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Performance evaluation of data-limited, length-based methods is instrumental in determining and quantifying their accuracy under various
scenarios and in providing guidance about model applicability and limitations. We conducted a simulation–estimation analysis to compare
the performance of four length-based stock assessment methods: length-based Thompson and Bell (TB), length-based spawning potential ra-
tio (LBSPR), length-based integrated mixed effects (LIME), and length-based risk analysis (LBRA), under varying life history, exploitation status,
and recruitment error scenarios. Across all scenarios, TB and LBSPR were the most consistent and accurate assessment methods. LBRA is
highly biased, but precautionary, and LIME is more suitable for assessments with time-series longer than a year. All methods have difficulties
when assessing short-lived species. The methods are less accurate in estimating the degree of recruitment overfishing when the stocks are
severely overexploited, and inconsistent in determining growth overfishing when the stocks are underexploited. Increased recruitment error
reduces precision but can decrease bias in estimations. This study highlights the importance of quantifying the accuracy of stock assessment
methods and testing methods under different scenarios to determine their strengths and weaknesses and provides guidance on which meth-
ods to employ in various situations.
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Introduction
Fisheries are considered data-limited if there are insufficient data

to conduct a comprehensive quantitative, model-based stock as-

sessment to estimate time-series of biomass and fishing mortality

relative to their reference points (Dowling et al., 2019).

Nevertheless, even with limited data, some aspects of stock status

can be inferred. Data-limited assessment methods are increasingly

used for management purposes to report on the regional status of

fisheries across many stocks and to assess the status of individual

data-limited stocks as inputs to management decisions (Dowling

et al., 2015, 2019; Chrysafi and Kuparinen, 2016). In data-limited

fisheries, length-frequency data from commercial catches are of-

ten the primary data type collected because they are relatively

economical and easy to collect (Pilling et al., 2008; Hordyk et al.,

2015a; Mildenberger et al., 2017). As a result, numerous length-

based methodologies have been developed. Prominent methods
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include the length-based Thompson and Bell (TB) model

(Thompson and Bell, 1934), length-based spawning potential ra-

tio (LBSPR; Hordyk et al., 2015b), length-based integrated mixed

effects (LIME; Rudd and Thorson, 2018), and length-based risk

analysis (LBRA; Ault et al., 1998, 2008, 2019).

TB is a yield-per-recruit (YPR) model that evaluates stock sta-

tus relative to fishing and selectivity reference levels using length

composition data (Thompson and Bell, 1934; Sparre and

Venema, 1998; Mildenberger et al., 2017). LBSPR is a well-known

length-based model that assesses stock status by comparing the

spawning potential as measured through the length composition

data to that expected in an unfished stock (Hordyk et al., 2015b).

LIME relaxes the equilibrium assumptions of other methods, ac-

counting for time-varying recruitment and fishing mortality

(though assumes constant selectivity), and derives population

parameters associated with an age-structured model and length

compositions (Rudd and Thorson, 2018). LBRA uses the mean

length of the catch to calculate reference points that address sus-

tainability risks (Ault et al., 1998, 2008, 2019). These approaches

can be used to estimate spawning potential ratio (SPR) and

F/FMSY, which are commonly used as indicators for recruitment

overfishing and growth overfishing, respectively. SPR is the

proportion of the unfished reproductive potential left at any

given level of fishing pressure (Hordyk et al., 2015b). SPR is

100% in an unexploited stock, and 0% in a stock with no spawn-

ing (e.g. all mature fish have been removed or all female fish have

been caught).

The aim of this study is to quantify accuracy and precision for

four length-based data-limited methods (TB, LBSPR, LIME, and

LBRA) under various life history, exploitation, and recruitment

scenarios given only a single year of length-frequency data, which

is a limited field period common in very data-limited fisheries

(Tesfaye et al., 2016; Herrón et al., 2018; Tuda, 2018; Abobi et al.,

2019). This comparison allows for the identification of the

method most suitable in different data-limited assessment scenar-

ios by revealing the strengths and weaknesses of each method

with reference to how well it captures true stock status, estimates

key reference points, and characterizes uncertainty. It further

helps to expose discrepancies in the performance of the methods

(Cadrin and Dickey-Collas, 2015) and thus provides guidance

about model applicability, expected bias, and advantages or dis-

advantages in uncertainty characterization. Although several

studies have tested the performance of these methods through

simulation testing (Hordyk et al., 2015b; Rudd and Thorson,

2018), this study differs in using an individual-based modelling

(IBM) framework to track individuals in populations rather than

using an approximation of lengths distributed in a population by

age, thus offering a new and important test of these length-based

approaches. The IBM framework also provides an alternative way

of conducting a simulation–estimation analysis to ensure that the

operating model is distinct from the estimation model.

Methods
We conducted a simulation–estimation analysis using an

individual-based population model as the operating model,

which simulated population dynamics and generated length

composition catch data. The assessment models were given the

“true” (i.e. unbiased) input parameter values for the mean so-

matic growth and mortality rates and were then used to estimate

various reference points and derived quantities relating to stock

status and exploitation rate. This simulation loop allows us to

compare how far the outputs of the assessment models are from

the “true” stock status estimates and investigate the sensitivities

of the models to violated model assumptions. An overview of the

experimental design is depicted in Figure 1.

Operating model
The stock dynamics were simulated using the “fishdynr” R pack-

age (Taylor, 2017), which contains several models for simulating

stock or population dynamics and fisheries management. The

package’s function “virtualPop” creates an IBM of a fish stock

with certain life history traits subjected to a fishing fleet with spe-

cific selectivity characteristics and fishing pressure. Information

about the modelling approach for growth, mortality, selectivity,

and recruitment is outlined by Taylor and Mildenberger (2017).

Functions and equations for the population dynamics used in the

operating model are listed in Table 1.

We simulated seven scenarios to test for the effects of varia-

tions in life history, fishing exploitation level, and recruitment

types on assessment model performance. The base model was

comprised of a medium-lived species (maximum age � 18 years),

an exploitation rate at the target level of SPR (� 40%), and con-

stant recruitment with no recruitment variability. From this base

model, we varied one of the three characteristics (life history,

current exploitation status, or recruitment) according to the pa-

rameter values in Table 2. For each scenario, we generated 300

IBM replicates, which differed from each other due to random

Figure 1. Simulation study methodology diagram. There are seven
operating model setups. Scenarios differ in life history with (I)
medium-lived (base model*), (II) short-lived, (III), and longer-lived
stocks. All fish longevity simulations were run with constant
recruitment and exploitation at target level (SPR � 0.4). From the
base model, the exploitation scenario, (IV) underexploited and (V)
overexploited, or the recruitment scenario, (VI) stochastic, and (VII)
autocorrelation (AR), changes. For each operating model, 1 year of
monthly length-frequency data and the “true” stock estimate
parameters were simulated and extracted. The “true” life history
values (asymptotic length L1, growth coefficient K, natural mortality
M, and length at 50% maturity Lm

50) from the operating models and
the length-frequency data were then used as input for the simulated
assessments with the four length-based estimation models:
(i) length-based TB, (ii) LBSPR, (iii) LIME, and (iv) LBRA.
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sampling. Each simulation replicate consisted of a 35-year simu-

lation period, of which the first 10 years had no fishing activity

and the remaining 25 years were fished at the desired exploitation

rate at a monthly time-step. This provided sufficient time for the

model to reach equilibrium. We then only extracted the final year

of each simulation replication (year 35) to provide monthly

Table 1. Functions and population dynamic equations used for generating stocks and length-frequency data in the operating models.

Number Description Function/equation

1.1 von Bertalanffy growth function Lt ¼ L1½1� exp �K t� t0ð ÞÞ�
�

1.2 Variability in L1of von Bertalanffy growth function L1;i ¼ L1;P � Lognormð0;CV L1Þ
1.3 Variability in K of von Bertalanffy growth function Ki ¼ KP � Lognormð0;CV KÞ
1.4 Length–weight relationship W ¼ aLb

1.5 Selectivity/maturity probability Sel or Mat ¼ 1

1þ exp

h
Lt�Ls

50

ln 0:75
1�0:75ð Þ�ln 0:25

1�0:25ð Þ
i

1.6 Non-autocorrelated recruitment deviation Rt ¼ Lognormð0; r2
RÞ

1.7 Autocorrelated recruitment deviation st ¼ �t; t ¼ 1

1.8 st ¼ �tst
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2
p

; t > 1

1.9 Spawning-stock biomass SSBt ¼
PA
a¼0

Na;twama

1.10 Beverton–Holt relationship Nrecruits ¼ rmaxBH�SSBt
betaþ SSBt

;

beta ¼ 1 (constant recruitment)
1.11 Total mortality Z ¼ Mþ F

1.12 Fishing mortality F ¼ q� E

1.13 Probability of death pdeath ¼ 1� exp �Z� tincrð Þ
1.14 Rand ¼ random number generated If Rand ¼ pdeath , individual dies

1.15 Probability of death due to either natural or fishing mortality (0 ¼ M, 1 ¼ F) pM or F ¼ sample c 0; 1ð Þ; prob ¼ c M
Z ;

F
Z

� �� �
1.16 Unfished expected lifetime egg production E0 ¼

PA
a¼0

SSB0wama

1.17 Fished expected lifetime egg production Ef ¼
PA
a¼0

SSBf wama

1.18 SPR SPR ¼ Ef

E0

1.19 Yield YF, Lc, t ¼ FtBLc, t

Table 2. Input values used to generate length-frequency data with the operating models.

Parameter Changes
Asymptotic
length (L1; cm)

Growth
coefficient (K)

Age at
length ¼ 0 (t0)

Natural
mortality (M)

Fishing
mortality (F)

Theoretical
maximum
age (AMAX)

Life history Base 64.6 0.21 –0.01 0.32 0.13 18
Short 36.2 0.87 –0.01 0.9 0.45 4
Longer 90 0.13 –0.01 0.18 0.08 26

Exploitation
level

Underexploited 64.6 0.21 –0.01 0.32 0.06 18
Overexploited 64.6 0.21 –0.01 0.32 0.28 18

Recruitment Stochastic 64.6 0.21 –0.01 0.32 0.13 18
AR 64.6 0.21 –0.01 0.32 0.13 18

Parameter Changes Length at 50%
maturity (Lm

50)
Width of

maturity
ogive (cm)

Recruitment
standard
deviation (rR)

Length at 50%
selectivity (Ls

50)
Width of

selectivity
ogive (wqs; cm)

Bin size (cm)

Life history Base 34 6.8 0.01 11 2.2 2
Short 20.2 4.04 0.01 9 1.8 1
Longer 50 10 0.01 20 4 3

Exploitation level Underexploited 34 6.8 0.01 11 2.2 2
Overexploited 34 6.8 0.01 11 2.2 2

Recruitment Stochastic 34 6.8 0.4537 11 2.2 2
AR 34 6.8 0.737 11 2.2 2

The base model is comprised of the medium-lived species at the target exploitation level with constant, non-stochastic recruitment. From the base model,
changes in life history (short- or longer-lived), exploitation level (under- or overexploited), and recruitment type [stochastic (Thorson, in press) or autocorre-
lated (AR)] was made, respectively, to create the other six scenarios.
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length-frequency data from catches (200 individuals per month).

For each simulation replicate, we calculated the “true” SPR and

F/FMSY based on life history (Figure 2; detailed description is

provided by in the Supplementary Figure S1).

All operating models assumed von Bertalanffy growth and

logistic-type selectivity and maturity. The three life histories were

based on those used by Rudd and Thorson (2018) to test the

LIME approach: Siganus sutor (Kenyan rabbitfish) for the short-

lived (Hicks and McClanahan, 2012), Lutjanus guttatus (spotted

rose snapper) for the medium-lived (Bystrom, 2016), and

Epinephelus morio (red grouper) for the longer-lived (Heemstra

and Randall, 1993) life history types. Examples of each life history

are shown in Figure 3 as length-frequency graphs for one simula-

tion replicate. All simulations and analyses were conducted using

the statistical programming language R (R Core Team, 2018).

Estimation models
The estimation models refer to the length-based assessment

methods that derive estimates of stock status from sampled

length-frequency catch data. All estimation models compared in

this study assume the true values for life history parameters are

known (e.g. growth, maturity, and natural mortality parameters;

see Inputs in Table 3) and, therefore, the same values that were

used in the operating models were supplied to each of the

methods as inputs. As a result, the estimation capabilities of each

method are better than would be expected if these parameter val-

ues were estimated with uncertainty or incorrect, as is normally

the case. Life history parameters, fishing mortality rate, and

recruitment are often confounding factors affecting the shape of

the length-frequency distribution; thus, the focus of this article is

on sensitivities of methods estimating stock status based on an

IBM approach alone rather than confounding it with biased life

history parameters, because previous simulation studies have

already shown the effects of incorrect life history parameters

(Punt, 2003; Deroba and Schueller, 2013; Hordyk et al., 2015b;

Rudd and Thorson, 2018).

The selectivity values Ls
50 and Ls

95, lengths at 50% and 95% se-

lectivity, respectively, were calculated using the length-converted

catch curve (LCCC) from the R package TropFishR

(Mildenberger et al., 2017) and used as the selectivity inputs for

all estimation models. The LCCC method plots the natural log of

catch vs. age, estimates total mortality (Z) from the negative slope

of the regression of the curve and derives a selection ogive. For

TB, Z was calculated from the LCCC and used as an input value,

similar to how TB is applied to data in reality. The four length-

based methods assessed, (i) TB, (ii), LBSPR, (iii) LIME, and (iv)

LBRA, are contained within the R packages TropFishR, LBSPR

(Hordyk et al., 2015b), LIME (Rudd and Thorson, 2018), and

Figure 2. Visual representation of the calculation and YPR of the “true” SPR and FMSY based on three life histories. The “true” SPR and FMSY

were calculated by pushing the IBM forward 100 years and producing a YPR curve. The fishing mortality (F) for each scenario was simulated
based on this calculation as well.

100 L. Chong et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/1/97/5621359 by Leibniz-Zentrum
 für M

arine Tropenforschung (ZM
T) G

m
bH

 user on 05 July 2022

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz212#supplementary-data


fishmethods (Nelson, 2017), respectively. The inputs, assump-

tions, and outputs of each of the methods, including the LCCC

method, are listed in Table 3.

Performance metrics
Many studies have explored the levels of SPR to be used as target

and limit reference points, often applying SPR of 30% as a limit

and 40% as a target reference point (Mace and Sissenwine, 1993;

Clark, 2002; Hordyk et al., 2015c). F/FMSY is a reference point re-

lating the current fishing mortality (F) to the level that would sus-

tain maximum yield (FMAX). There is a common practice of

linking FMAX to FMSY based on the assumption that recruitment

is independent of spawning-stock size for fishing mortalities be-

tween 0 and FMAX (Reynolds et al., 2001) and that selectivity is as-

ymptotic and around the maturity ogive. These assumptions are

often invalid for most species and many fisheries. However, in

this study, density-dependent effects on recruitment were negligi-

ble, resulting in equivalency between FMAX and FMSY. Although

reference points based on MSY are based on a measure of magni-

tude (i.e. catch), FMSY can be calculated with length only instead

of catch using relative YPR (Larkin, 1977; Holt and Talbot, 1978;

Caddy and McGarvey, 1996; Punt and Smith, 2001).

For each of the seven scenarios above, we compared SPR and

F/FMSY in the terminal year as the performance metrics, which

represent stock status and fishing intensity of the current state rel-

ative to a reference point. We then quantified bias and precision

of SPR and F/FMSY and derived values used to calculate F/FMSY, F,

and FMSY (results of F and FMSY are in the Supplementary Tables

S1 and S2, Figures S2 and S3). Relative errors between the esti-

mated and true value were calculated as performance metrics for

each derived output in order to quantify bias using the median

relative error (MRE) and precision using the median absolute rel-

ative error (MARE):

MRE ¼ median
xest � xtrue

xtrue

� �
(1)

MARE ¼ abs median
xest � xtrue

xtrue

� �	 

; (2)

where xest is the estimated value (calculated from the respective

estimation model) and xtrue is the true value (calculated from the

operating models). Values closer to zero represent the least biased

(MRE) and most precise (MARE) results.

Results
Performance of the length-based methods
TB and LBSPR were <30% biased and imprecise across scenarios

when estimating the reference points (Figures 4 and 5, Tables 4

and 5). Of the four scenarios, TB was the least biased and most

precise in estimating SPR for the short-lived and stochastic sce-

narios with <10% bias and imprecision. When estimating

F/FMSY, TB performed the best in the base and overexploited sce-

narios, each being <10% biased and precise. The LBSPR estimate

of SPR was the closest to the truth in the overexploited (<5% bi-

ased and imprecise) and autocorrelated scenarios, and was the

least biased in estimating F/FMSY in the underexploited, stochas-

tic, and autocorrelated scenarios. LBSPR was relatively robust as

natural mortality was fixed (M/K input; Table 5), which increases

precision in the calculation of F/M and thus SPR and F/FMSY.

Rudd and Thorson (2018) found that LBSPR performed better

when the stocks were in equilibrium and when the operating

model matched LBSPR’s assumptions; this result is supported

given that the base IBM assumptions included constant recruit-

ment (except in the stochastic and autocorrelated scenarios), and

fishing. LBSPR was found to be accurate when the underlying se-

lectivity is asymptotic (Hordyk et al., 2015b; Rudd and Thorson,

2018; Pons et al., 2019).

LIME was the least biased and most precise when estimating

SPR for the base and longer-lived scenarios (Table 4) but usually

performed the worst in estimating SPR for the over- and under-

exploited scenarios (Table 4) and F/FMSY for short-lived and

autocorrelated recruitment scenarios (Table 5). The relatively

high bias and low precision for these estimates indicate that the

complexity of this method requires longer time-series; a single

year of monthly length-frequency data is insufficient for this

method to untangle the effects of fishing mortality and recruit-

ment on the length-frequency data. Lastly, LBRA only performed

well in the short-lived scenario. Due to the method’s constraint

in using a “truncated model” of Ehrhardt and Ault (1992), mean-

ing that LMAX is the cut-off for the upper length class, some of the

lengths above LMAX were removed. Truncations lead to overesti-

mation of Z (Then et al., 2015), which results in underestimation

of SPR and overestimation of F/FMSY. This was especially evident

in the medium- and longer-lived scenarios (Figures 4 and 5).

Although LBRA was more biased than the other methods, it gave

low values of SPR and high values of F/FMSY, meaning that it is

more precautionary, a more desired feature in data-limited

approaches if error is unavoidable.

Across life history, exploitation level, and recruitment
scenarios
Life histories have a clear impact on the performance of these

four length-based assessment methods (Figures 4 and 5).

Notably, each method had difficulties in assessing short-lived

stocks, especially when estimating F and FMSY, and consequently

Figure 3. Length-frequency distribution graphs. For each life history
scenario (short, medium, and longer), Lm

50, Ls
50, and L1 are visualized

(in blue, red, and black, respectively) over the length-frequency
graphs for one iteration.
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F/FMSY. The increased bias and decreased precision of F/FMSY

stem from the decreased accuracy of the calculation of fishing

mortality and FMSY. All methods overestimated SPR; LBSPR and

LIME performed the worst and TB and LBRA performed the best

across the life histories. For medium- and longer-lived species,

TB, LBSPR, and LIME overestimated SPR, whereas LBRA on av-

erage underestimated SPR. In the medium-lived scenario, TB,

LBSPR, and LIME were negatively biased in calculating F/FMSY,

whereas LBRA was positively biased. For the longer-lived sce-

nario, TB and LBSPR underestimated F/FMSY, whereas LIME and

LBRA overestimated F/FMSY.

Although the performance of the methods under different ex-

ploitation scenarios varied among reference points, it is evident

that stocks that are either under- or overexploited are more

Table 3. Summary of methods.

Method Inputs Assumptions Outputs

LCCC (not part
of the comparison)

� Length-frequency data (yearly catch
vector)

� von Bertalanffy growth function
(L1;K; t0)

� Natural mortality (M)

(i) Total mortality is constant for all
length classes

(ii) Selectivity follows logistic curve
(width of curve calculated from Ls

50
and Ls

75)

� Length at 50% and 95%
selectivity (Ls

50 and Ls
95)

� Total mortality (Z) (used to
calculate F)

Length-based TB � Length-frequency data
� von Bertalanffy growth function

(L1;K; t0)
� Length–weight relationship (a and b)
� F-at-length-array (fishing mortality for

each length class; calculated based on
selectivity)

� Natural mortality (M)
� Total mortality (Z)
� Length at 50% selectivity and maturity

(Ls
50 and Lm

50)
� Width of selectivity and maturity logistic

curve

(i) Stock is in equilibrium
(ii) Natural mortality is constant

(iii) Selectivity and maturity follow
logistic curve

� Precautionary reference levels
(F0.1, F0.5, E0.5)

� Exploitation, yield, abundance
and catch across vector of
fishing mortalities

� Current exploitation, yield,
abundance and catch

� Current F
� SPR
� F/FMax or F/FMSY

� SPRMSY

LBSPR � Length-frequency data
� Asymptotic length (L1)
� Coefficient of variation of L1 (CV L1 )
� M=K (calculated from M and K)
� Length–weight relationship (a and b)
� Length at 50% and 95% selectivity (Ls

50
and Ls

95)
� Length at 50% and 95% maturity

(Lm
50 and Lm

95)

(i) Stock is in equilibrium
(ii) Natural mortality and growth rates

are constant
(iii) Selectivity and maturity follow a

logistic curve
(iv) Both sexes have the same growth

curve and the sex ratio is equal
(v) The lengths at each age are

normally distributed around a
mean length-at-age value.

� F/M ratio
� Length at 50% and 95%

selectivity (Ls
50 and Ls

95)
� F/M ratio (used to

calculate F)
� SPR
� F/FMSY

� SPRMSY

LIME � Length composition data
� von Bertalanffy growth function

(L1;K; t0)
� Length–weight relationship (a and b)
� Natural mortality (M)
� Length at 50% and 95% selectivity

(Ls
50 and Ls

95)
� Length at 50% (Lm

50)

(i) Natural mortality is constant
(ii) Selectivity and maturity follow a

logistic curve

� (Length data only)
� Recruitment
� Spawning biomass
� Mean length
� Length at 50% and 95%

selectivity (Ls
50 and Ls

95)
� Current F
� SPR
� F/FMSY

� SPRMSY

LBRA � Length composition data
� von Bertalanffy growth function

(L1;K; t0)
� Coefficient of variation of length at age

(CV L1 )
� Length–weight relationship (a and b)
� Natural mortality (M)
� Theoretical maximum age (ãk)

(i) Average annual constant
recruitment

(ii) Selectivity and maturity follow a
logistic curve

(iii) The lengths at each age are
normally distributed around the
mean length

(iv) The observed maximum age (âk)
deviates are described by the
exponential probability density
function (used to calculate M)

� B/BMSY

� Total mortality
(ZÞ½used to calculate
fishing mortalityðF)]

� SPR
� F/FMSY

� SPRMSY

The data inputs, assumptions, and expected outputs are listed for each method including the LCCC. In the outputs, the estimates in bold are those used this
study uses for the comparison.
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difficult to assess than those that are fished near the target exploi-

tation level (SPR � 40%). When stocks are severely overexploited,

the methods are less accurate in estimating SPR. When the stocks

are severely underexploited, the methods present inconsistencies

in estimating F/FMSY. The error stems from the calculation of

fishing mortality as seen in Supplementary Figure S1 and Table

S1. For both exploitation levels, the inaccuracy of F/FMSY is due

to the large bias and imprecision in calculating the fishing

mortality.

The impacts of increasing recruitment error were also evident

in each of the methods, as precision decreased in the stochastic

and autocorrelated scenarios. Although precision decreased,

the bias in SPR was also lower in most of the methods because

no recruitment error was implemented in the base model. In

the stochastic scenario, each of the methods on average under-

estimated SPR, with three methods (TB, LBSPR, and LIME)

also being <5% biased, whereas in the autocorrelated scenario,

the three methods on average overestimated SPR, but remained

<10% biased. When estimating F/FMSY in general, the bias

generally decreased with the addition of recruitment error com-

pared with when there was no error. The high bias in estimating

F/FMSY stems from FMSY, and the low precision stems from

fishing mortality.

Discussion
This study is a first in simulation testing length-based models us-

ing an IBM framework, thus adding a level of independence in

population dynamics not seen in other studies. In similar studies

(Ault et al., 1998; Hordyk et al., 2015b; Rudd and Thorson,

2018), the operating models used are identical to the assessment

models and assume that all dynamic processes are fully under-

stood. An alternatively structured operating model can help avoid

this problem and identify misleading assumptions that may be

implicit in the design of an assessment model (Cao et al., 2016).

Figure 4. Violin plots of relative error for SPR for 300 iterations per scenario with 200 individuals per month sampled in a single year across
three life histories (short-, medium-, and longer-lived), three exploitation levels (target, under, and overexploited), and three recruitments (no
error, stochastic error, and autocorrelation pattern and error). Four methods (length-based TB [in orange], LBSPR [in green], LIME [in blue],
and LBRA [in violet]) were analysed. The grey horizontal line is the zero relative error line, and the black dot is the median relative error
indicating bias. Each plot has a different y-axis with a smoother tail.
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In addition, population-based methods (age or length) make

assumptions regarding error in length-at-age to create length dis-

tribution within each age class (Cao et al., 2016). Our operating

model considers the Rosa Lee phenomenon, which is usually not

seen in many assessment models, where slow-growing fish may

have lower mortality rates because they become susceptible to

fishing selection (i.e. reach Ls
50) at a larger age than faster-growing

individuals (Lee, 1912; Kraak et al., 2019).

Performance of methods
Stock assessment methods often perform poorly with short-lived

species, as the annual time-step does not provide enough infor-

mation about their dynamics (Thiaw et al., 2011; Alemany et al.,

2015; Maunder and Piner, 2015). In addition, the biomass of

short-lived species is more sensitive to environmental variability

because of their fast growth rates and short generation times

(Winemiller, 2005; Dichmont et al., 2006; Pinsky et al., 2011).

Hordyk et al. (2015b) also found that length-based methods tend

to be biased for short-lived species, as these methods often rely

on detecting the signal of fishing mortality on the upper tail of

the length composition. Rudd and Thorson (2018) noted that

with increasing length and age, the cohorts tend to be indistinct.

In general, longer-lived species may have lower SPR levels, as

there is a relationship between longevity and sensitivity of SPR to

exploitation pressures (Nadon et al., 2015). Thus, for longer-lived

species, spawning biomass is represented by older individuals,

and their numbers can be reduced even with low fishing rate.

Medium-lived species have new recruits at an early age, which

allows better detection of information about the population, and

are not as vulnerable to fishing due to a low reproductive rate.

Varying life histories have an impact on the quality of length-fre-

quency data as they affect the ideal sample size, sparseness in

small or large length classes, and effects of selectivity and fishing

Figure 5. Violin plots of relative error for F/FMSY for 300 iterations per scenario with 200 individuals per month sampled in a single year
across three life histories (short-, medium-, and longer-lived), three exploitation levels (target, under-, and overexploited), and three
recruitments (no error, stochastic error, and autocorrelation pattern and error). Four methods (length-based TB [in orange], LBSPR [in green],
LIME [in blue], and LBRA [in violet]) were analysed. The grey horizontal line is the zero relative error line, and the black dot is the median
relative error indicating bias. Each plot has a different y-axis with a smoother tail.
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pressure. Although this study does not address common issues as-

sociated with the quality and bias of length-frequency data, we

can, however, conclude that medium-lived species seem the easi-

est to assess as their cohorts can be tracked, and it is easier to suf-

ficiently sample length classes.

We also show that fishing mortality in overexploited and un-

derexploited stocks is harder to assess with the four tested meth-

ods. In the majority of the scenarios, fishing morality was

underestimated, which highlights the challenge of accurately esti-

mating mortality rates and emphasizes the need for conservative

interpretation of assessment outcomes, particularly in assess-

ments that can only estimate stock status based on mortality rates

(e.g. exploitation). In a future study, the influence of historical

fishing patterns (e.g. a history of increasing and decreasing fishing

mortality) would be of interest to investigate as fishing mortality

is usually not constant, and a consistently high fishing mortality

results in a different length distribution than that seen in a re-

cently developed fishery.

Many stock assessment models, including length-based meth-

ods, assume equilibrium conditions. However, this assumption is

typically incorrect as recruitment variation changes the age struc-

ture of a population with time (Haddon, 2001). Recruitment pat-

terns can vary greatly among stocks (e.g. pulsed, autocorrelated),

seasonal variations and modes (uni- vs. bimodal; Isaac, 1990) and

should not be overlooked. Despite the underlying uncertainties

about recruitment error and type and whether a fishery is in

Table 4. Bias (MRE) and precision (MARE) table of SPR from length-based TB, LBSPR, LIME, and LBRA performance across life histories,
exploitation levels, and recruitment types.

Model 

Life history  Exploitation level  Recruitment 

Short Mediuma Longer 
 

Targeta 
Under-

exploited 
Over-

exploited 
 No 

errora Stochastic 
Auto-

correlation 

Bias (MRE) 

TB 0.016 0.081 0.048  0.081 –0.023 0.197  0.081 –0.003 0.076 

LBSPR 0.188 0.121 0.102  0.121 0.081 0.035  0.121 –0.007 0.056 

LIME 0.149 0.042 0.029  0.042 0.424 0.560  0.042 –0.023 0.089 

LBRA 0.054 –0.159 –0.215  –0.159 –0.350 –0.364  –0.159 –0.377 –0.315 

Precision (MARE) 

TB 0.043 0.084 0.073  0.084 0.066 0.197  0.084 0.099 0.146 

LBSPR 0.187 0.121 0.102  0.121 0.082 0.044  0.121 0.150 0.218 

LIME 0.149 0.062 0.057  0.062 0.424 0.560  0.062 0.163 0.226 

LBRA 0.074 0.159 0.215  0.159 0.350 0.364  0.159 0.377 0.337 

aThese are components of the base model, and thus are of a single scenario.

Table 5. Bias (MRE) and precision (MARE) table of F/FMSY from length-based TB, LBSPR, LIME, and LBRA performance across life histories,
exploitation levels, and recruitment types.

Model 

Life history  Exploitation level  Recruitment 

Short Mediuma Longer 
 

Targeta 
Under-

exploited 
Over-

exploited 
 No 

errora Stochastic 
Auto-

correlation 

Bias (MRE) 

TB 0.091 –0.091 –0.022  –0.091 0.298 –0.018  –0.091 0.112 –0.142 

LBSPR 0.189 –0.148 –0.111  –0.148 –0.022 0.096  –0.148 0.105 –0.089 

LIME –0.684 –0.334 0.138  –0.334 –0.752 –0.400  –0.334 –0.568 –0.644 

LBRA –0.066 0.247 0.343  0.247 1.484 0.505  0.247 0.867 0.448 

Precision (MARE) 

TB 0.096 0.114 0.089  0.114 0.306 0.075  0.114 0.197 0.190 

LBSPR 0.189 0.148 0.111  0.148 0.145 0.096  0.148 0.223 0.282 

LIME 0.684 0.334 0.188  0.334 0.752 0.400  0.334 0.568 0.644 

LBRA 0.098 0.253 0.343  0.253 1.484 0.505  0.253 0.867 0.469 

Lighter colours indicate better models: the lightest red colour indicates bias/precision <5%, and the darkest red colour indicates bias/precision >30%.
aThese are components of the base model, and thus are of a single scenario.
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non-equilibrium conditions, one could still apply TB or LBSPR

as they were less biased with a single year of data. Although this

study lightly addressed the effects of including recruitment vari-

ability, and many management strategy evaluation studies investi-

gate different levels of recruitment error, further studies should

investigate how this may affect data-limited fisheries assessments.

Caveats of length data
Typically, length data representing a single year of sampling are

frequently the case in tropical, data-limited areas. However, some

methods have limited abilities with only a single year of data as

there is no information to tease apart recruitment from fishing

mortality leading to high uncertainty. Time-series data are not al-

ways guaranteed to give better estimates (Carruthers et al., 2014;

Rudd and Thorson, 2018; Dowling et al., 2019); rather, the valid-

ity of the assumptions of the method and the attributes of the

stock life history are more important to assessment outcomes

(Carruthers et al., 2014). Although stock assessments usually use

multiyear data, the quality of the data and the performance of the

methods are often more important in determining the reliability

of the assessment. In addition, the ideal sample size and sampling

period are dependent on life history and should be considered in

the assessment.

Length-frequency data obtained from small-scale, data-limited

fisheries are often strongly biased due to mixed gear selectivity

not being properly accounted for or because not all gear types are

sampled. The size composition of the catch usually reflects a mix

of sizes due to the use of a variety of fishing gears. This issue was

addressed for tropical fisheries by Wolff et al. (2015), who found

that different gear selectivities impact YPR and spawning bio-

mass. The data generation of our simulation study assumed as-

ymptotic selectivity and Ls
50 ¼ 0.25 L1. Ideally, the selection

characteristics of the gear(s) should be known prior to any

length-frequency analysis, and (if possible) catch length-fre-

quency data should first be reconstructed based on the selectivity

features of the gear. A study by Pons et al. (2019) investigated the

influence of different gear selectivity from multiple fleets on

length composition data of scombrids in the Atlantic Ocean and

found that accounting for multiple selectivity curves reduces bias

in estimating SPR. Further consideration and investigation of

gear selectivity influences on length data are warranted.

Guidance to practitioners and conclusions
TB and LBSPR are methods based on YPR or spawning per re-

cruit, meaning that they do not assume any stock–recruitment re-

lationship. These are important assumptions of the two models,

and when violated, their performances will be biased. A common

practice in using TB is to perform the length-based Jones’ cohort

analysis beforehand (Mildenberger et al., 2017), which relies on

catch in numbers/biomass at age and can estimate fishing mortal-

ity per length class. However, it should be noted that this ap-

proach adds error from the cohort analysis to TB. We, therefore,

recommend calculating fishing mortality per length class using

the LCCC with the estimation of selectivity pattern.

When there is conflicting information and results among

methods, we recommend using the information provided in this

study to advise which type of model is less biased for a given

combination of life history and other factors. This study guides

which type of model, out of the four tested, can be considered

most reliable given a stock’s life history, recruitment, and

exploitation. If those properties are unknown (and they most of-

ten will be), TB and LBSPR should be run in parallel. Minor

differences in outcomes would then indicate uncertainties due to

model structure, whereas major discrepancies point to model

assumptions potentially being overlooked. Although we highlight

which methods performed well in a given scenario, we also en-

courage using a combination of length-based methods to com-

pare their performances and define a range of possible stock

estimates. In the absence or uncertainty of such knowledge on life

history, recruitment, and exploitation, LBSPR and TB can be

expected to perform more consistently than LIME and LBRA in

the rapid assessment of limited data of a single year.

These four length-based methods can be used for rapid assess-

ments in data-limited fisheries to provide a cost-effective starting

point for management. As the assumptions and sensitivities of

each method were analysed in this study, scientists and managers

can use this information to quickly assess data-limited stocks for

an indication of stock status, thus providing guidance on which

methods to employ given a situation. For the development of

new data-limited assessment approaches, understanding how dif-

ferent life histories, exploitation levels, and recruitment errors

affect existing methods is essential as it highlights the weaknesses

of the current methods.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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