple distinct genotypes within the global range 
of A. lobifera demonstrates that the species underwent repeated 
episodes of diversification, which remained morphologically cryptic. 
Lineage I has an extensive geographic range and demonstrates the 
high dispersal capacity of A. lobifera, while lineages III and IV are lim-
ited to isolated oceanic islands. The most remarkable pattern of the di-
versification is the large degree of mutual exclusion among genotypes. 
A similar pattern has also been observed in planktonic foraminifera 
(Aurahs, Grimm, Hemleben, Hemleben, & Kucera, 2009; Weiner 
et al., 2014), and it is consistent with niche partitioning. The highly 
heterogeneous microhabitats within the Indo-Australian Archipelago 
(IAA) (Lohman et al., 2011) likely contribute to the observed patterns 
of genetic divergence within the geographically constrained lineage II 
and suggest that the generation of diversity in A. lobifera is stimulated 
within this region. These findings support the hypothesis that the IAA 
acts as an evolutionary incubator of diversity (e.g., Bowen et al., 2016).

4.1 | Dispersal capacity of A. lobifera

Our results show that A. lobifera is capable of expanding its range 
over large geographic distances. However, it does not appear to be 

able to maintain genetic homogeneity over its entire geographic 
range, as evidenced by the longitudinal genetic differentiation 
(Figure 1). The extensive observed dispersal capacity, best docu-
mented by lineage I, should be sufficient to allow the individual 
lineages and genotypes of A. lobifera to track the periodic ex-
pansion of the subtropical belt during Quaternary ice age cycles 
without requiring speciation. This hypothesis is consistent with 
the recent colonization of the Mediterranean Sea after the open-
ing of the Suez Canal (Triantaphyllou, Dimiza, Koukousioura, & 
Hallock, 2012) from the Indian Ocean by lineage I without any sign 
of genetic divergence. It appears that lineage I was able to rein-
vade the Red Sea when the habitat became available after the last 
glacial salinity crisis (Biton, Gildor, & Peltier, 2008). Subsequently, 
A. lobifera was able to extend its range into the Mediterranean 
once the geographic barrier was removed following the opening 
of the Suez Canal. The two isolated marginal seas were there-
fore colonized without the establishment of genetically distinct 
local population. In the western Indian Ocean, the presence of 
the South Equatorial current moving westwards and the north-
ward East African current likely facilitates the homogenization of 
populations along the African coast and Mauritius. In combination, 
these processes likely created and maintain the patterns of distri-
bution observed in lineage I.

4.2 | Fragmentation of habitat and generation of 
genetic diversity

In contrast to the homogeneous lineage I in the western Indian 
Ocean, and Red and Mediterranean Seas, lineage II has diversified 
across the central Indian and Pacific Oceans.

LTT plots show that lineage II diverged significantly from the 
pure-birth model (Figure 3a,b). Further, the calculated Pybus γ val-
ues show that lineage II has a higher divergence from the model than 
lineage I (Figure 3c), suggesting that there is higher death rate con-
current with the high diversification in lineage II. This result indicates 
that the processes which generate genetic diversification are also 
inclined to support higher rates of extinction. The genetic diversi-
fication in the Indo-Pacific can be a result of the increase of coral 
associated environment in that region (Renema et al., 2008; Wilson 
& Rosen, 1998). The development of the IAA and the formation of 
extensive reef flat areas created heterogeneous shallow environ-
ments (Keith et al., 2013; Santodomingo, Renema, & Johnson, 2016), 
which facilitate ecological specialization and the emergence of 
genetic divergences within lineage II. This process of divergence 
was likely further reinforced by a suppression of gene flow, prob-
ably during sea level variations caused by the glacial cycles of the 
Pliocene and Pleistocene (Naish et al., 2009). This divergence has 
been subsequently maintained to the present day in the IAA, with 
the three genotypes within lineage II remaining distinct following 
the fragmentation of the ancestral population. As a result, genetic 
differences observed between genotypes IIa and IIc, which are sep-
arated by 2,500–6,000 km, thus below the extension of 7,500 km 
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observed within the lineage I, cannot be explained by geographic 
separation alone.

Within genotype IIa, the North Equatorial Counter Current, 
Equatorial Counter Current, and East Australian Current (Wijeratne, 
Pattiaratchi, & Proctor, 2018) allow continuing gene flow between 
A. lobifera populations from reefs in Papua New Guinea, Palau, the 
northern Great Barrier Reef (Lizard Island), and Pohnpei. Similarly, 
the genotype IIc occurring in Ningaloo reef, Okinawa, and Indonesia 
is connected through the Leeuwin Current that allows genetic 
mixing of populations occurring in the Pacific and Indian Oceans 
(Wilson & Kirkendale, 2016). Additionally, the Mindanao Current 
and Kuroshio Currents connect populations from reefs in Okinawa 
and Makassar (Indonesia), and create barriers between genotypes IIa 
and IIc. Importantly, geographic patterns of diversity observed in our 
study follow the same genetic diversity distribution patterns found 
in other marine populations, (e.g., Coleman et al., 2016; Otwoma & 
Kochzius, 2016; Williams, Jara, Gomez, & Knowlton, 2002), where 
there is a clear genetic break between the populations from the 
Indian and Pacific Oceans.

We found genotype IIb only in the Maldives (Figures 1 and 2) 
and cannot assess the extent of its biogeographic range. However, 
our phylogenetic results suggest that genotype IIb originated within 
the IAA similarly to the genotypes IIa and IIc. This pattern is consis-
tent with biogeographic boundaries of LBF communities within the 
Indian Ocean, where communities in the Maldives and Indo-West 
Pacific (IWP) are more similar than those found in the west Indian 
Ocean (Langer & Hottinger, 2000; Parker & Gischler, 2011). The 
differentiation into genotype IIb is consistent with limited water 
movement between Pacific and Indian Oceans during glacial low 
sea levels (Gaither & Rocha, 2013; Horne, 2014), thus restricting 
gene flow after initial colonization of the Indian Ocean from the 
IAA.

4.3 | Deep divergences and historical biogeography

We identified two endemic lineages (III in O’ahu and IV in Lord Howe 
Island), which showed significant divergence from each other in 
the central Pacific region (Figures 1 and 2). This pattern of geno-
type isolation in Lord Howe and Hawai'i Islands has also been ob-
served in corals (Ayre & Hughes, 2004; Baums, Boulay, Polato, & 
Hellberg, 2012). Patristic distance analysis demonstrated that geo-
graphic distance cannot explain differences between genotypes IIa 
and IIIa/IVa, which are geographically close. The genetic differentia-
tion and emergence of lineages III and IV are instead consistent with 
deep historical divergence rather than a mere speciation by distance. 
A likely scenario is that these isolated islands were colonized during 
the Pliocene when conditions were warm and subtropical belts ex-
tended to high latitudes, consistent with dispersal patterns and spe-
ciation of other species of LBF (Faichney et al., 2011; Renema, 2015). 
Due to its high dispersal capacity, A. lobifera was able to migrate from 
the IAA to mid-latitudes and distantly isolated islands in the Pacific, 
before land masses reduced ocean circulation in the IAA (Springer & 

Williams, 1990). Following the initial colonizers, reduced gene flow 
between these isolated islands and the IAA or ecological specializa-
tion in these habitats allowed the initial invaders to drift genetically. 
Both locations coincide with regions that experienced little change in 
temperature (and presumably other key environmental parameters) 
during Quaternary cycles as indicated by glacial temperature recon-
structions for the last glacial maximum (Annan & Hargreaves, 2013), 
allowing the species to remain in their habitat without further di-
versification, which is also consistent with the low genetic variabil-
ity found within both the O’ahu and Lord Howe Island populations. 
With time, these isolated populations have potentially adapted to 
their local habitats (e.g., Prazeres, Roberts, & Pandolfi, 2017), al-
lowing the existing population an advantage over new immigrants, 
and further reinforcing the genetic barrier by incumbency (Barton 
& Charlesworth, 1984; De Meester, Vanoverbeke, Kilsdonk, & 
Urban, 2016). Under this scenario, the south-eastern portion of the 
distribution range of A. lobifera that has not been assessed may shel-
ter similar relict lineages from the initial expansion of the species.

4.4 | Ongoing ocean warming and range expansion 
in A. lobifera

Rapid climate change is predicted to affect the distribution of many 
marine species by forcing them into either contracting or expand-
ing their distributions (Hiddink, Lasram, Cantrill, & Davies, 2012; 
Pearson & Dawson, 2003). The successful colonization of many alien 
species into the Mediterranean Sea following the opening the Suez 
canal has been suggested to be a “best-case” assessment of the ef-
fects of climate change on marine biodiversity (Hiddink et al., 2012). 
This is because the Mediterranean Sea is experiencing ongoing tem-
perature rise, which facilitates the migration of tropical species from 
the Red Sea, thus representing a model system for understanding 
global patterns of species distribution in other larger marine eco-
systems (Lejeusne, Chevaldonne, Pergent-Martini, Boudouresque, 
& Perez, 2010). Within the tropical benthic foraminifera species, 
A. lobifera is a successful Lessepsian migrant, colonizing the east-
ern Mediterranean Sea (El Kateb, Stalder, Stainbank, Fentimen, & 
Spezzaferri, 2018; Triantaphyllou et al., 2012). There is a sugges-
tion that A. lobifera reached the eastern Mediterranean Sea in the 
Holocene (ca. 6 ka), much earlier than the opening of the Suez Canal in 
1869 through a different natural water way connecting Indo-Pacific 
to the Eastern Mediterranean (Meric et al., 2016). However, our re-
sults indicate that the current populations in the Mediterranean Sea 
and along the coast of east Africa are genetically mixed (Figures 1 
and 2), precluding the possibility that the Mediterranean population 
is a relic from a previous isolation.

The expansion of A. lobifera into the Mediterranean Sea is sug-
gested to be limited by their observed thermal distributional limit 
of ~13–14°C (Guastella et al., 2019; Larsen, 1976). Therefore, it is 
likely that instead of requiring genetic differentiation to facilitate 
invasion, A. lobifera is expanding in pace with its thermal niche 
(Caruso & Cosentino, 2014). Additionally, the capacity to tolerate 
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high temperatures (32–33°C) can be a crucial conserved trait carried 
by the populations from the Red Sea into the Mediterranean Sea 
(Schmidt et al., 2016; Titelboim et al., 2019). Such pre-adaptive traits 
to higher temperatures confer A. lobifera a clear adaptive advantage 
in shallow and episodically high temperature environments in the 
Mediterranean Sea under continuing warming scenarios (Schmidt 
et al., 2016). In this case, ongoing ocean warming is likely to induce 
further range expansion at the peripheral populations.
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